
Scientific Research and Essays Vol. 7(17), pp. 1727-1733, 9 May, 2012
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.2103
ISSN 1992-2248 © 2012 Academic Journals

Full Length Research Paper

Performance evaluation of simulated annealing and
genetic algorithm in solving examination timetabling

problem

Oyeleye, C. Akinwale*, Olabiyisi, S. Olatunde, Omidiora, E. Olusayo and Oladosu, J. Babalola

Department of Computer Science and Engineering, Ladoke Akintola University of Technology, Ogbomoso, Oyo State,
Nigeria.

Accepted 23 April, 2012

This work details the performance evaluation of simulated annealing (SA) and genetic algorithm (GA) in
terms of their software complexity measurement and simulation time in solving a typical University
examination timetabling problem (ETP). Preparation of a timetable consists basically of allocating a
number of events to a finite number of time periods (also called slots) in such a way that a certain set of
constraints is satisfied. The developed software was used to schedule the first semester examination of
Ladoke Akintola University of Technology, Ogbomoso Nigeria during the 2010/2011 session. A task
involving 20,100 students, 652 courses, 52 examination venues for 17 days excluding Saturdays and
Sundays.The use of the software resulted in significant time saving in the scheduling of the timetable, a
shortening of the examination period and a well spread examination for the students. Also, none of the
lecturers / examination invigilators was double booked or booked successively. It was clearly evident
that simulated annealing performed better than genetic algorithm in most of the evaluated parameters.

Key words: Simulated annealing, genetic algorithm, examination timetabling, software complexity and
simulation time.

INTRODUCTION

Preparation of a timetable consists basically of allocating
a number of events to a finite number of time periods
(also called slots) in such a way that a certain set of
constraints is satisfied. Two types of constraints are
usually considered, hard constrains, that have to be
fulfilled under all circumstances, and soft constraints, that
should be fulfilled if possible. In some cases, it is not
possible to fully satisfy all the constraints, and the aim
turns to be finding good solutions subject to certain
quality criteria (for example, minimizing the number of
violated constraints, or alternatively satisfaction of hard
constraints, while the number of violated soft constraints
is minimized (Keshav et al., 2007). Hard constraints are

*Corresponding author. E-mail: Letuskii@gmail.com or
caoyeleye@lautech.edu.ng. Tel: +2348034295229.

the most important constraints to completely resolve in
order to prevent the double booking of lecturers, students
or classrooms. A practical timetable that does not violate
hard constraints is called a feasible timetable. The
second international timetabling competition (ITC, 2007)
described hard and soft constraints (Di Gaspero et al.,
2007).

Timetabling are combinatorial optimization problems,
which consist of scheduling a set of courses within a
given number of rooms and time periods. Solving a real
world timetabling problem manually often requires a
significant amount of time, sometimes several days or
even weeks (Abdennadher et al., 2000). The manual
solution of the timetabling problem usually requires
several days of work and the final solution may be
unsatisfactory because it is a highly complex task to
verify all constraints.

For the aforementioned reasons, considerable attention

mailto:Letuskii@gmail.com

1728 Sci. Res. Essays

has been devoted to automated timetabling. A large
number of variants of the timetabling problem have been
proposed in the literature, which differs from each other
based on the type of institution involved and the type of
constraints imposed by the examination policy of the
institution. Preparation of an academic examination
timetable is a typical scheduling problem that appears to
be a tedious job in every academic institute once or twice
a year. The problem involves the arrangement of
courses, students, teachers and rooms at a fixed number
of time-slots, respecting certain restrictions. Wren defines
the general problem of timetabling as follows:
“Timetabling is the allocation, subject to constraints, of
given resources to objects being placed in space time, in
such a way as to satisfy as nearly as possible a set of
desirable objectives” (Wren, 1996).

The inability of the classical methods to handle the
large number of real and integer variables involved in
solving this class of problem and especially the number
of constraints involved paved way for the adoption of
non-classical techniques. Simulated annealing (SA),
Tabu search (TS), Genetic algorithm (GA), Memetic
algorithm (MA) and Ant colony system (ACS) are among
the main algorithms for solving challenging problems of
intelligent systems (Zahra, 2005). In this research, two of
these techniques were carefully studied and compared in
terms of their software complexity and simulation time.

Genetic algorithm (GA) is one of the most popular
optimization solutions. It has been implemented in
various applications such as scheduling. The operators of
GA such as selection, crossover and mutation are
applied to populations of chromosomes. Simulated
annealing (SA) is a random-search technique which
exploits an analogy between the way in which a metal
cools and freezes into a minimum energy crystalline
structure (the annealing process) (Elmohamed et al.,
1998; Omidiora et al., 2009). In addition, the search for a
minimum in a more general system forms the basis of an
optimization technique for solving combinatorial based
problems. It is generally regarded as a modified version
of hill climbing algorithm. It has been proved that by
carefully controlling the rate of cooling of the temperature,
SA can find the global optimum. However, this requires
infinite time. Fast annealing and very fast simulated re-
annealing (VFSR) or adaptive simulated annealing (ASA)
are each in turn exponentially faster and overcome this
problem. SA's major advantage over other methods is an
ability to avoid becoming trapped in local minima. The
algorithm employs a random search which not only
accepts changes that decrease the objective function
(assuming a minimization problem), but also some
changes that increase it. An effective solution technique
to the problem could be applied to other scheduling
problems (Abramson, 1991). The problem drew the
attention of the researchers in the early 60’s with the
study of Gotlieb in 1962, who formulated a class-teacher
timetabling problem by considering that each lecture

contained one group of student, one teacher, and any
number of time-slots which could be chosen freely.

 Schaerf, surveyed that most of the early techniques for
automated timetabling were based on successive
augmentation (Schaerf, 1999), where a partial timetable
was filled in lecture by lecture until either all lectures were
scheduled or no further lecture could be scheduled
without violating constraints. In another survey,
Abramson (1991) reported the general techniques
applied to the problem in the past, such as network flow
analysis, random number generator, integer programm-
ing, and linear algorithm. In addition to these, worth
mentioning methods are exact method-based heuristic
algorithm (De Werra, 1985), and graph coloring theory
(Neufeld and Tartar, 1974). However, the classical
techniques are not fully capable to handle the large
number of integer and/ or real variables and constraints,
involved in the huge discrete search space of the
timetabling problem. These inadequacies of classical
techniques have drawn the attention of the researchers
towards the non-classical techniques. Worth mentioning
non-classical techniques, that are being used to solve the
problem, are genetic algorithms (Colorni et al., 1994;
Abramson and Abela, 1992), neural network, simulated
annealing, and tabu search algorithm.

However, compared to other non-classical methods,
the widely used are the genetic/ evolutionary algorithms
(GAs/ EAs). The reason might be their successful
implementation in a wider range of applications (Al-Attar,
1994). Piola (1994) applied three evolutive algorithms to
school timetabling problem, and showed their capability
to tackle highly constrained combinatorial problems, such
as timetabling problem. A timetable is essentially a
schedule which must suit a number of constraints.
Constraints are almost universally employed by people
dealing with timetabling problems (Burke et al., 1994).

METHODS

After representing the problem mathematically, the two algorithms
employed were implemented using Matlab development kit on an
Intel® Dual core CPU with 220 GHz speed, 2.91 GB Random
Access Memory (Accessible) and 146 GB hard disk drive with
windows 7 ultimate edition.

Problem representation

Examination timetabling is a specific case of the more general
timetabling problem. In the case of examination timetabling, a set of
exams E = {e1, . . . , en} to be scheduled within a certain number of
periods P = {p1, . . . , pm} subject to a variety of hard and soft
constraints (Piola, 1994; Burke and Ross, 1996). Table 1 contains
the constraints considered in this work.

Simulated annealing pseudo code

The standard simulated annealing that was coded using the Matlab
development kit is presented as follows:
Start with the system in a known configuration, at known energy E

Oyeleye et al. 1729

Table 1. Summary of constraints considered.

Label Definition

HC1 The number of exams a student will write at a time

HC2 Number of classes a teacher should be at a time

HC3 Number of examination in the schedule

HC4 The type and capacity of the room where a class is to be scheduled

HC5 Number of timeslot at which an examination of a course is to be scheduled

SC1 Total number of free time-slots between two examinations (or events) of students

SC2 Total number of consecutive classes of a teacher

HC: Hard constraints; SC: Soft constraints.

T = temperature = hot; frozen = false;
While (! frozen) {
 repeat {
 Perturb system slightly (e.g., moves a particle)
 Compute E, change in energy due to perturbation
 If (∆E< 0)
 Then accept this perturbation, this is the new system config
 Else accept maybe, with probability = exp (-∆E/KT)
 } until (the system is in thermal equilibrium at this T)
 If (∆E still decreasing over the last few temperatures)
 Then T = 0.9T//cool the temperature; do more perturbations
 Else frozen = true
 }
return (final configuration as low-energy solution)

Genetic algorithm pseudo code

The standard genetic algorithm which was also coded using the
Matlab development kit is also as follows:

Genetic algorithm: the Pseudo code

Input:

Output: : The best individual found during the run,

 : The best population found during the run.

1. t 0;

2. P (t) initialize (

3. F(t) evaluate (P (t),

4. While (i (P(t), Θi) true) do

5. P (t) recombine (P (t), Θr);

6. P (t) mutate (P(t), Θm);

7. F(t) evaluate (P(t), ;

8. P (t + 1) select (P(t), F(t), µ, Θs);
9. t t + 1;
do
The input parameter sets Θi, Θr, Θm, and Θs of the basic operators.
Notice that recombination was allowed to equal the identity

mapping: that is, P(t) = P(t) is possible.

Data used for the work

The following are the set of data used to automatically generate the
examination timetable:

i. Available venues and their corresponding capacity
ii. Special examination venue (if any) and capacity

iii. List of subjects (exams) to be written
iv. The list of all registered students per exam or course
v. The list of available invigilators
vi. Maximum examination period (no of exam days or weeks)
vii. Duration of each examination (maximum number of hours)

Complexity of the two algorithms

Halstead software complexity and Lines of Code (LOC) were used
to evaluate the two coded algorithms. Halstead measure calculates
program volume (V), program effort (E), program level (L) and
intelligence content of the program (I). Table 2 contains the
formulae for measuring all the metrics. All these measures are valid
under the assumption that the program is "pure," that is, free of the
so-called "poor programming practices" (Olabiyisi et al., 2005,
2007).

RESULTS

After implementing the two algorithms, Table 3 shows the
measured parameters and their various values used in
calculating the software complexity of the two algorithms.
It should be noted that n1 is the number of distinct
operators found in the program, n2 is the number of
distinct operands, N1 is the total number of operators, N2
is the total number of operands, N is the addition of N1
and N2 and n is the addition of n1 and n2.

DISCUSSION

As shown in Table 4, the two considered algorithms
produced feasible solutions because none violated the
constraints considered in this work.

Simulation time

The time utilized by an algorithm to run until the result is
produced is usually called execution time or simulation
time. Table 4 and Figure 1 show the measured values of
the simulation time of the two considered algorithms. The
simulation time of GA and SA are 19.73 and 56.16
seconds respectively to return a feasible examination
timetable. This is clear evidence that SA utilized more
time than GA.

1730 Sci. Res. Essays

0

10

20

30

40

50

60

GA SA

Simulation Time (seconds)

S
im

u
la

ti
o

n
 t

im
e
 (

s
)

 Algorithms

Figure 1. The simulation time of the two algorithms.

Table 2. Formulae for measuring the complexity metrics of both
algorithms.

Complexity metrics Formulae

Volume (V) N* log2n

Effort (E) V/L

Program level (L) (2*n2) / (n1*N2)

Intelligent content of the program (I) L*V

Table 3. Data obtained for measuring the complexity of both
algorithms.

Parameters for measuring
complexity

GA SA

No. of distinct operators (n1) 14 10

No. of distinct operands (n2) 42 54

Total number of operators (N1) 267 260

Total number of operands (N2) 96 88

N i.e. (N1+N2) 363 348

n i.e. (n1+n2) 56 64

Program size

The program size is the amount of disk space occupied
and it is usually measured in bits, bytes, kilobytes,
Megabytes, Gigabyte, Terabytes, etc depending on the
actual size under consideration. Table 4 and Figure 2
show that the program sizes of GA and SA are 20 and
16.5 Kb respectively. This is an indication that GA code
utilized more disk space than SA.

Lines of code

The lines of code (LOC) are the number of lines of the
executable codes in a program. Table 4 shows the LOC
of GA and SA as 500 and 256 respectively. These values
show that GA code has more number of executable lines
of code than SA.This is an indication that the
implementation time and effort required by GA was more
than that of SA.

Program volume

The program volume is the value that signifies the
volume of the computer memory being utilized during the
execution of the implemented algorithms. The program
volume for Genetic Algorithm, Simulated annealing are
2108.07 and 2088.00 respectively. Table 4 and Figure 3
show that SA occupies lesser memory space in terms of
volume than GA.

Program effort

This is widely known as the number of discriminations
made in the preparation of a program, it specifies the
extent to which personnel involved in software production
are effectively engaged. It could also be referred to as the
quantitative measure of the effort involved in the
implementation of an algorithm.

The measured values are presented in Table 4 and
Figure 4. The program effort of GA and SA are 33729.12
and 17013.33 respectively. This is an indication that the
program effort of GA is higher than that of SA.

Oyeleye et al. 1731

Table 4. Data obtained during and after the execution of both algorithms.

Parameter GA SA

Simulation time (seconds) 19.73 56.16

Number of Courses clashed 0 0

Number of lecturers double booked 0 0

Program size (KB) 20 16.5

Lines of code 500 256

Program volume (V) 2108.07 2088.00

Program effort (E) 33729.12 17013.33

Difficulty of understanding the program (L) 0.06 0.12

Intelligent content of the program (I) 131.75 256.25

Figure 2: The Program Size of the Two Algorithms

0

5

10

15

20

25

GA SA

Program Size (KB)

P
ro

g
ra

m
 s

iz
e
 (

K
B

)

 Algorithms

Figure 2. The program size of the two algorithms.

2075

2080

2085

2090

2095

2100

2105

2110

GA SA

Program Volume (V)

 P

ro
g

ra
m

 v
o

lu
m

e
 (

V
)

 Algorithms

Figure 3. The program volume of both algorithms.

1732 Sci. Res. Essays

Figure 4. Comparative view of the evaluated parameters of SA and GA.

Program level / difficulty of understanding the
program

This program level otherwise called difficulty of
understanding a program. As presented in Table 4 and
Figure 4, that GA and SA has 0.06 and 0.12 respectively
as their values for the difficulty of understanding the
program. The result revealed that SA is more difficult to
understand than GA.

Intelligent content of the program

The Intelligent Content of the Program is the quantitative
representation of how logically reasonable and
experienced the program writer is. Table 4 and Figure 4
show the intelligent content of the program for GA and
SA to be 131.75 and 256.25 respectively.

In view of the aforementioned, the two considered
algorithms produced feasible university examination
timetable with SA using more simulation time, higher
difficulty of understanding the program and higher
intelligent content than GA. On the other hand, GA code
occupied more disk space, has more lines of code, higher
program volume with more program effort than SA.

Conclusively, the results generated indicates a very
high consumption of computing resources by genetic
algorithm but with high optimality while simulated
annealing results showed that though the consumption of
computing resources is reduced yet the two algorithms
still consume considerable computing resources. This
paper therefore proposes the development of a hybrid
algorithm of both GA and SA in solving examination
timetabling problem. Such hybridized algorithm should
attempt to reduce the weaknesses of genetic algorithm

and simulated annealing and combine their strength to
solve the problem.

REFERENCES

Abdennadher S, Marte M (2000).University course timetabling using

constraint handling rules. J. Appl. Artif. Intell., 14(4): 311-326.
Abramson D (1991). Constructing school timetables using simulated

annealing.sequentialand parallel algorithms. Manage. Sci., 37(1): 98-
113.

Abramson D, Abela J (1992). A parallel genetic algorithm for solving the
school timetabling problem.In Proceedings of 15 Australian Comput.
Sci. Conf. Hobart, pp. 1-11.

Al-Attar A (1994). A hybrid GA-heuristic search strategy. A white paper,
AI Expert. USA.

Andrea Schaerf (1999). A survey of automated timetabling, Artif. Intell.
Rev. Kluwer Acad. Publ., 13(2): 87-127.

Burke EK, Elliman DG, Weare RF (1994). A University Timetabling
System based on Graph Colouring and Constraint
Manipulation. J. Res. Comput. Educ., 27: 1-18.

Burke EK, Ross P (1996). Practice and Theory of Automated
Timetabling. Volume 1153 of Lecture Notes in Computer Science.
Springer-Verlag. Berlin. Heidelberg.

Colorni A, Dorigo M, Maniezzo V, Trubian M (1994). Ant system for job-
shop scheduling.Belgium J. Oper. Res. Stat. Comput. Sci., 34(1):
39-53.

De Werra D (1985). An introduction to Timetabling. Eur. J. Oper. Res.,
19: 151-162.

Di Gaspero L, McCollum B, Schaerf A (2007). Curriculum-based course
timetabling track. The second international timetabling competition
(ITC-2007). Proceedings of the 14th RCRA workshop on
Experimental Evaluation of Algorithms for Solving Problems with
Combinatorial Explosion, Rome, Italy.

Elmohamed S, Coddington P, Fox G (1998). A Comparison of
Annealing Techniques for Academic Course Scheduling.
Practice and Theory of Automated Timetabling II. Springer-Verlag,
1408: 92-112.

Keshav P, Dahal KCT, Peter IC (2007). Evolutionary Scheduling.
Springer. Berlin Heidelberg Germany. p. 49.

Neufeld GA, Tartar J (1974). Graph Coloring Conditions for the
Existence of Solutions to the Timetable Problem. Commun. ACM,
17(8): 450-453.

Olabiyisi SO, Akanmu TA, Oyeleye CA, Sobayo OD, Adelana JB

(2007). Complexity Analysis of A New Edge-Adaptive Zooming
Algorithm For Digital Images. J. Res. Phys. Sci., 3(2): 67-71.

Olabiyisi SO, Omidiora EO, Oyeleye CA (2005). Asymptotic Time
Complexity Analysis For Two-Dimensional Object Inspection Using
String matching. Sci. Focus, Nigeria, 10(3): 83-87.

Omidiora EO, Olabiyisi SO, Arulogun OT, Oyeleye CA, Adegbola AA
(2009). A Prototype of An Access Control System For a Computer
Laboratory Scheduling. AICTTRA 2009 Proceedings, Obafemi
Awolowo University. Ile-Ife. Nigeria, pp. 114-120.

Oyeleye et al. 1733

Piola R (1994). Evolutionary solutions to a highly constrained

combinatorial problem. Proceedings of IEEE Conference on
Evolutionary Computation, First World Congress Comput. Intell.
Orlando. Florida, 1: 446-445.

Wren A (1996). Scheduling, timetabling and rostering - A special
relationship?. In Practice and Theory of Automated Timetabling. 1153
of Lecture Notes in Computer Science. Springer-Verlag. Berlin.
Heidelberg. pp. 46-75.

Zahra NajiAzimi (2005). Hybrid heuristics for Examination Timetabling
problem. Appl. Math. Comput., 163(15): 705-733.

