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INTRODUCTION 
 
Seeking traveling wave solutions of nonlinear evolution 
equations is of important and significance in 
mathematical physics and becomes of the most exciting 
and extremely active areas of research investigation. 
These solutions play an important role in many 
phenomena in physics, such as fluid mechanics, 
hydrodynamics, optics, plasma physics and so on. 
Because of the increased concentration in the theory of 
solitary waves, a large variety of analytic and 
computation methods have been established in the 
analysis of the nonlinear models (Wang et al., 2008; Lu 
and Shi,  2010; Miura, 1978; Parkes et al., 2005; Hirota, 
1971; Ablowitz and Clarkson, 1991; Tascan and Bekir, 
2009; El-Wakil et al., 2007; Weiss et al., 1983; Zayed, 
2011; Zayed and Gepreel, 2009; Zayed and Arnous, 
2012; Zayed and Hoda Ibrahim, 2012; Kudryashov and 
Loguinova, 2008; Ryabov, 2010; Ryabov et al., 2011; 
Wang et al., 1996; Kudryashov, 2012). An attractive 
nonlinear model of the nonlinear science is 
deoxyribonucleic acid (DNA). The DNA molecule 
encodes the information that organisms need to live and 
reproduce themselves. The DNA structure has been 
studied   during   last   decades.  It  consists  of  a  pair  of 
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molecules organized as strands and joined by hydrogen 
as well as covalent bonds. The investigation of DNA 
dynamics has successfully predicted the appearance of 
important nonlinear structures. It has been shown that the 
nonlinearity is responsible for forming localized waves. 
These localized waves are interesting because they have 
the capability to transport energy without dissipation 
(Aguero et al., 2008; Gaeta, 1999; Gaeta et al., 1994; 
Yakushevich, 1987, 1989, 1998; Peyrard and Bishop, 
1989). Recently, Kong et al. (2001) and Alka et al. (2011) 
studied the following nonlinear dynamics of DNA 
modeling: 

 
2 3 2

1 0,tt xxc A B C                              (1) 

 

where 
2

1c , A , B and C are well-known constants which 

are related to the real physical quantities of DNA. These 
constants can be found in Alka et al. (2011) and can be 
derived in “the derivation of the nonlinear DNA modeling 

(1)” part of this work, while   represents the out-of-

phase motion. 
The objective of this article is to apply the generalized 

Riccati equation mapping method to find many traveling 
wave solutions of the model (1), namely the hyperbolic 
and trigonometric  function  solutions.  Alka  et  al.  (2011) 



 
 
 
 
have investigated the nonlinear model (1) using the 
elliptic equation method and found the following solitary 
wave solutions: 
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where the plus or minus sign stands for anti-kinks or 

kinks respectively, while   is given by 
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The rest of this article is organized as follows: First is a 
“derivation of the nonlinear DNA modeling (1)”. This is 
followed by a “description of the generalized Riccati 
equation mapping method”. Next, “applications” of this 
method to find the exact traveling wave solutions of the 
model (1) are presented. The findings are then discussed 
and conclusions are given. 

 
 
THE DERIVATION OF THE NONLINEAR DNA 
MODELING (1) 

 
Here we derive the nonlinear DNA model (1) as follows: 
With reference to Kong et al. (2001) and Alka et al. 
(2011), the DNA molecule is supposed to consist of two 
long elastic strands which represents two polynucleotide 
chains of the DNA molecule, connected to each other by 
an elastic membrane representing the hydrogen bonds 
between the pairs of bases in the two chains. This model 

includes four degrees of freedom 1u , 1  and 2u , 2  for 

the two strands respectively. The 1u  and 2u  represent 

respectively the longitudinal displacements of the top 

strand and the bottom strand, while 1  and 2  denote 

respectively the transverse displacements of the top 
strand and the bottom strand. The Hamiltonian of such a 
model has the form: 

 

1 2 ,H T V V    

 
where the kinetic energy of the elastic strands 
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the potential energy of the elastic strands 
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and  the potential energy of the elastic membrane 
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Here  , ,Y and F are respectively the mass density, 

the area of transverse cross-section, the Young’s 
modulus and the tension density of each strand;   is the 

rigidity of the elastic membrane and ( )l x  is the 

stretching of the elastic membrane at x due to 
longitudinal vibrations and is given by 
 

2 2

1 2 2 1 0( ) ( ) ,l h v v u u l        

 

where h  is the distance between the two strands, 0l is 

the height of the membrane in the equilibrium position. To 
obtain the equation of motion let us introduce the new 
variables: for in-phase motion 

 

1 2

2

u u
u


    and   

1 2 ;
2

v v
v 


  

 
for out-phase motion 
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Assuming 1 2 ,u u h    1 2v v h   and neglecting 

the higher order term, we get 
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As out-of-phase motion stretches the hydrogen bond 
(Peyrard and Bishop, 1989) we will consider only out-of-
phase motion for which the equation of motion can be 
written as 
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By introducing the transformation ,v au b    (where 

a and b are some constant), putting ,u    F Y and 

2

h
b  , then the derivation of the model (1) can be 

found from the system (3). The constants 
2

1c , A , B and 

C of the model (1)  can be derived  from the above 

quantities of the Equation (3) which are related to the real 
physical quantities given by the formulas 
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DESCRIPTION OF THE GENERALIZED RICCATI 
EQUATION MAPPING METHOD 
 

Suppose we have a nonlinear evolution equation in the 
form 
 

( , , , , , ,...) 0,t tt x xx ttF                                   (4) 

 

Where
 

F  is a polynomial in ( , )x t and its partial 

derivatives in which the highest order derivatives and the 
nonlinear terms are involved. In the following, we give the 
main steps of this method (Zhu, 2008; Li and Zhang, 
2010; Ding et al., 2005). 
 

Step 1. We use the wave transformation 
 

( , ) ( ),x t  
    

,kx t                             (5) 

 

where k and   are constants, to reduce Equation (4) 

into the following ODE: 
 

( , , ,...) 0,P                                                   (6) 

 

where P  is a polynomial in ( )   and its total 

derivatives, while '
d

d
 . 

 
 
 
 
Step 2. We suppose that Equation (6) has the formal 
solution: 
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                                          (7) 

 

where na  are constants to be determined later, such that 

0,Na   while ( )Q   satisfies the generalized Riccati 

differential equation 
 

2( ) ( ) ( ),Q r pQ qQ                                (8) 
 

where ,r p and q  are real constants such that 0.q 
 

 

Step3.  We determine the positive integer N in Equation 

(7) by balancing the homogeneous balance between the 
highest order derivatives and the nonlinear term in 
Equation (6). 
 

Step 4.  We substitute (7) along with Equation (8) into 
Equation (6) and vanish all the coefficients of the powers 

of ( )Q   to yield a system of algebraic equations which 

can be solved using computer programs such that Maple 
or Mathematica to find the values of 

na ( 0,1,2,..., )n N  as well as k and  . 

 

Step 5. We substitute these values together with the well-
known solutions of Equation (8) into (7) to obtain the 
explicit traveling wave solutions of Equation (4). 
 

Step 6. It is well-known (Zhu, 2008; Li and Zhang, 2010; 
Ding et al., 2005) that the generalized Riccati differential 
Equation (8) has the following many solutions: 
 

Type 1: When 
2 4 0,p qr     and 0pq   (or 
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where   E   and  F  are nonzero constants, such that 
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Type 2: When 2 4 0,p qr     and 0pq   (or 0qr  ) 

we have the solutions 
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where   E   and  F  are nonzero constants, such that 
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APPLICATIONS 
 

In this part of the work, we will apply the generalized 
Riccati equation mapping method described in 
“description of the generalized Riccati equation mapping 
method” part of this work, to find many exact solutions of 
the nonlinear dynamics of DNA model (1). To this end, 
we use the wave transformation (5) to reduce Equation 
(1) to the following ODE: 
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where 
2 2 2

1 0.k c    Balancing   with 
3  yields 

1.N   Thus, the formal solution of Equation (11) has the 

form: 
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where 0a  and 1a  are constants to be determined later. 

Substituting (12) along with Equation (8) into (11) and 

setting all the coefficients of the powers of ( )Q   to be 

zero yields a system of the following algebraic equations: 
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Solving the algebraic Equations (13)-(16) using the Maple 
or Mathematica yields the following results: 
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where 0 0a  and 0.r 
 
Now the exact traveling wave 

solutions of Equation (1) have the following forms: 
 

Type 1: When 
2 4 0p qr     and 0qr   we have 

the hyperbolic solutions: 
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where E  and F  are nonzero constants, such that 
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Type 2: When 
2 4 0p qr     and 0qr   we have 

the trigonometric periodic solutions: 
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where E  and  F are nonzero constants, such that 
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where 0a  and   can be found using (17) to take the 

forms: 
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Remark. All solutions of this article have been checked 
with Maple by putting them back into the original 
Equation (1). 

 
 
DISCUSSION 

 

On comparing our first result 1( , )x t obtained using the 

generalized Riccati equation mapping method with the 
well-known result (2) obtained in Alka et al. (2011) using 
the elliptic equation method, we deduce that the result (2) 

follows from our result 1( , )x t
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 the formula (21) reduces to the 

form (2). This shows that the well-known solution (2) is a 

special case of our first solution 1( , ).x t  Thus, on 

applying the generalized Riccati equation mapping 
method used in this article with the help of the formal 
solution (7) along with the generalized Riccati Equation 
(8), we  obtain the exact traveling wave solutions (18) 
and (19) of the nonlinear dynamics of DNA model (1) 
which look new and represent the solitary wave solutions 
of the forms (18) and the periodic solutions of the forms 
(19). 

 
 
CONCLUSIONS 

 
From these discussions we conclude that the generalized 
Riccati equation mapping method is more effective and 
gives more exact solutions than the elliptic equation 
method. Finally, we deduce that the proposed method in 
this article can be applied to many other nonlinear 
evolution equations in mathematical physics. 
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