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In this paper, an impulsive persuasion strategy to eradicate HIV/AIDS is studied. Since infection age is 
an important factor of HIV progression, we incorporate the infection age into the model. Using integral 
equation theory and operator semi group theory, we analyze the dynamical behaviors of this model and 
point out that there exists an infection-free periodic solution which is globally asymptotically stable if 

0 1R  . This condition depends on impulsive persuasion proportion np  and inter impulsive time  . 
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INTRODUCTION 
 
During the past two decades, human immunodeficiency 
virus (HIV) disease has become one of the major public 
problems in the world. In 2007, advances in the 
methodology of estimations of HIV epidemics applied to 
an expanded range of country data have resulted in 
substantial changes in estimates of numbers of people 
living with HIV worldwide (Aggarwala, 2006; Report, 
2007). In 2007, the Ministry of Health, UNAIDS and WHO 
prepared an updated assessment of the AIDS epidemic 
in China. The estimation results showed by the end of 
2007 approximately 700,000 are HIV positive (range 
550,000 to 850,000). Currently, China’s HIV epidemic 
remains one of low prevalence overall, but with pockets 
of high infection among specific sub-populations and in 
some localities. The characteristic of the epidemic in 
China are: the epidemic continues to expand, but the rate 
is slowing; sexual transmission is now the main mode for 
the spread of HIV; geographic distribution is highly 
varied; and the epidemic continues to be driven by high-
risk behavior within particular sub-populations (AIDS, 
2007). From  a  theoretical  point  of  view,  the  HIV/AIDS 
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epidemic provides a large number of new problems to 
mathematicians, biologists and epidemiologists, since it 
has a lot of features different from traditional infectious 
diseases. Hence, the study of HIV/AIDS has stimulated 
the recent development of mathematical epidemiology. In 
the following, we briefly discuss the characteristics which 
should be taken into account in mathematical models for 
HIV dynamics. According to a recent statistical analysis 
on acquired immunodeficiency syndrome (AIDS) 
awareness among married couples in Bangladesh 
(Rahman and Rahman, 2007), media and education play 
a tremendous role in mounting AIDS awareness among 
the residents. According to Rahman and Rahman (2007), 
both women and men who regularly watch TV were 8.6 
times more likely to be aware about AIDS compared to 
those who never watch TV. In addition, CDC 
governments produced much propaganda about AIDS 
knowledge which can persuade many people reduce 
times of risky behavior. 

In developing and undeveloped countries, drug-fast for 
HIV/AIDS is highly cost, categories of medicine goes 
short and people lack knowledge about HIV/AIDS. One of 
the best measures is to tell people the correct preventive  
knowledge of the disease as soon as possible through 
media and education. However, it is reasonable  to  study  



 
 
 
 
theoretically the application of pulse persuasion in the 
control of HIV/AIDS. Many scholars have studied pulse 
vaccination and treatment strategies in HIV models 
(Krakovska and Wahl, 2007; Liu et al., 2006; Smith and 
Wahl, 2004, 2005). But the persuasion is rarely in 
recently epidemic models. As the authors have known, 
Thripathi et al. (2007) proposed a nonlinear model to 
study the effect of screening of unaware infective on the 
spread of HIV/AIDS in a homogenous population with 
constant immigration of infective. They had shown that 
screening of unaware infective had the effect of reducing 
the spread of AIDS epidemic. Infection age (Liu et al., 
2006, 2008) is an important feature of many slowly 
progressing diseases like HIV. The disease has a long 
latency period. In HIV, the fast initial phase appears to be 
followed by a long phase with low virus titers. Therefore, 
it is reasonable to consider infection age (the time lapsed 
since infection) in disease progression. We introduce 
infection age and impulsive persuasion into our model. 

This paper is organized as follows: subsequently, it 
introduces an HIV/AIDS model with infection age and 
pulse persuasion, thereafter, the global attractor of the 
infection-free periodic solution is studied by using the 
spectral theory and comparison principle. 

 
 
THE MODEL FORMULATION 

 
Here, we introduce an HIV/AIDS model with pulse 
persuasion and infection age. We consider a population 

whose death rate is   and the input rate is   The host 

population is divided into three groups: susceptible, 
infected and those with AIDS. The susceptible population 
is persuaded at time n  every   months;   is the 

period of pulse persuasion, n  is the time at which we 

apply the ( )nth n N  pulse, n 
 is the time just before 

applying the nth  pulse, a fraction np  of the susceptible 

having risk behavior are persuaded, where np  is a 

period function, that is: ( )n q n T    
n q np p  

In addition,    [0 ] 2T n q         . This 

assumption is realistic in reality. Simple persuasion may 
be effective in first period when they know the 
ponderance of HIV/AIDS. However, risk group may be 
declined to receiving the simple persuasion way; we 
should change the styles of persuasion which tends to be 
the same effect in the second period. The susceptible can 

be infected by infected class ( )I a t  at a transmission 

rate ( )a  and go to the infected class. We call the time 

individuals spent in the infected class infection age a  
Infected individuals can develop those with AIDS at a 

transmission rate ( )a   d  is the death rate due to 

AIDS. We obtain the following system: 
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) n N





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







   

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        (1) 

 

With the initial conditions: 
 

0 0 0(0) 0 ( 0) ( ) 0 (0) 0S S I a I a A A           
 

Where: 
 

0
( ) ( ) ( )N S t I a t d A t



      

 

The initial density 0 ( )I a  is assumed to be integrable and 

compactly supported in 
 

[0 ) ( )a    ( ) (0 )a L  
1 0

( )
1 0n

a
D a

p a

  
 

   
 

 

If system of Equation 1 has a solution ( ( ) ( ) ( ))S t I a t A t   , 

then ( ) ( ) ( )S t I a t A t    are discontinuous at n n N     

and n  is a point of discontinuity of the first kind. So, we 

may assume that ( ) ( ) ( )S t I a t A t    are right continuous 

at n . We can obtain that ( ) ( )S t A t  are continuous in 

the interval[ ( 1) )n n   , ( )I a t  is continuous for 

0 [ ( 1) )a t n n        

 
 
Lemma 1 
 

Suppose [0 )f R    is a bounded function Lemma1, 

then: 
 

(0 )
0

( ) ( )limsup
t

L

t

k f t d f k   





      

 
 

Lemma 2 

 

Let   the   function  ([0 ) )w PC R  
 
satisfies  the 
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 inequalities (Lakshmikantham et al., 1989): 
 

0

( ) ( ) ( ) ( ) 0

( ) ( )

(0)

n n

w t f t w t g t t n t

w n f w n g n N

w w



  



      


    
  

                 (2) 

 

Where ( ) ( ) ([0 ) )f t g t PC R    , 0n nf g  and
0w are 

constants. Then for. 
 

0t 

0 0 0
0

0
0

( ) (0) exp( ( ) ) exp( ( ) ) ( )

exp( ( ) )

t t t

n n

n t s n t

t t

j n
n

n t n j t

w t w f f s ds f f r dr g s ds

f f s ds g

 


  

   

   

 

 

   

   

 

 
Analogously, 
 

0 0 0
0

0
0

( ) (0) exp( ( ) ) exp( ( ) ) ( )

exp( ( ) )

t t t

n n

n t s n t

t t

j n
n
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   

   

 
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   

   

 

 

For all 0t  if all the inequalities of Equation 2 are 

inverse. 
 
 
THE ATTRACTOR OF THE EQUILIBRIUM 
 
We first demonstrate the existence of an infection-free 
solution in which infection individuals are entirely absent 
from the population permanently, that is 

( ) 0 0I a t t    Under this condition, the susceptible 

must satisfy: 
 

( ) (1 ) ( )n

dS
S t n

dt

S n p S n n N

 

  




     


     

             (3) 

 
 
Theorem 1 
 
System 1 always has a positive periodic solution 

( 0 0)E S      

 
 
Proof 1 
 
We consider the linear non-homogeneous impulsive 
equations: 

 
 
 
 

( ) (1 ) ( )n

dS
S t n

dt

S n p S n n N

 

  




     


     

 

 
Let: 
 

( )( ) (1 ) t s

n

s n t

W t s p e 



 

 

    

 
be the Cauchy matrix for the respective homogeneous 
equation. Then: 
 

0
( ) ( 0) (0) ( )

t

S t W t S W t s ds      

 
is a solution of Equation (3). If this solution is T-periodic, 

that is (0) ( )S S T and then: 

 

0
(1 ( 0)) (0) ( )

T

W T S W T s ds                  (4) 

 

Since the multiplier ( 0)W T  of the homogeneous 

equation: 
 

( ) (1 ) ( )n

dx
x t n

dt

x n p x n n N

 

  




    


     

 

 

is always less than 1 and 
0

( ) 0
T

W T s ds     Equation 

(4) has a unique solution (0)S  To the initial value (0)S   

we obtain there exists corresponds the unique T   

periodic solution of (3). Denote this solution by ( )S t   
 
 
Lemma 3 
 

If ( ) ( ) (0 )a a L     (Liu et al., 2008), then Equation 

(1) has a unique nonnegative solution
1( ( ) ( ) ( )) ( ) ( ([0 ))S t I a t A t PC R R PC R L        

 ( ))PC R R  with respect to initial data

0 0 0 0 0 0( ( ) ) ( ( )S I a A S I a      0A 0 0) ( )S R I a   is 

integrable and supported in 

0 0 0 0
0

[0 ) ( )A R S I a da A





        .  

We note that the system: 
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    (5) 

 
With initial conditions: 
 

0 0 0 0 0 0 10 (0) 0 ( 0) ( ) 0 (0) 0 ( ) (1 ) ( )n n nn S S I a I a A A n N S n p S n  

                 

1( ) ( ) ( )n nI a n D a I a n  

    ( )nA n 
1( )nA n 


has a 

unique nonnegative continuous solution (Webb, 1985; 
Iannelli, 1995).  
 

Let ( ( ) ( ) ( ))n n nS t I a t A t     

[ )t n    (0 )     n N  be the solution of the 

system of Equation (5). Then we have the representation: 
 
( ( ) ( ) ( )) ( ( ) ( ) ( )) 0 [ ( 1) 0 1 2n n nS t I a t A t S t I a t A t a t n n n                    

 

If [ ( 1) )t n n      in Equation 1, for sufficiently large t , 

we obtain 
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t
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           (7) 

 
Furthermore, integrating the third differential equation in 
Equation 1 along the characteristic line t a   constant, 

for [0 )t     we get the following formula: 
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Hence, we have: 
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For [ ( 1) )t n n      we obtain: 

 

0
0
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From Equations (6) and (9), we have: 
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0 0
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 
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     If 

0 1R   holds, we have 0Z    

Therefore, the following proposition holds. 
 
 

Proposition 1 
 

Suppose 0 1R    then lim ( ) 0
t

Z t


   

 

Let 

0 0
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 
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 As the proof aforementioned, we get: 
  

0
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Where 0

0
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0 ( )0
( ) ( ) lim ( ) 0

K a

K a t
t
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




      Using 

Proposition 2, if: 
 

0 0
0

( ) ( ) ( ) 1R S T a K a da


    

 

We have
0

0
( ) 0I K a daZ


     Thus, it holds that: 

 

0
lim ( ) 0
t

I a t da



               (10) 

 

Next, we show that ( ) ( ) 0S t S t   as t   holds. 

According to Equation 1 and Lemma 2, we get: 
  

( )

0
0 0

0

( (0)) (1 ) (1 ) ( ) ( ) ( )
t

t t s

n n

n t s n t

S S S S p e p e S s a I a t dads 

 




    

   

           

 

and  
 

0

0

lim( (0)) (1 ) 0t

n
t

n t

S S p e 



 


 

     

 

From Equation 10, it is easy to get: 
 

lim[ ( ) ( )] 0
t

S t S t


    

 

From Equations 1 and 10, it is easy to get: 
 

( ) ( )( )

0
0 0

( ) ( )
t

d t d t sA A e e a I a t dads  


          

It is easy to obtain 0A   as t   
 

From the aforementioned, we have the following results: 
 
 

Theorem 2 

 

If ( ) ( ) [0 )a a L      and 0 1R   holds, then the 

periodic infection-free E
 of system of Equation 1 is a 

global attractor. In order to investigate the locally 
asymptotically stability of the periodic infection-free 

solution ( 0 0)S   for system of Equation 1, we first 

rewrite Equation 1 and consider the equivalent system: 

 

0

0

( ) ( ) ,

( ) (1 ) ( )

( ) ( )
( ) ( ) ( ) ( ( )) ( ) 0

(0 ) 0 0

( ) ( ) ( ) 0

( ) ( )

(

n

dS
S S a I a t d t n

dt

S n p S n n N

I a t I a t
a I a t S t a I a t a t n

t a

I t a t n

I a n D a I a n a

dA
a I a t da A dA t n

dt

A n

   

 

   



 

  











      

    

   
            

 

       

      

      





) ( )A n n N  

















    


             (11) 

 
 
 
 
With the initial conditions: 
 

0 0 0(0) 0 ( 0) ( ) (0)S S I a I a A A         

 

Let ( ) ( ) ( ) ( ) ( ) ( )S t s t S I a t i a t A t a t          from 

Equation 11, we have: 
 

0

0

( )
( ) ( ) ( ) ( ) ,

( ) (1 ) ( )

( ) ( )
( ) ( )( ) ( ( )) ( ) 0

(0 ) 0 0

( ) ( ) ( ) 0

( )

n

ds dS t
s S s S a i a t d t n

dt dt

s n p s n &n N

i a t i a t
a i a t s S a i a t a t n

t a

i t a t n

i a n D a i a n a

da
a i

dt

   

 

   



 






 











         

    

   
             

 

       

      





 ( )

( ) ( )

a t da a da t n

a n a n n N

 

  
















     

    



(12) 

 
It is easy to see that linearization of the system of 

Equation 12 at ( ) (0 0 0)s i a      leads to the following 

system: 
  

0

0

( ) ( ) ,

( ) (1 ) ( )

( ) ( )
( ) ( ) ( ( )) ( ) 0

(0 ) 0 0

( ) ( ) ( ) 0

( ) ( )

( )

n

ds
s S a i a t d t n

dt

s n p s n n N

i a t i a t
a i a t S a i a t a t n

t a

i t a t n

i a n D a i a n a

da
a i a t da a da t n

dt

a n

   

 

   



 

  
















     

    

   
            

 

       

      

      





( )a n n N 

















    


  (13) 

 
We can obtain that the system of Equation 13 has a 
nonnegative solution for initial conditions

0 0(0) 0 ( 0) ( ) 0 (0) 0s s i a i a a        Now we 

consider a comparable system of system of Equation 13: 
  

0

0

0

( ) ( ) ( ) ,0

( ) ( )
( ) ( ) ( ) ( ( )) ( )0 0

( ) ( ) 0

ds
s S T a i a t da t

dt

i a t i a t
S T a i a t da a i a t a t

a t

da
a i a t da a da t

dt

 

  

 










      


   

           
 


       









  (14) 

 

With boundary condition (0 ) 0i t    and initial 

conditions 0(0)s s  0( 0) ( )i a i a   0(0)a a System 

of Equation 14 has a unique nonnegative solution 

( ) ( ) ( )s t i a t a t    and: 

 

0 ( ) ( ) 0 ( ) ( )i a t i a t a t a t                 (15) 

 
So if we prove that the system of Equation 14 is stable at 

(0 0 0)    then  the  system  of  Equation  13  is  stable  at  



 
 
 
 

(0 0 0)  We rewrite the system of Equation 14 in the 

following form: 
 

1 2 3

0

( ) ( )

( ) ( ( ) ( ) ( ))

(0)

d
A t B t

dt

t t t t


 

   

 















  

   



           (16) 

 

Where ( ) [0 )A D A X X R L R         

 

 1 2 3 2 1 3( ) ( ( ) ) (0 )mD A a W r R                 

 

2
1 2 2 3 3( )

d
A a d

d


     



 
 
 
 
 

        

 

 2 2 2
0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )B S T a a daS T a a da a a da     
  

     
 

 

Clearly, B  is a bounded perturbation of A  Moreover, B  

is compact. Next, we consider the Eigen value problem 
for the linear system of Equation 16: 
  

1 2 1 2
0

2
2 1 2

3 2 2

( ) ( ) ( ) ( ) ( )

( ( )) ( )

( ) ( )

S T a a d P

d
a P

da

P

      


    

   


      




    


 




   (17) 

 
where: 
 

1 2 2 2 2 2
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )P S T a a da P a a da     
 

          (18) 

 
From Equation 17, we obtain that the characteristic 
equation has two roots with negative real part, one is 

1     the other is 2 ( )d      Another 

characteristic root is determined by Equation 19: 
 

0
( )( ) ( )

0 0
( ) ( ) 1

a
a a s d

S T a e dsda
    


    

             (19) 

 

We denote the left-hand side in Equation 19 by ( )   If 

    is real, then ( )  is decreasing and 

lim ( ) 0





    In addition, for any  with 0Re    we 

have ( ) ( )Re   Let: 
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0
( ) ( )

1

0
0 0

0
0 0

0
0

0 0
0 0

( ) ( )

( ) ( ) ( )

( )
( ) ( )( 1)

( )
[ ( ) ( ) ( ) ( ) ]

a
a a s d

a
s

a

a

R S T a e dsda

S T a K a e dsda

S T
a K a e da

S T
a K a e da a K a da

   














 


   









 





 

 

 

 



 

        (20) 

 

If 
1

0 1R    and if we assume that   is a solution of 

Equation 19 with 0Re    we have: 

  
1

01 ( ) ( ) (0) 1Re R                     (21) 

 
Which is contradiction stemming from the assumption. 
So, we obtain that the solution of Equation 17 has 
negative real part. We get Proposition 2. 
 
 
Proposition 2 
 

If 
1

0 1R   the Eigen values of A B  have negative real 

part. It is easy to get Proposition 3. 
 
 
Proposition 3 
 

The operator A is a closed linear operator and satisfies: 
 

1
( )

( )

n

n
A

 

 


                       (22) 

 

For     and all positive integers n . 

 
 
Proof 2 
 

For any 1 2 3( )Tf f f f X      we solve the solution 

( )A f     and obtain: 

 

1 1

2
2 2

3 3

1 2 3

0 ( )

( ( ))

0 ( )

(0) 0 (0) 0 (0) 0

f

d
a f

da

d f

  


   

  

  

    

     

     

     

                         (23) 

 
From Equation 23, we get: 
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0 0

1
1

( ( )) ( ( ))

2 2
0

3
3

( ) ( )

a
aa da d

a e f e d

f

d


       




 

  


 

    

 


  

 
 

      (24) 

 
Then, 
 

0 0
( ( )) ( ( ))

31
2

0 0

2
0 31

1 2 3

( )

( )

1
( )

a
aa da d ff

e f e d da
d

f a da ff

d

f f f


       

  
   

      

 

     





        
      

   
  
          

   


 


 

 

Where inf ( )
t

f f t


   then: 

 

1
( )

( )

n

n
A

 

  


 

 

For       and all positive integers n . 

To prove that system of Equation 16 is stable at 

(0 0 0)    we need the following definition and lemma 

(Webb, 1985). 
 
 
Definition 1 
 

A 0C  Semi group ( )T t  is called quasi-compact if

( ) ( ) ( )T t L t G t  with operator families ( )L t  and ( )G t

for 0t    such that lim ( ) 0
t

L t


   and ( )G t  is eventually 

compact. 
 
 
Lemma 4 
 

Let ( )H t be a quasi-compact 0C  Semi group and E  is 

an infinitesimal generator. Then lim ( ) 0t

t
e H t


  for 

some 0  , if and only if all Eigen values of E  have 

strictly negative real part. Now we prove the following 
lemma. 

 
 
Lemma 5 
 

Let ( )T t
 
be  a  0C 

  
Semi   group   and  A B   be   its  

 
 
 
 

infinitesimal generator. If
1

0 1R    then the following 

inequality holds 
0( )w A B      where 

0( )w A B  

denotes the growth of the semi group ( ) 0T t t    If 

( ) 0w A B  , the equilibrium 0   of the system of 

Equation 14 is locally exponentially asymptotically stable 

in the sense that there exists 0 1M      and 0   

such that if 0 X   and 
0    then the solution 

0( )t t   exists globally and 
0 0( ) tt Me     for all 

0t   (Webb, 1985). This implies that the equilibrium 

0   of the system of Equation 11) is locally 

asymptotically stable. From the aforementioned 
argument, and Equation 16, we obtain that system of 
Equation 11 is locally exponentially asymptotically stable 
at (0, 0, 0). So we arrive at the following result. 
 
 
Theorem 3 
 

If ( ) ( ) (0 )L        1

0 1R   and 00 ( )i a   are small 

enough, then lim ( ) 0 lim ( ) 0
t t

i t a t
 

    As for s , from 

the first and second equations of Equation 13 and 
Lemma 2: 
 

( )

0
0 0

0

( )

0
0 0

0

( ) (1 ) (1 ) ( ) ( ) ( )

(1 ) (1 ) ( ) ( )

t
t t s

n n

n t s n t

t
t t s

n n

n t s n t

s t s p e p e S s a i a t dads

s p e p e S s i a t dads

 

 

 

 






   

   


   

   

    

     

  

  

      (25) 

 

Since Theorem 3 and Equation 25, lim ( ) 0
t

s t


   if 0s  

are small enough. From Equation 20 and the definition of 

0R   we get: 

 

0
( ) ( )

1

0
0 0

0
0 0

0
0

0 0
0

( ) ( )

( ) ( ) ( )

( )
( ) ( )( 1)

( ) ( ) ( )

a
a a s d

a
s

a

R S T a e dsda

S T a K a e dsda

S T
a K a e da

S T a K a da R

   














   















  

  

 

 





         (26) 

 
From Theorems 2 and 3, we lead to: 
 
 
Theorem 4 
 

If ( ) ( ) [0 )L         and 
1

0 1R    then the system of 

Equation 10, that is the system of Equation 1 is globally 
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Figure 1. Impulsive persuasion factor in disease eradication. 

 
 
 

asymptotically stable at ( ( ) 0 0)S t     

 
 
DISCUSSION 

 
In this paper, we discuss an HIV/AIDS model with 
impulse persuasion and infection age and get conditions 
that lead to the theoretical eradication of HIV/AIDS. The 
results of this theoretical study are instructive to HIV. We 
have shown that the impulsive persuasion is a very 
important factor in disease eradication (Figure 1). From 
Theorem 4, we know the stability of the infection-free 

equilibrium E
 should depend on np  and    Since 

0 0
0

( ) ( ) ( )R S T a K a da


  and 

1

(1 )
( ) (1 )

1 (1 )

q

q

k

k q

e e
S T e

p e

  


  

 
 



 

  
   

 
 

we 

enforce pulse persuasion rate np  and short inter-pulse 

period   such that 
1

0 0 1R R   holds. Consequently, the 

disease is only theoretically eradicated from the 
population. Our environment is isolated in our model but 
in reality it should be diffused from one place to another 
place. With the economic development, recreation 
develops very fast which enhance difficulty of persuasion. 
However, the results of this theoretical study are 
instructive to the study of other diseases such as HINI, 
SARS, Hepatitis B. If we persuade the susceptible to 
adopt safe measures, the infected rate must be reduced. 
Such as SARS in 2003 in China, we persuaded people 
that were far from dense crowd and the disease quickly 

was controlled. Here 0R  is not a basic reproduction ratio 

(Heffernan et al., 2005), but is a threshold. Since the 
model is an impulsive system, it is difficult to estimate 
basic reproduction ratio. We are difficult to explain the 
biological meaning with the classical method. In future, 
we believe effects of movement between places could be 
very important. This would lead to a mixing system of 
coupled nonlinear partial differential equations with 
impulsive differential equations. 

The effects of particular people groups such as senorita 
in recreation grounds, poor men unmarried in remote 
coteaus are also worthy of study. In addition, we will 
consider the existence of positive period solution in our 
model.  
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