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This paper proposes a new application of principal component regression (PCR) for estimating 
electrical energy consumption in case of abnormal automatic meter reading (AMR) systems. These 
events occur in a delivery metering system such as problems from mistakenly setting and connecting 
meters in electrical systems, broken metering accessories, etc. The estimation is performed by using 
MATLAB. The unclean sampled input data is used to estimate the target output data. The mean absolute 
percentage error (MAPE) is used as estimation performance. In this proposed estimation, load profiles 
obtained from the AMR are used as input data for training to create estimation model and for testing to 
validate model. Estimated results are verified by comparison between the proposed PCR application 
and other applications such as simple linear regression (SLR), multiple linear regression (MLR). The 
proposed PCR gives the best error results of MAPE for the lost electrical energy estimation. 
 
Key words: Automatic meter reading (AMR), load profiles, principal component regression (PCR), multiple 
linear regression (MLR), simple linear regression (SLR). 

 
 

INTRODUCTION 
 
Presently, technologies of energy meter have developed 
rapidly (Alahakoon and Yu, 2016). In particular, the cost 
of energy meter technology is greatly reduced. The 
reason is that most electrical energy providers pay 
attention in the energy meter technology development 
and the energy consumption data record system for the 
customer monthly payment operation. 

In the past, most electrical energy providers chose a 
mechanical or electronic meter for the electrical energy 
consumption measurement of the customer and the 
monthly energy payment operation, because of  the  price 

which was lower than a smart meter. But in the present, 
those electrical energy providers have required database 
technology, energy management and electrical energy 
consumption history. An automatic meter reading (AMR) 
is used for those requirements and designed to be used 
with smart meters (Paris et al., 2014; Stephen et al., 
2014). 

A smart meter has more advantages than the electronic 
meter in electrical energy consumption history capacity 
that data history period limit is 45 days and the cost of 
both gets nearly closer in the present. 
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So this is inclination that the mechanical meter usage is 
decreased and the mechanical meter will be replaced by 
the smart meter in the present day and the near future. 

The prominent feature of electrical energy data 
recording in the smart meter is specified to be used with 
the AMR which the electrical energy consumption data in 
the energy meters for all customers will be recorded at 
the database of the AMR. 

Smart grids are the extension, which themselves are 
built upon AMR systems (Arif et al., 2013; Khan et al., 
2014). AMR systems are achieved by using many 
communication technologies, including power-line, radio 
frequency and mobile network such as GPRS/GSM. As 
many energy providers look for upgrade progress toward 
smart grids, replacing mechanical meters by the entire 
infrastructure may not be economical. For that reason, 
most smart grid developing providers have formulated 
priority of suitable smart grid development region. 

In Thailand, provincial electricity authority (PEA) has 
formulated framework of smart grid (Meenual and 
Thongchai, 2009). Current smart grid development of 
PEA is in the preparation stage, including suitable PEA 
smart grid Technologies selection and adaptation, 
implementation plan setting, and necessary PEA smart 
grid foundation development. PEA intends to aim at pilot 
project of PEA smart grid in the near future. 

Currently, a soft computing method is widely used to 
determine the reliability of the distribution system or to 
predict the electricity load demand (Singh et al., 2013). 
The classification of distribution system loss in case of 
the economical profit can be defined into two items, 
namely technical loss and non-technical loss. The 
technical loss occurs by loss of transmission line and 
equipment in distribution line like copper loss. Unlike 
technical loss, non-technical loss is caused by abnormal 
metering equipment or violation and meter tampering by 
customer. 

There are several methods used for the non-technical 
energy loss estimation which is aimed to claim payment 
from customers in case of energy theft or damaged 
equipment by customer or forced majeure. One method 
commonly used by most providers to estimate is the 
average monthly electricity consumption of the previous 
three months abnormal, or three months after an 
abnormal ending for consideration of that estimation. 
Those methods have limitations in affecting the 
performance and reliability of the estimation. Especially, 
the condition of the electrical consumption behavior will 
be relatively stable and continuous. 

There is rarely research on the lost energy estimation 
in abnormal metering of electricity customer such as 
using simple linear regression (SLR) with a focus on a 
minimum variable input reduction for estimation of output, 
but some significant data is limit. The multiple linear 
regression (MLR) (Black and Henson, 2014) was used to 
estimate for improving the limitation of SLR application. 
However, MLR is still limited in the  case  of  uncleanness  
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of input data to be used for simulation of the model in 
some times. 

In this paper, the sampled data is considered from the 
energy consumption data of the industrial energy 
customers in Thailand. These energy data will be 
managed by using AMR system (Ladarat and 
Naetiladdanon, 2015) of PEA in Thailand. The energy 
data history recorded in the data center of AMR will be 
used to increase the efficiency of the energy data 
management for customers and providers. Thereafter, the 
load profile of energy consumption will be used as input 
data for the real energy estimation in case of the 
abnormal metering system. 
 
 
OPERATION OF AUTOMATIC METER READING 
 
In the present study, most energy providers have more 
interest in the automatic meter reading (AMR) (Figure 1). 
This is the reason why many business factors have 
become a necessity for the advantage in business 
competition, such as the cost saving capacity of energy 
providers and the energy saving by monitoring and 
management of customers. 
The main part of an AMR system is electrical energy 
usage measure and recording equipment. The smart 
meter is an important electrical measure equipment, like 
a joint of service and communication between providers 
and customers in real time. 
The communication system is necessary for AMR as it 
plays an important part in energy consumption data 
transmission automatically, such as load profiles, monthly 
billing data, and alarm logs of the smart meter. These 
data will be transmitted to a meter interface unit (MIU) 
and be saved in the database of AMR system (AMR data 
center) for every fifteen minutes. Therefore, the energy 
provider can take advantage of the energy consumption 
data monitoring for non-technical loss or illegal electricity 
usage detection (Erdene et al., 2013). Similarly, the 
customers can observe and manage the self-energy 
consumption demand. 
 
 
PRINCIPAL COMPONENT REGRESSION 
 
Linear regression analysis for the electrical fields has 
been widely used in the load demand forecasting. 
Normally, the algorithm of linear regression is classified 
into two types according to the number of input data, 
including single linear regression (SLR) in case of single 
input data and multiple linear regression (MLR) in case of 
multiple input data. In this case study, both SLR and MLR 
are used for a comparison with the proposed algorithm. 

Figure 2 shows the proposed algorithm of the principal 
component regression (PCR) models consisting of MLR 
and the principal component analysis (PCA). 

The estimate procedure  of  regression  has  two  parts,  
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Figure 1. Structure of the AMR system. 

 
 
 

 
 

Figure 2. PCR models. 

 
 
 
including model creation and estimation. The regression 
learns a function that maps input variables to their target 
output. Conventionally, that function is a static function 
enabling the estimation of responses for new input 
variables. The multiple regression model can be 
expressed as 
 

,,,2,1, njjjWjy  forx                                      (1) 
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to be a linear relationship between these two sets of 
variables W . It can be estimated as 
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The equivalent matrix norm equation is expressed as 
 

,
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where ),,,( 21 NxxxX  , ),,,( 21 NyyyY  , and   

denotes the matrix 2-norm. This is an optimization 
problem which can be simply resolved as 
 

.1)( YXXX TTW                                                      (4) 

 
With the estimated regression coefficient, the output 
variables can be predicted for the input variables. 

Generally, Equation 4 requires that Nrankm T  )(XX , 

or TXX  is invertible. However, this condition may not 
always be satisfied. 

To avoid the unclean input data for training and the 
irreversible problem of MLR, PCR replaces the input 
variables by principal components to estimate the output 
variables. Particularly, PCR firstly projects x  onto a low-
dimensional subspace 
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where kx̂  with mrankk  )(X , and the value 

of P  stands for the eigenvectors of subspace k  which 

can be obtained by eigenvalue decomposition techniques. 
Therefore, the solution reduces to 
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where )ˆ,,ˆ,ˆ(ˆ
21 NxxxX  . 

 
In case of appropriate k  eigenvectors which are 

chosen, TXX ˆˆ  is invertible. The optimization problem can 
be simply resolved. 

The transformation of P  is obtained by choosing k  

eigenvectors of the column subspace of X . The singular 
value decomposition of X  can be considered as  

 

,TUSVX                                                                  (7) 

 
where U  is an orthogonal matrix of scaled principal 

component scores, V  is an orthonormal matrix of 

eigenvectors, and S  is a diagonal matrix of the singular 

values, like the dimension of X , respectively. 



 
 
 
 
Table 1. Parameters of the model simulation using the proposed 
application 
 

Abnormal 
variables 

Input 
variables 

Input PCs 
variables 

Outpu
t 

variables 

aI  
,cI,bI

cV,bV,aV  
3PC,2PC,1PC  kWh  

bI  
,cI,aI

cV,bV,aV  
3PC,2PC,1PC  kWh  

cI  
,bI,aI

cV,bV,aV  
3PC,2PC,1PC  kWh  

aV  
,cI,bI,aI

cV,bV  

,3PC,2PC,1PC

5PC,4PC  
kWh  

bV  
,cI,bI,aI

cV,aV  

,3PC,2PC,1PC

5PC,4PC  
kWh  

cV  
,cI,bI,aI

bV,aV  

,3PC,2PC,1PC

5PC,4PC  
kWh  

 

Where cI,bI,aI : is the current of phase a, b, and c ; cV,bV,aV : is 

the voltage of phase a, b, and c ; 5PC,...,1PC : is the principal 

component of 1st to 5th ; and kWh: is the electrical energy used in one 
hour. 
 
 
MODELING 
 
In this case study, the aims are to estimate the energy 
consumption data of an industrial electricity customer of 
PEA in Thailand. This will be used in case of the non-
technical loss energy which is the results of the abnormal 
metering from the AMR system in every fifteen minutes. 
And then, the data selection and statistic error will also be 
shown here in this work. 
 
 
Data selection 
 
The proposed PCR is used for the electrical energy 
estimation which is created in two models, including 
training model and testing model. 

The variables of training model consist of the sampled 
input data and the sampled output data. The sampled 
input data are the voltages and the currents, whereas the 
sampled output data is the energy equivalent to one 
kilowatt of power sustained for one hour (kWh). Those 
are recorded before abnormal metering data period. 

The variables of testing model consist of the sampled 
input data. These are the voltages and currents recorded 
during abnormal metering data period. 

The parameters of the model simulation are used in the 
proposed PCR application. As shown in Table 1, items 
are the abnormal and normal input variables, the input 
PCs variables, and the output  variables  in  units  of  kilo- 
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Start

Input data

The every phase voltages and currents recorded in every 15 

minutes of the normal and abnormal data.

Output data

The electrical energy consumption.

Divide data to training and testing patterns

Training

Calculate output of training pattern

Record weights and biases

Testing

Calculate output of testing pattern

Calculate and record MAPE of testing pattern

Selecting abnormal testing model

End

Use the principal component analysis to determine the principal 

components for replacing the independent variables to estimate 

the dependent variables.

 
 

Figure 3. Flowchart diagram for the proposed estimation. 

 
 
 
watt hours, which are used for the estimation. 

The flowchart for the process estimation of electrical 
energy consumption by the PCR application is proposed 
as shown in Figure 3. 
 
 
Statistic error 
 
In this paper, the statistic error can be calculated by using  
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 Sampling of Input Electrical Voltage Data for Training (15 min) 

 
 

Figure 4. The input voltage data of the training. 

 
 
 
mean absolute percentage error (MAPE) which is widely 
used in forecasting fields.  

Because the results of this case study are for every 
fifteen minutes energy estimates, MAPE was also used to 
evaluate the estimate accuracy for every fifteen-minute 
energy. The formulas are expressed as follows, 
 

,
n

i iactualy

iestimatey
iactualy

n
MAPE 






1

1
                           (8) 

 
where n  is the number of observations, at the 15 min 

interval i  , 
i

ctualay  represents the actual electrical energy 

consumption, and 
istimateey  represents the estimated 

electrical energy consumption, respectively. 
 
 

SIMULATION RESULTS 
 

This simulation uses the estimation for the abnormal 
voltage and current of any phase. PCR using 5 principal 
components (PCs) of the input parameters in case of the 
abnormal voltage of any phase, and 3 principal 
components (PCs) of the input parameters in case of the 
abnormal current of any phase is employed. The 
proposed estimation results will be used to compare with 
the estimation results using MLR for 5 normal input 
parameter and SLR for only 1 normal input parameter. 

In order to demonstrate the error of the clear 
estimation, the unclean input voltage data that reflect the 
advantages of the method over other method is used. 
The unclean input voltage data can be found frequently in 
the case of an oxide at the joint of the electrical circuit 
wires or the electrical wire terminals of the meter, 
especially in case where the meter is installed in areas 
with high pollution. 

In the training, the input and output data are achieved 
from the AMR system before abnormal metering occur. 
For example, the recorded input voltage data and current 
data of phases a, b, and c are illustrated in Figures 4 and 
5, respectively. Also, the recorded electrical energy 
consumption data or target data is shown in Figure 6. 

The input data is used for MLR in order to confirm the 
accuracy in comparison with PCR. The results of the 
estimation error are shown in Figure 7 in the event of 
irregularities such as the abnormal input voltage data of 
phases a, b, and c . 

The estimation error results in using MLR are shown in 
Figure 8, in case of the abnormal input current data of 
phases a, b, and c. 

The same output and input data with MLR for training is 
modeled in the proposed PCR by using MATLAB 
program, 5PCs matrix for the input training data in case 
of the abnormal voltage of any phase are shown in Table 
2. 3PCs matrix for the input training data to create an 
MLR model in case of the abnormal input current data of 
any phase is shown in Table 3. 
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 Sampling of Input Electrical Current Data for Training (15 min)  
 

Figure 5. The input current data of the training. 

 
 
  

 

Sampling of Output Data for Training (15 min)  
 

Figure 6. The output energy data of the training. 

 
 
 

The regression matrix W , and the estimation error 

matrix   derived from the model simulation with the input 

training data are shown in Table 4, for using as a weight 
and bias of the testing model which is used to estimate 
the output testing data in case of abnormal input voltage 
data of any phase. 

Also, the parameters of the regression matrix W  and 

the estimation error matrix   for estimating the output 

testing data in case of the abnormal input current data of 
any phase are shown in Table 5. 

The testing data obtained from the AMR consists of the 
voltages and currents data of phases a, b and c for 
testing as shown in Figures 9 and 10, respectively. The 
measured electrical energy consumption for testing are 
shown in Figure 11. 

The input and output data for testing measured at other 
times is used to confirm the accuracy of the estimation by 

using the proposed PCR application and other 
applications. 

The estimated energy results and the estimation error 
of the proposed PCR in case of the abnormal input 
voltage data of phases a, b, and c are shown in Figures 
12 to 14, respectively. 

Figures 15 to 17 show the estimated energy 
consumption and the estimation error in case of the 
abnormal input current data of phases a, b and c by the 
proposed PCR, respectively. 

According to results from Figures 12 to 17, they are in 
close estimation. They show that the proposed energy 
estimation method offers satisfactory performance. 

For MAPE results of the proposed PCR, as shown in 
Table 6, it is found that MAPE is 4.48% in case of the 
abnormal input voltage data of phase a, 3.55% in case of 
the abnormal input voltage data of phase b, and 3.23% in  
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(a) 

 
(b) 

 
(c) 

  
(a) 

 
(b) 

 
(c) 

 

 
(a) 

 
(b) 

 
(c) 

 

 
(a) 

 
(b) 

 
(c)  

 
 

Sampling of Output Data for Final Test (15 min)  
 

Figure 7. The output estimated energy errors by MLR for the abnormal input voltage data 
of each phase (a, b, c). 

 
 

 
(a) 

 
(b) 

 
(c) 

  
(a) 

 
(b) 

 
(c) 

 

 
(a) 

 
(b) 

 
(c) 

 

 
(a) 

 
(b) 

 
(c)  

 
 

Sampling of Input Electrical Voltage Data for Training (15 min) 

Sampling of Output Data for Final Test (15 min)  
 

Figure 8. The output estimated energy errors by MLR for the abnormal input current data of each 
phase (a, b, c).  



 
 
 
 
Table 2. 5 PCs matrix of the simulated model using PCR in each 
case of abnormal input voltage data. 
 

Abnormal 
voltage of 

PCs matrix 

Phase a 























7309006720672500252009140

6818010470719700073007800

0160065540022404845057870

0220017140059908399051090

0111072500160202429062420

..-..-.-

.-.-..-.-

..-.-.-.

..-...

.-...-.

 

  

Phase b 























5969070500372000254008720

7918044350396500188013680

1091041070501104843057770

0478017170072008387050950

0505032870669402470061670

.-...-.-

....-.-

...-.-.

...-..

.-.-..-.

 

  

Phase c 























0.5012-0.78110.36580.00610.0698-

0.84460.35220.37980.0124-0.1350-

0.15080.38950.5068-0.4836-0.5786

0.08000.13430.0940-0.84100.5094

-0.0792-0.31000.6756-0.24210.6186

 

 
 
 
Table 3. 3 PCs matrix of the simulated model using PCR in each 
case of abnormal input Current data. 
 

Abnormal current of PCs matrix 

Phase a 























616201296015830

654601453013620

275601055020420

339206639065580

029607143069610

...-

...-

...-

..-.

...

 

  

Phase b 























118706286011060

155306556010090

095803412014740

702200278068980

677902407069280

...-

...-

.-..-

...

.-..

 

  

Phase c 























296705599012290

336405762010700

122703146014830

675301945070540

572504666067370

...-

...-

...-

..-.

.-..

 

 
 
 

case of the abnormal input voltage data of phase c in 
which MAPE is equal to that of the MLR application. 

In addition, SLR using the best only 1 input current data 
of the model (which is not the abnormal current) will be 
used for estimating the output energy data in all cases of 
the  abnormal  input  voltage  data,  for  which   MAPE   is 
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Table 4. W  and   matrix of PCR for the simulated model in each 

case of abnormal input voltage data. 
 

Abnormal voltage of W  and   matrix 

Phase a 

























32010

19300

18760

13390

66720

.-

.-

.

.-

.

W ,  01030.  

  

Phase b 

























31940

24950

04890

13450

66750

.-

.

.-

.-

.

W ,  02050.-  

  

Phase c 

























22360

25980

04980

12990

66880

.-

.

.-

.-

.

W ,  00170.  

 
 
 
Table 5. W  and   matrix of PCR for the simulated model in each 

case of abnormal input current data. 
 

Abnormal current of W  and   matrix 

Phase a 


















36460

22240

71540

.

.-

.

W ,  00210.-  

  

Phase b 


















16170

18910

70160

.

.

.

W ,  01240.  

  

Phase c 


















14130

26240

65290

.-

.

.

W ,  10240.  

 
 
 

10.06% in case of the abnormal input voltage data of 
phases a, b and c. 

For MAPE results of the proposed PCR, as shown in 
Table 7, it is found that MAPE is 4.58% in case of the 
abnormal input current data of phase a, 3.75% in case of 
the abnormal input current data of phase b, and 8.03% in 
case of the abnormal input current data of phase c. 
MAPE for the proposed PCR is the least error value in 
contrast to the other applications. 

From MAPE results for MLR, the normal current and 
voltage of all phases will be used for estimating the 
output energy data in case of the abnormal  input  current 
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Sampling of Input Electrical Voltage Data for Final Test (15 min) 
 

 

Figure 9. The input voltage data of the testing. 

 
 
 

 
 
 

Sampling of Input Electrical Current Data for Final Test (15 min)  
 

Figure 10. The input current data of the testing. 
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Sampling of Output Data for Final Test (15 min)  
 

Figure 11. The target data of the testing. 
 
 
 

 
 
 
 

Sampling of Output Data for Final Test (15 min)  
 

Figure 12. The estimated output data by the proposed PCR for the abnormal voltage of phase a and corresponding error 
compared with the measured output. 

 
 
 

 
 
 

Sampling of Output Data for Final Test (15 min)  
 

Figure 13. The estimated output data by the proposed PCR for the abnormal voltage of phase b and corresponding error 
compared with the measured output. 
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Sampling of Output Data for Final Test (15 min) 
 

 

Figure 14. The estimated output data by the proposed PCR for the abnormal voltage of phase c and corresponding error compared 
with the measured output. 

 
 
 

 
 
 

Sampling of Output Data for Final Test (15 min)  
 

Figure 15. The estimated output data by the proposed PCR for the abnormal current of phase a and corresponding error 
compared the measured output. 

 
 
 
data of any phase for which MAPE is 5.00% in case of 
the abnormal input current data of phase a, 5.21% in 
case of the abnormal input current data of phase b, and 
9.22% in case of the abnormal input current data of 
phase c. 

For MAPE results by SLR, the best only 1 input  current 

data of the model (which is not the abnormal current) will 
be used for estimating the output energy data in all cases 
of the abnormal input current data, for which MAPE is 
13.86% in case of the abnormal input current data of 
phase a, and 10.06% in case of the abnormal input 
current data of phases b and c. 
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Fig. 16. The estimated output data by the proposed PCR for the abnormal current of phase b and corresponding error compared 
the measured output. 

 
 
 

 
 Sampling of Output Data for Final Test (15 min)  
 

Figure 17. The estimated output data by the proposed PCR for the abnormal current of phase c and 
corresponding error compared with the measured output.  

 
 
 

Table 6. MAPE comparison of the proposed PCR application with MLR and SLR in case of abnormal input voltage data 
at any phase. 
 

Abnormal variables 

MAPE (%) 

By proposed PCR application 
(for 5 PCs input) 

By MLR application 

(for 5 input) 

By SLR application 

(for 1 input) 

aV  4.48 4.48 10.06 

bV  3.55 3.55 10.06 

cV  3.23 3.23 10.06 
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Table 7. MAPE comparison of the proposed PCR application with MLR and SLR in case of abnormal input current data at any phase. 
 

Abnormal variables 

MAPE (%) 

By proposed PCR application 
(for 3 PCs input) 

By MLR application 

(for 5 input) 

By SLR application 

(for 1 input) 

aI  4.58 5.00 13.86 

bI  3.75 5.21 10.06 

cI  8.03 9.22 10.06 

 
 
 
Conclusion 
 
This paper has proposed a new application of PCR in 
estimation of electrical energy consumption in case of 
abnormal metering in an AMR system. The error results 
in this paper show effective performance of the 
application using the proposed PCR. The simulation 
results and comparison results between the proposed 
PCR, MLR and SLR have shown that the MAPE for the 
proposed application is the best error when compared to 
that for MLR and SLR of the estimation in case of the 
abnormal input voltage or current data at any phase. In 
the difference, MLR is estimated by using 5 normal input 
data, or SLR is estimated by using the best only 1 input 
data selection for the output energy estimation. 
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