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Heat transfer inside a semi porous two-dimensional rectangular open cavity was numerically 
investigated. The open cavity comprises two vertical walls closed to the bottom by an adiabatic 
horizontal wall. One vertical wall is a porous and an inflow of fluid occurs normal to it. The other wall 
transfers a uniform heat flux to the cavity. It shows how natural convection effects may enhance the 
forced convection inside the open cavity. The main motivation for the work is its application for 
electronic equipment where frequently the devices used for the electronic equipment cooling are based 
on natural and forced convection. Governing equations are expressed in Cartesian coordinates and 
numerically handled by a finite volume method. Results are presented for both local and average 
Nusselt numbers at the heated wall and for the isotherms and streamlines of the fluid flowing inside the 
open cavity as a function of Reynolds number ranging from 1 to 100, Grashof number ranging from 0 to 
10

+7
 and the aspect ratio number of the open cavity equal 2, 4 and 8. The results obtained show that the 

forced convection inside the semi-porous open cavity studied may be greatly enhanced by natural 
convection effects. 
 
Key words: Computational simulation, electronic equipment cooling, finite volume, natural convection, open 
cavity; porous media. 

 
 
INTRODUCTION 
 
The heat transfer in enclosures has been studied for a 
variety of engineering applications. Results have been 
presented in research surveys (Bruchberg et al., 1976; 
Kakaç et al., 1987) and it has become a main topic in 
convective heat transfer textbooks (Bejan, 1984). Usually 
the enclosures are closed and natural convection is the 
single heat transfer mechanism. There are however, 
several  applications  in  passive  solar   heating,   energy 

conservation in building and cooling of electronic 
equipment, where open cavities are employed (Chan and 
Tien, 1985; Hess and Henze, 1984; Penot, 1982). 

Frequently the devices employed for the cooling of 
electronic equipment are based on forced convection 
(Sparrow et al., 1985). Studies on Computational Fluid 
Dynamics (CFD) applied to analysis of electronics cooling 
had been developed  in  several  works.  Specially  theory
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on natural convection in enclosures (Ostrach, 1972) and 
electronics cooling enclosure used as part of a larger 
telecommunication radar system (Boukhanouf and 
Haddad, 2010). Also studies of flow characteristics are 
done numerically with CFD and compared to 
experimental approaches, that is, manifolds that are 
widely used in electronic cooling equipment (Gandhi et 
al., 2012), shielded heat sink also widely used in that 
(Shaalan et al., 2012), and analysis to eliminate fan used 
in electronic device cooling (Nickell, 1997). 

Several studies on natural convection in open cavities 
had been done. Steady-state natural convection taking 
place in rectangular cavities filled with air was studied 
both experimental and numerically in Bairi et al. (2007). A 
steady buoyancy-driven flow of air in a partially open 
square 2D cavity with internal heat source, adiabatic 
bottom and top walls, and vertical walls maintained at 
different constant temperatures was investigated 
numerically in Fontana et al. (2011). The numerical 
results of heat transfer calculations in an open cavity 
considering natural convection and temperature-
dependent fluid properties were presented by Juarez et 
al. (2011). The natural convection occurring from open 
cavities was analysed by Prakash et al. (2012) in three 
different cavity shapes namely cubical, spherical and 
hemispherical geometries having equal heat transfer 
area. The thermal behaviour of airborne electronic 
equipment submitted to natural convection in closed 
parallelogrammic air-filled cavities was examined by Bairi 
et al. (2012). Also mixed convection in open cavity had 
been reviewed through several works. 

Wong and Saeid (2009) investigated the opposing 
mixed convection arises from jet impingement cooling of 
a heated bottom surface of an open cavity in a horizontal 
channel filled with porous medium through a numerical 
study. 

Stiriba et al. (2010) had analyzed the effects of mixed 
convective flow over a three-dimensional cavity that lies 
at the bottom of a horizontal channel through a numerical 
study, in which was found that the flow becomes stable at 
moderate Grashof number and exhibit a three-
dimensional structure, while for both high Reynolds and 
Grashof numbers the mixed convection effects came into 
play. 

A finite element analysis was performed on the 
conjugated effect of joule heating and magneto-
hydrodynamic on double-diffusive mixed convection in a 
horizontal channel with an open cavity (Rahman et al., 
2011). 

Laminar mixed convective flow over a three-
dimensional open cavity with heating from below at 
constant temperature was numerically simulated using 
direct numerical simulation and the most hydrodynamic 
and thermal aspects of the flow were presented by Stiriba 
et al. (2013). Magneto-hydrodynamic mixed convection in 
a lid driven cavity along with a heated circular hollow 
cylinder positioned at the centre of the cavity was studied  

 
 
 
 
numerically by Farid et al. (2013). Altemani and Chaves 
(1988) presented a numerical study of heat transfer 
inside a semi porous two-dimensional rectangular open 
cavity for both local and average Nusselt numbers at the 
heated wall and for the isotherms and streamlines of the 
fluid flowing inside the open cavity. Chaves et al. (2005) 
presented a numerical program in finite volumes applied 
to the transient natural convection heat transfer by double 
diffusion from a heated cylinder buried in a saturated 
porous medium. Chaves et al. (2008) presented a work 
where it was done a numerical analysis of the heat 
transfer inside a semi porous two-dimensional 
rectangular open cavity, where forced and natural 
convection where considered and the bottom and the 
opposite wall was heated. 

This paper presents a continuation of work of Chaves 
et al. (2008) using the program development in Chaves et 
al. (2005) where numerical analysis of heat transfer was 
done inside a semi porous two-dimensional rectangular 
open cavity. It is constituted by two vertical parallel plates 
closed at the bottom by an adiabatic surf ace and open at 
the top, as indicated in Figure 1. 

One of the vertical plates is porous and there is a fluid 
flow forced normal to it in order to cool the other vertical 
plate. This second plate transfer a uniform heat flux to the 
cavity. In addition to the forced convection, the analysis 
considered the influence of natural convection effects. 
Isotherms and streamlines are presented for the fluid flow 
inside the open cavity. Local and average Nusselt 
numbers are obtained for the uniformly heated plate for 
several values of aspect ratio to the parameters 
governing the heat transfer: Rep and Gr. 
 
 

METHODOLOGY 
 
The conservation equation of mass, momentum and energy, as well 
as their boundary conditions, will be expressed for the system 
indicated in Figure 1. Due to the low velocities usually associated 
with permeable walls, the natural convection will be considered in 
the analysis. It is assumed that the flow is laminar and occurs under 
steady state conditions. The natural convection will be treated via 
the Boussinesq approximation, that is, density variations are 
accounted for only when they contribute to buoyancy forces. In this 
problem, the buoyancy term is obtained from the y momentum 
equation terms representing the pressure and body forces: 
 

g  
y

 p 
 



                                                (1) 

 
The density is related to temperature according to the Boussinesq 
approximation (Patankar, 1980; Kundu and Cohen, 2008): 
 

 )T  (T   ppp                                       (2) 

 
In Equation (2) Tp indicates the temperature of the fluid inlet at the 

porous wall and p  the corresponding density. The pressure is 

now expressed in terms of a modified pressure defined as: 
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Figure 1. Coordinate system and thermal boundary conditions of the 
open cavity. 
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With Equations (2), (3), and (1) can be expressed by: 
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The second term in this equation relates the buoyancy forces to 
temperature differences (T – Tp). From this formulation, the density 

will be assumed constant and equals to p  in all the equations, 

so that the subscript p may be deleted. It is also assumed that all 
the other properties of the fluid are constant. Viscous dissipation 
and compression work are not considered in the analysis, 
according to the low velocities, moderate temperature differences 
and laminar flow conditions assumed. In order to obtain the 
conservation equations in dimensionless form, the following 
variables were defined (Patankar, 1980; Kundu and Cohen, 2008): 
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The equations expressing conservation of mass, x and y 
momentum and energy then become: 
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In Equations (7) to (9) 
2  is the Laplace operator in Cartesian 

coordinates. These equations are coupled and present two 
independent parameters, Gr and Pr. The first is the modified  
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Grashof number, defined by Patankar (1980) and Sharma (2005): 
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k

Dqg 
 Gr 


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                                                      (10a) 

 
and the second is the Prandtl number of the fluid (Patankar, 1980; 
Sharma, 2005). 
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                                   (10b) 

 
At the three solid boundaries of the open cavity, the velocity 
components are null, except the velocity of injection of the fluid (Up) 
at the porous wall. The thermal boundary conditions comprise a 
uniform (reference) temperature at the porous wall and a specified 
heat flux at the heated vertical wall. Expressed in dimensionless 
terms, the boundary conditions become: 
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The dimensionless velocity component normal to the permeable 

wall 
p

 D 
u
 

 
 

 is one parameter of this problem and it will be 

denoted the porous wall Reynolds number, Rep. The outflow 
boundary of the open cavity, at Y equal to H/D, is just a virtual 
boundary defining the calculation domain. In order to obtain a 
solution, two conditions must be satisfied at this boundary. First, 
there must be no backflow of fluid and second, there must be no 
diffusion from outside into the calculation domain. The first 
condition was verified checking the velocity profiles of each result 
obtained and discarding those results when a backflow was 
observed. The second was satisfied imposing artificially negligible 

partial derivatives of   and U in the vertical direction at the outflow 

boundary. The velocity component V was corrected at the outflow 
boundary in order to satisfy the conservation of mass in the whole 
domain. 

The problem presents four independent parameters: H/D, Pr, Rep 
and Gr. For a fixed particular fluid, there are still three parameters 
governing the heat transfer: H/D, Rep and Gr. In the present work, a 
single value, equal to 0.72, was assigned to the Prandtl number. 

The differential Equations (6) to (9) together with their boundary 
conditions, Equation (11), comprise a coupled system involving the 

four variables U, V, P and  . The equations were discretized using 

the control volume formulation described in Patankar (1980) and 
the solution was obtained employing the SIMPLE scheme. The 
convergence of the results was accepted when the relative change 
of the dependent variables was under 10-3. From the velocity field 
solutions, a steam function defined as: 
 

 
Y

0
dYU                                                         (12) 

 
was evaluated along lines X = constant, with   = 0 at  X = Y = O. 

 
 
 
 
From the solution of the temperature field, the local heat transfer 
coefficient at the heated wall and a corresponding Nusselt number 
were expressed as Patankar (1980) and Sharma (2005): 
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            (13) 
 
Where TW indicates the local temperature of heated wall. With the 
definition of the dimensionless temperature, Equation (5c), the 
Nusselt number becomes 
 

)(

 1 
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Yw
                                                          (14) 

 
An average Nusselt number for the heated wall was obtained from 
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In Equation (15) wT indicates the average heated wall 

temperature. Expressed in dimensionless variables, the average 
Nusselt number becomes. 
 

w

 1 
    u(Y)N                                                            (16) 

 

Where w  is evaluated by integrating the dimensionless 

temperature distribution along the heated wall: 
 

 
H/D

0 ww dYY)(   
H

D 
                                    (17) 

 
The adequacy of the grid fineness employed in the results is 
presented in Figure 2, related to the average Nusselt number 
defined in Equation (16). In either the absence or the presence of 
natural convection effects, a grid of 30x30 was adequate for the 
aspect ratio of 2 used in most of our results. Increasing the number 
of grid points from 900 to 1,600 would change the average Nusselt 
number by 0.2% (Figure 2). 

 
 
RESULTS AND DISCUSSION 
 
Nusselt number distributions 
 
Initially, just the effects of forced convection on the 
Nusselt number distributions will be considered to many 
aspect ratio H/D. The results presented in Figure 3 show 
that the Nusselt numbers increase with Rep and that they 
attain a uniform value within the cavity. The increase of 
Nusselt number is due to both the larger fluid flow 
through the cavity and the effect of inertia forces, causing 
the streamlines to come relatively closer to the heated 
wall. 

The comparison of the streamlines indicated in Figure 4 
shows that a larger fraction of fluid flow occurs closer to  
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Figure 2. Adequacy of the grid fineness employed. 
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Figure 3. Nusselt number distributions, Gr = 0. 
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Figure 4. Comparison of streamlines (/max) for Gr = 0. 

 
 
 
the heated wall when Re increases. In view of the 
definitions of Nu in Equations (13) and (14), Figure 3 also 

indicates that h and   attain uniform values. This thermal 

behaviour is analogous to that of the two-dimensional 
stagnation flow (Kays, 1966), mainly when Rep is small in 
Figure 3. The increase of fluid flow along the height of the 
heated wall, due to injection at the permeable wall, 
causes a smaller thermal penetration into the fluid in the 
upper portion of the cavity, as indicated in Figure 5. It is 
evident in Figure 5 the larger thermal resistance near the 
bottom of the heated wall. 

The effects of natural convection on the Nusselt 
number distributions will now be considered. The results 
obtained for a relatively low Rep are show in Figure 6. 
The curves of Nusselt number distributions are 
parametrized with the modified Grashof number. For the 
smallest values of Gr (10 and 100), the distributions are 
very similar to those shown in Figure 3. In this range of 
Gr the mechanism of forced convection is still dominant. 
The isotherms in the fluid are similar to those of Figure 5 
and the heated wall thermal resistance is higher near the 
bottom of the cavity. As the Grashof number increases, 
there  is  an  enhancement  of  heat  transfer  so  that,  as 

indicated in Figure 6, the entire heated plate becomes 
colder. The effects of the buoyancy forces, acting mainly 
close to the heated wall, share the dominant role on heat 
transfer with the forced convection effects. The Nusselt 
number profiles for Gr larger than 10

3 
in Figure 6 indicate 

that the wall temperature initially decreases slightly from 
the bottom of the cavity and attains downstream a 
minimum value. The behaviour is distracted by forced 
convection effects. The minimum wall temperature occurs 
however, on the lower portion of the cavity instead of on 
the upper portion, as was the case in Figure 3. 
Downstream of this minimum, the wall temperature now 
increases monotonically to the upper end of the cavity. 
This behaviour is imposed by natural convection effects. 
The values of the Gr in Figure 6 are limited in the upper 
range (Gr < 10

4
) due to the condition of no backflow of 

fluid at the outflow boundary. In this respect, the effects 
of natural convection are somewhat restrained for the 
relatively low value of Rep in this figure. 

The streamlines and isotherms for Rep = 5 and Gr = 
3,000 are showed in Figure 7. Due to the buoyancy 
induced flow, the streamlines, compared to the case for 
Gr = 0 in Figure 4, penetrate deeper into the cavity before  
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Figure 5. Isotherms for Gr = 0 and Rep = 100. 
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Figure 6. Nusselt number distributions, Rep = 5. 
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Figure 7. Streamlines and Isotherms for Rep = 5 and Gr = 3,000. 

 
 
 
bending upward. Thus, a large portion of the fluid flow 
leaves the cavity near the heated wall. The isotherms 
presented in the same figure give a clear indication of the 
development of a natural convection boundary layer 
along the heated wall. It is also noticed an increase of the 
heated wall thermal resistance very convection effects 
still predominate. 

The Nusselt number distributions for a relatively high 
Rep are now shown in Figure 8. Again, for small values of 
Gr, there is almost no distinction from the case in the 
absence of natural convection effects. With this Rep, the 
parameter Gr can be increased to a much higher value 
than before without any backflow of fluid at the outflow 
boundary. For the largest values of Gr in Figure 8, the 
heated wall temperature is a minimum right at the bottom 
and increases monotonically along its length. In this case, 
the natural convection effects control the heat transfer. 
The streamlines and isotherms shown in Figure 9 
correspond to Rep equal to 30 and Gr = 10

6
. The 

streamlines indicate that now half of the flow leaves the 
cavity within only 10% of its width, near the heated wall. 
The streamlines at the bottom go almost straight to the 
heated wall. The induced buoyant flow causes a bending 
of these lines slightly downward before turning upward. 

The isotherms indicate a natural convection boundary 
layer development form the bottom of the heated wall. 
There is no increase in the thermal resistance of wall 
near the bottom of the cavity, as shown by the isotherms 
closest to the heated wall. 
 
 
Average Nusselt numbers 
 
The average Nusselt numbers are shown in Figure 10 as 
function of Rep and parametrized with the modified 
Grashof number. The relative enhancement of heat 
transfer due the effects of natural convection decreases 
with Rep. For the largest value of Gr in Figure 10, equals 
to 10

7
, the effects of natural convection are so dominant 

that the value of Nu is almost independent of Rep for the 
range investigated. 

Another view is presented in Figure 11, where Nu is 
shown as a function of Gr and parametrized with respect 
to Rep. It is clear that the enhancement of heat transfer 
by natural convection occurs when Gr attains a minimum 
value. This Gr seems to increase slightly with Rep. As 
noticed before, Nu attains a limit value practically 
independent of Rep. 
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Figure 8. Nusselt number distributions, Rep = 50. 

 
 
 

 

 
 

Figure 9. Streamlines and Isotherms for Rep = 30 and Gr = 106. 
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Figure 10. Average Nusselt numbers as a function of Rep. 

 
 
 

 
 

Figure 11. Average Nusselt numbers as a function of Gr. 

 
 
 

Aspect ratio  
 
The results presented so far were obtained for an  aspect 

ratio (H/D) of the open cavity equal to 2. In Figure 12, the 
Nusselt number distributions for the aspect ratios of 2, 4 
and 8, obtained for a pair of  values  of  Rep  and  Gr,  are  
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Figure 12. Influence of the aspect ratio. 

 
 
 
compared. The distribution for (H/D) equal to 2 is the 
same as that included in Figure 7, but in a much enlarged 
vertical scale. As the aspect ratio increases, the minimum 
temperature of the heated wall moves closer to the 
bottom of the cavity. As discussed before, this 
temperature characterizes the start up of a natural 
convection boundary layer along the heated wall. Thus, 
these profiles indicate a stronger effect of natural 
convection as the aspect ratio of the cavity increases. It is 
also noticed that the Nusselt number distributions in the 
region controlled by natural convection match each other. 
In this region the heated wall temperature distributions 
seem to be independent of the aspect ratio of the cavity. 
 
 
Conclusions 
 
The study of laminar free and forced convection cooling 
of a semi permeable open cavity was investigated 
numerically. The equations describing the problem were 
expressed in Cartesian coordinates according to stream 
function formulation and numerically solved by the 
method of control volume. The program implemented 
allowed to achieve satisfactory results and enabled a 
better understanding  of  the  influence  of  Reynolds  and 

Grashof numbers on flows driven by heat. The results 
obtained show that the forced convection inside the semi-
porous open cavity studied may be greatly enhanced by 
natural convection effects. When Gr is small enough, just 
forced convection controls the heat transfer. In this case, 
the upper portion of the heated plate becomes the most 
convenient region for cooling purposes. When Gr 
increases, natural convection effects may become 
dominant and then the lower portion of the heated plate 
constitutes the coldest region. When the aspect ratio of 
the open cavity increases there seems to be an increase 
of the role played by natural convection effects. The 
investigation carried out was however, limited because 
the problem presents four parameters (H/D, Pr, Rep and 
Gr) and some choices had to be made about the range to 
be analysed. 
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Nomenclature: Cp, Specific heat at constant pressure 
[J/kg.

o
C]; D, Width of the open cavity [m]; g,  Acceleration  
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of gravity [m/s

2
]; Gr, Modified Grashof number [-

]; h ,Convective heat transfer coefficient [W/m
2
.°C]; H, 

Height of the open cavity [m]; Nu, Local Nusselt number 

[-]; uN ,Average Nusselt number [-]; p, Pressure [Pa]; p
*
, 

Modified pressure [Pa]; P, Dimensionless pressure [Pa]; 
Pr, Prandtl number of the fluid [-]; q, Surface heat flux 
[W/m]; Rep, Porous wall Reynolds number [-]; T, 
Temperature [°C]; Tp, Temperature of the porous wall 

[°C]; Tw, Heated wall temperature [°C]; wT , Average 
temperature of the heated wall [°C]; up, Injection velocity 
of fluid at the porous wall [m/s]; U, V, Dimensionless 
velocities [m/s]; x, y, Cartesian coordinates [m]; X, Y, 

Dimensionless Cartesian coordinates [m]; , Coefficient 

of thermal expansion [1/°C]; , Stream function [-]; , 

Kinematic viscosity [m
2
/s]; , Dimensionless temperature 

[°C]; w , Dimensionless heated wall temperature [°C]; 

w , Dimensionless average heated wall temperature 

[°C]; , Density [kg/m]; , Number of grid points in the 

domain [-]; , Viscosity [Pa.s]; , Thermal conductivity 
[W/m. °C]. 
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