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The Lorenz system is chaos when parameters vary in certain scope. In order to control chaotic Lorenz 
system, a new controller is proposed based on tridiagonal matrix stability theory. The proposed 
controller is simple and easy to be implemented. Simulation results show the effectiveness of the 
controller. 
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INTRODUCTION 
 
Since 1963, Lorenz has found the first attractor in which 
chaos theory had been developed. Control chaos is an 
important technology in the field of nonlinear theory. In 
1990; Ott et al. (1990) presented the OGY method to 
control chaos. After their pioneering work, chaotic control 
has become a focus in nonlinear problems and a lot of 
work has been done in the field (Chen and Dong, 1998; 
Wang et al., 2001; Guan et al., 2002). Nowadays, many 
methods have been proposed to control chaos (Wang, 
2003). Generally speaking, there are two control ways: 
feedback control and non feedback control. Feedback 
methods (Jang et al., 2002; Wang et al., 2000; Zheng, 
2006; Gong, 2005; Wang and Wu, 2006) are used to 
stabilize the unstable periodic orbit of chaotic systems by 
feeding back their states. Non feedback methods (Wang 
and Zhao, 2005; Chen and Wang, 2007) are adopted to 
suppress chaotic behaviors by applying periodic 
perturbations to some parameters or variables. However, 
OGY method is a basic methodology for controlling 
chaos. In OGY method, finding an adjustable parameter 
is not often simple. Control chaos via the time-delay 
feedback control (TDFC) is also an effective method. 
However, it encounter with some problems as the control 
objective must be the equilibrium or the unstable periodic 
(UPO), moreover determining the time delay for TDFC 
method is difficult. At the same time, complex chaotic 
behaviors in Lorenz system were  detected  and  reported 

due to Lorenz system which is applied in secure 
communication and cryptography. When parameters of 
Lorenz system fall into a certain area, the Lorenz system 
is experiencing chaotic behavior. How to control chaos in 
Lorenz system is an important task for scholars. 

In brief, researchers have done some important works 
to control chaos in the Lorenz system; some methods are 
applied to control chaos in the Lorenz system (Wu et al., 
2007; Chen and Lü, 2003). All the existed methods can 
work well theoretically. However, there are some issues 
in most of these mentioned works such as; a lot of them 
require a great amount of computation, or calculation 
process is very complex, or some existed methods are 
not easy to be implemented. We hope the controller will 
be as simple as possible. To overcome these 
weaknesses, the design of controllers is based on the 
tridiagonal matrix stability theory to control chaos in the 
Lorenz system. The controller is easy to be implemented 
and this method can avoid large amount of the complex 
computations. 

The organization of the paper is as follows. In the next 
section, we analyze chaos in the Lorenz system 
parameters of PMSM. Later on, we introduce basic 
theory of impulsive differential equation. Also, we made 
use of theory of impulsive differential equation to devise 
an effective scheme to control chaos in PMSM. 
Furthermore, some numerical simulations are done to  test 
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the effectiveness of scheme. Finally, some conclusions 
are drawn. 
 
 
CHAOS IN THE LORENZ SYSTEM 
 
The system model of Lorenz system can be described as 
follows (Lorenz, 1963): 
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where 
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system (1) have dissipative structure when 10a  , 

8 3b  , 28c  . 

When the Lyapunov exponents are more than zero 
when system (1) parameters within limited bound, at the 
same time, the Lorenz system is in a chaotic state. When 

10a  , 8 3b  , 28c  , the system (1) exhibits a 

chaotic behavior, and the projections of the chaotic 
attractor are shown in Figure 1 (Wang and Wang, 2008). 
 
 
The theory of tridiagonal structure matrix stability 
 
Lemma 1 (Liu and Zhang, 2007): If the nonlinear system 
has the following forms of tridiagonal structure: 
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where the state variables T

1 2[ ,  , , ] n

nx x x R x , 

( ) (1,2, , 1)jf x n   are function about x , 

( 1,2, , )ik R i n  . The state variables x  of 

nonlinear system will be global asymptotic stabilized at 
origin point.  
 

Proof: A positive definite function as follows, 
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then the derivative of V  is given by 
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Therefore V  is the Lyapunov function and variables x  

of nonlinear system will be global asymptotic stabilized at 
origin point (Liu and Zhang, 2007).  
 
 

Control chaos in the Lorenz system 
 

The Lorenz system has one of equilibrium 

point
0(0,0,0)P . In this paper, the system (1) is stable 

to
0(0,0,0)P . 

Due to variables of system (1)
T 3[ , , ]x y z R X , 

set
T 3[ , , ]x y z R   Y , transforms a position by matrix 
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Substituting these transformed variables into system (1), 
system (1) can be rewritten as: 
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Consider system (5) exist equilibrium 0 0 0( , , )P x y z   , so  
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Let 0x x x    , 0y y y    , 0z z z    . System (5) 

is transformed to 
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The controlled system (5) can be written as  
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Figure 1. The projections of Lorenz attractor. 

 
 
 
where known item of system (7) are added to controller, 

1 2 3, ,  areu u u  controller. 

System (8) can be rewritten as, 
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Compare system (9) with system (2), if system (9) equals 
to 
 

0

0

0

1

0

x b z z x

y z z a y

z a a z

         
            
     
           

,                     (10) 

 
system (8) will be asymptotic stabilized at equilibrium 

point 0 0 0( , , )P x y z   . The equation can be gotten as 

follows, 
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Hence obtain controller as follows, 
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0z z z    ,   then  the  final  controller  is  expressed  as 
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NUMERICAL SIMULATION 

 
In this section, we will show the effectiveness of the 
proposed controller, simulation on controlling chaos in the 
Lorenz system by the presented controller will be 
conducted. In the numerical simulations, the fourth-order 
Runge-Kutta method is used to solve the computation 
problem with time step size h = 0.001. 
 
 
Simulation condition 

 
The initial values of chaos PMSM are chosen as 

( (0), (0), (0)) (5,8,6)x y z    , at the same time, the 

parameters of the Lorenz system is chosen as 10a  , 

8 3b  , 28c  . The controller is put into effect at 10 s 

after the chaos begins. The Lorenz system is 
experiencing chaos oscillation before the controller is 
carried out, the chaotic behavior is suppressed to 

equilibrium point 0(0,0,0)P  in about 3 seconds, the 

results is shown in Figure 2. 
 
 
Conclusion 
 
This paper proposed the tridiagonal structure matrix 
stability theory and the design of controllers based on the 
tridiagonal structure matrix stability theory. The  proposed
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Figure 2. Show system (8) with controlled when t=20s. 

 
 
 
controller is very simple and the design of controllers 
needs not a large number of operations. The numerical 
simulation results demonstrated the effectiveness of the 
controllers. 
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