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This work details the performance evaluation of simulated annealing (SA) and genetic algorithm (GA) in 
terms of their software complexity measurement and simulation time in solving a typical University 
examination timetabling problem (ETP). Preparation of a timetable consists basically of allocating a 
number of events to a finite number of time periods (also called slots) in such a way that a certain set of 
constraints is satisfied. The developed software was used to schedule the first semester examination of 
Ladoke Akintola University of Technology, Ogbomoso Nigeria during the 2010/2011 session. A task 
involving 20,100 students, 652 courses, 52 examination venues for 17 days excluding Saturdays and 
Sundays.The use of the software resulted in significant time saving in the scheduling of the timetable, a 
shortening of the examination period and a well spread examination for the students. Also, none of the 
lecturers / examination invigilators was double booked or booked successively. It was clearly evident 
that simulated annealing performed better than genetic algorithm in most of the evaluated parameters. 
 
Key words: Simulated annealing, genetic algorithm, examination timetabling, software complexity and 
simulation time. 

 
 
INTRODUCTION 
 
Preparation of a timetable consists basically of allocating 
a number of events to a finite number of time periods 
(also called slots) in such a way that a certain set of 
constraints is satisfied. Two types of constraints are 
usually considered, hard constrains, that have to be 
fulfilled under all circumstances, and soft constraints, that 
should be fulfilled if possible. In some cases, it is not 
possible to fully satisfy all the constraints, and the aim 
turns to be finding good solutions subject to certain 
quality criteria (for example, minimizing the number of 
violated constraints, or alternatively satisfaction of hard 
constraints, while the number of violated soft constraints 
is  minimized  (Keshav et al., 2007).  Hard constraints are  
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the most important constraints to completely resolve in 
order to prevent the double booking of lecturers, students 
or classrooms. A practical timetable that does not violate 
hard constraints is called a feasible timetable. The 
second international timetabling competition (ITC, 2007) 
described hard and soft constraints (Di Gaspero et al., 
2007). 

Timetabling are combinatorial optimization problems, 
which consist of scheduling a set of courses within a 
given number of rooms and time periods. Solving a real 
world timetabling problem manually often requires a 
significant amount of time, sometimes several days or 
even weeks (Abdennadher et al., 2000). The manual 
solution of the timetabling problem usually requires 
several days of work and the final solution may be 
unsatisfactory because it is a highly complex task to 
verify all constraints. 

For the aforementioned reasons, considerable attention 
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has been devoted to automated timetabling. A large 
number of variants of the timetabling problem have been 
proposed in the literature, which differs from each other 
based on the type of institution involved and the type of 
constraints imposed by the examination policy of the 
institution. Preparation of an academic examination 
timetable is a typical scheduling problem that appears to 
be a tedious job in every academic institute once or twice 
a year. The problem involves the arrangement of 
courses, students, teachers and rooms at a fixed number 
of time-slots, respecting certain restrictions. Wren defines 
the general problem of timetabling as follows: 
“Timetabling is the allocation, subject to constraints, of 
given resources to objects being placed in space time, in 
such a way as to satisfy as nearly as possible a set of 
desirable objectives” (Wren, 1996). 

The inability of the classical methods to handle the 
large number of real and integer variables involved in 
solving this class of problem and especially the number 
of constraints involved paved way for the adoption of 
non-classical techniques. Simulated annealing (SA), 
Tabu search (TS), Genetic algorithm (GA), Memetic 
algorithm (MA) and Ant colony system (ACS) are among 
the main algorithms for solving challenging problems of 
intelligent systems (Zahra, 2005). In this research, two of 
these techniques were carefully studied and compared in 
terms of their software complexity and simulation time. 

Genetic algorithm (GA) is one of the most popular 
optimization solutions. It has been implemented in 
various applications such as scheduling. The operators of 
GA such as selection, crossover and mutation are 
applied to populations of chromosomes. Simulated 
annealing (SA) is a random-search technique which 
exploits an analogy between the way in which a metal 
cools and freezes into a minimum energy crystalline 
structure (the annealing process) (Elmohamed et al., 
1998; Omidiora et al., 2009). In addition, the search for a 
minimum in a more general system forms the basis of an 
optimization technique for solving combinatorial based 
problems. It is generally regarded as a modified version 
of hill climbing algorithm. It has been proved that by 
carefully controlling the rate of cooling of the temperature, 
SA can find the global optimum. However, this requires 
infinite time. Fast annealing and very fast simulated re-
annealing (VFSR) or adaptive simulated annealing (ASA) 
are each in turn exponentially faster and overcome this 
problem. SA's major advantage over other methods is an 
ability to avoid becoming trapped in local minima. The 
algorithm employs a random search which not only 
accepts changes that decrease the objective function 
(assuming a minimization problem), but also some 
changes that increase it. An effective solution technique 
to the problem could be applied to other scheduling 
problems (Abramson, 1991). The problem drew the 
attention of the researchers in the early 60’s with the 
study of Gotlieb in 1962, who formulated a class-teacher 
timetabling   problem  by  considering  that  each   lecture  

 
 
 
 
contained one group of student, one teacher, and any 
number of time-slots which could be chosen freely. 

 Schaerf, surveyed that most of the early techniques for 
automated timetabling were based on successive 
augmentation (Schaerf, 1999), where a partial timetable 
was filled in lecture by lecture until either all lectures were 
scheduled or no further lecture could be scheduled 
without violating constraints. In another survey, 
Abramson (1991) reported the general techniques 
applied to the problem in the past, such as network flow 
analysis, random number generator, integer programm-
ing, and linear algorithm. In addition to these, worth 
mentioning methods are exact method-based heuristic 
algorithm (De Werra, 1985), and graph coloring theory 
(Neufeld and Tartar, 1974). However, the classical 
techniques are not fully capable to handle the large 
number of integer and/ or real variables and constraints, 
involved in the huge discrete search space of the 
timetabling problem. These inadequacies of classical 
techniques have drawn the attention of the researchers 
towards the non-classical techniques. Worth mentioning 
non-classical techniques, that are being used to solve the 
problem, are genetic algorithms (Colorni et al., 1994; 
Abramson and Abela, 1992), neural network, simulated 
annealing, and tabu search algorithm.  

However, compared to other non-classical methods, 
the widely used are the genetic/ evolutionary algorithms 
(GAs/ EAs). The reason might be their successful 
implementation in a wider range of applications (Al-Attar, 
1994). Piola (1994) applied three evolutive algorithms to 
school timetabling problem, and showed their capability 
to tackle highly constrained combinatorial problems, such 
as timetabling problem. A timetable is essentially a 
schedule which must suit a number of constraints. 
Constraints are almost universally employed by people 
dealing with timetabling problems (Burke et al., 1994). 
 
 

METHODS 
 

After representing the problem mathematically, the two algorithms 
employed were implemented using Matlab development kit on an 
Intel® Dual core CPU with 220 GHz speed, 2.91 GB Random 
Access Memory (Accessible) and 146 GB hard disk drive with 
windows 7 ultimate edition.  
 
 

Problem representation 
 

Examination timetabling is a specific case of the more general 
timetabling problem. In the case of examination timetabling, a set of 
exams E = {e1, . . . , en} to be scheduled within a certain number of 
periods P = {p1, . . . , pm} subject to a variety of hard and soft 
constraints (Piola, 1994; Burke and Ross, 1996). Table 1 contains 
the constraints considered in this work. 
 
 

Simulated annealing pseudo code 
 

The standard simulated annealing that was coded using the Matlab 
development kit is presented as follows: 
Start  with  the  system in a known configuration, at known energy E 
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Table 1. Summary of constraints considered. 
 

Label Definition 

HC1 The number of exams a student will write at a time 

HC2 Number of classes a teacher should be at a time 

HC3 Number of examination in the schedule 

HC4 The type and capacity of the room where a class is to be scheduled 

HC5 Number of timeslot at which an examination of a course is to be scheduled 

SC1 Total number of free time-slots between two examinations (or events) of students 

SC2 Total number of consecutive classes of a teacher 
 

HC: Hard constraints; SC: Soft constraints. 

 
 
 
T = temperature = hot; frozen = false;  
While (! frozen) {  
 repeat {  
  Perturb system slightly (e.g., moves a particle) 
  Compute E, change in energy due to perturbation 
  If (∆E< 0)  
 Then accept this perturbation, this is the new system config 
  Else accept maybe, with probability = exp (-∆E/KT)  
  } until (the system is in thermal equilibrium at this T)  
  If (∆E still decreasing over the last few temperatures)  
 Then T = 0.9T//cool the temperature; do more perturbations  
 Else frozen = true 
 }  
return (final configuration as low-energy solution) 
 
 
Genetic algorithm pseudo code 
 
The standard genetic algorithm which was also coded using the 
Matlab development kit is also as follows: 
 
Genetic algorithm: the Pseudo code 

Input:  

Output: : The best individual found during the run,  

 : The best population found during the run. 

 
1. t           0; 

2. P (t)           initialize (  

3. F(t)        evaluate (P (t),  

4. While (i (P(t), Θi )  true) do 

5. P (t)            recombine (P (t), Θr); 

6. P (t)            mutate (P(t), Θm); 

7. F(t)         evaluate (P(t), ; 

8. P (t + 1)  select (P(t), F(t), µ, Θs); 
9. t      t + 1; 
do  
The input parameter sets Θi, Θr, Θm, and Θs of the basic operators. 
Notice that recombination was allowed to equal the identity 

mapping: that is, P(t) = P(t) is possible. 
 
 
Data used for the work 
 

The following are the set of data used to automatically generate the 
examination timetable: 
 

i. Available venues and their corresponding capacity 
ii. Special examination venue (if any) and capacity 

iii. List of subjects (exams) to be written 
iv. The list of all registered students per exam or course 
v. The list of available invigilators 
vi. Maximum examination period (no of exam days or weeks) 
vii. Duration of each examination (maximum number of hours) 
 
 

Complexity of the two algorithms 
 

Halstead software complexity and Lines of Code (LOC) were used 
to evaluate the two coded algorithms. Halstead measure calculates 
program volume (V), program effort (E), program level (L) and 
intelligence content of the program (I). Table 2 contains the 
formulae for measuring all the metrics. All these measures are valid 
under the assumption that the program is "pure," that is, free of the 
so-called "poor programming practices" (Olabiyisi et al., 2005, 
2007). 
 
 

RESULTS 
 

After implementing the two algorithms, Table 3 shows the 
measured parameters and their various values used in 
calculating the software complexity of the two algorithms. 
It should be noted that n1 is the number of distinct 
operators found in the program, n2 is the number of 
distinct operands, N1 is the total number of operators, N2 
is the total number of operands, N is the addition of N1 
and N2 and n is the addition of n1 and n2. 
 
 

DISCUSSION 
 

As shown in Table 4, the two considered algorithms 
produced feasible solutions because none violated the 
constraints considered in this work. 
 
 

Simulation time 
 

The time utilized by an algorithm to run until the result is 
produced is usually called execution time or simulation 
time. Table 4 and Figure 1 show the measured values of 
the simulation time of the two considered algorithms. The 
simulation time of GA and SA are 19.73 and 56.16 
seconds respectively to return a feasible examination 
timetable. This is clear evidence that SA utilized more 
time than GA. 
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Figure 1. The simulation time of the two algorithms. 

 
 
 
Table 2. Formulae for measuring the complexity metrics of both 
algorithms. 
 

Complexity metrics Formulae 

Volume (V) N* log2n 

Effort (E) V/L 

Program level (L) (2*n2) / (n1*N2) 

Intelligent content of the program (I) L*V 

 
 
 
Table 3. Data obtained for measuring the complexity of both 
algorithms. 
 

Parameters for measuring 
complexity 

GA SA 

No. of distinct operators (n1) 14 10 

No. of distinct operands (n2) 42 54 

Total number of operators (N1) 267 260 

Total number of operands (N2) 96 88 

N i.e. (N1+N2) 363 348 

n i.e. (n1+n2) 56 64 

 
 
 

Program size 
 

The program size is the amount of disk space occupied 
and it is usually measured in bits, bytes, kilobytes, 
Megabytes, Gigabyte, Terabytes, etc depending on the 
actual size under consideration. Table 4 and Figure 2 
show that the program sizes of GA and SA are 20 and 
16.5 Kb respectively. This is an indication that GA code  
utilized more disk space than SA. 

Lines of code 
 

The lines of code (LOC) are the number of lines of the 
executable codes in a program. Table 4 shows the LOC 
of GA and SA as 500 and 256 respectively. These values 
show that GA code has more number of executable lines 
of code than SA.This is an indication that the 
implementation time and effort required by GA was more 
than that of SA. 
 
 
Program volume 
 

The program volume is the value that signifies the 
volume of the computer memory being utilized during the 
execution of the implemented algorithms. The program 
volume for Genetic Algorithm, Simulated annealing are 
2108.07 and 2088.00 respectively. Table 4 and Figure 3 
show that SA occupies lesser memory space in terms of 
volume than GA. 
 
 

Program effort 
 

This is widely known as the number of discriminations 
made in the preparation of a program, it specifies the 
extent to which personnel involved in software production 
are effectively engaged. It could also be referred to as the 
quantitative measure of the effort involved in the 
implementation of an algorithm. 

The measured values are presented in Table 4 and 
Figure 4. The program effort of GA and SA are 33729.12 
and 17013.33 respectively. This is an indication that the 
program effort of GA is higher than that of SA.  
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Table 4. Data obtained during and after the execution of both algorithms. 
 

Parameter GA SA 

Simulation time (seconds) 19.73 56.16 

Number of Courses clashed 0 0 

Number of lecturers double booked 0 0 

Program size (KB) 20 16.5 

Lines of code 500 256 

Program volume (V) 2108.07 2088.00 

Program effort (E) 33729.12 17013.33 

Difficulty of understanding the program (L) 0.06 0.12 

Intelligent content of the program (I) 131.75 256.25 
 
 
 

 

 

 

 

 

Figure 2: The Program Size of the Two Algorithms 

 

 

 

 

0

5

10

15

20

25

GA SA 

Program Size (KB)

  
  
  
  
  
  
  

  
  
  
  
  
  

P
ro

g
ra

m
 s

iz
e
 (

K
B

) 

                                       Algorithms 
 

 

Figure 2. The program size of the two algorithms. 
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Figure 3. The program volume of both algorithms. 
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Figure 4. Comparative view of the evaluated parameters of SA and GA. 

 
 
 
Program level / difficulty of understanding the 
program 
 
This program level otherwise called difficulty of 
understanding a program. As presented in Table 4 and 
Figure 4, that GA and SA has 0.06 and 0.12 respectively 
as their values for the difficulty of understanding the 
program. The result revealed that SA is more difficult to 
understand than GA. 
 
 
Intelligent content of the program 
 
The Intelligent Content of the Program is the quantitative 
representation of how logically reasonable and 
experienced the program writer is. Table 4 and Figure 4 
show the intelligent content of the program for GA and 
SA to be 131.75 and 256.25 respectively. 

In view of the aforementioned, the two considered 
algorithms produced feasible university examination 
timetable with SA using more simulation time, higher 
difficulty of understanding the program and higher 
intelligent content than GA. On the other hand, GA code 
occupied more disk space, has more lines of code, higher 
program volume with more program effort than SA. 

Conclusively, the results generated indicates a very 
high consumption of computing resources by genetic 
algorithm but with high optimality while simulated 
annealing results showed that though the consumption of 
computing resources is reduced yet the two algorithms 
still consume considerable computing resources. This 
paper therefore proposes the development of a hybrid 
algorithm of both GA and SA in solving examination 
timetabling problem. Such hybridized algorithm should 
attempt  to  reduce  the  weaknesses of genetic algorithm 

and simulated annealing and combine their strength to 
solve the problem. 
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