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INTRODUCTION 
 
The fifth Euclidean postulate problem in geometry is 2300 
years old. The investigations devoted to this problem 
gave birth to two consistent models of non- Euclidean 
geometries which are widely applied in quantum mecha-
nics and general theory of relativity. Algebraic appli-
cation is one of the powerful tools to study the properties 
of geometry. By assuming the laws of abstract algebra, 
the famous classical problems in geometry were shown 
impossible to solve. In this work, by applying classical 
algebra, the author attempts to establish the above men-
tioned theorem. 
 
 
RESULTS 
 
In the spherical construction as shown in Figure 1, small 
letters denote the sum of the interior angles in triangles 
and quadrilaterals. Let a, b, c, d, e ,e ,g, h ,i, j , k , l , t , u , 
v’, and w refer, respectively, to the sum of the interior 
angles in biangle AFED, triangle AES, triangle FOD, 
triangle AFR, quadrilateral FESO, triangle FRD, biangle 
ABCD, triangle OBD, triangle ASC, triangle RCD, 
quadrilateral BCSO, triangle ARC, triangle FAB, triangle 
FBC, triangle FCE and in biangle  EDC. The angles ABC, 
BCD, CDE, DEF, EFA, FAB, AOB, ARC, ESC, AOR, 
ORS and RSD are all straight angles and so their 
measures are all equal to 180 degree.  
 
Let v be the value of this 180 degree                             (1) 
 
Using (1), x + y + z + m = 5v + a                                    (2)  
 
x + y + z = 3v + a                                                           (3) 
  
y + z + m   = 3v + c                                                        (4) 

x + y = v + d                                                                   (5) 
 
y + z = v + e                                                                   (6) 
 
m + z = 2v + f                                                                 (7) 
 
5v + g = n + p + q + r                                                      (8) 
 
3v + h = n + p + q                                                           (9) 
 
3v + I = p + q + r                                                           (10) 
 
v + j = n + p                                                                  (11) 
 
v + k = p + q                                                                 (12) 
 
2v + l  = r + q                                                                (13) 
 
x + r  = 2v + t                                                                (14) 
 
2v + u = y + q                                                               (15) 
 
z + p = 2v + v’                                                               (16) 
 
2v + w = m + n                                                             (17) 
 
Adding (2) to (17), 4x + 4y + 6z + 2m + g + h + i + j + k + l 
+u + w = 4n + 4p + 6q + 2r + a + b + c + d + e + f + t + v’ 
 
Applying (2), (3) in LHS and (8), (9) in RHS, a + b + i +j + 
k + l + u + w+ 2z = C + d + e+ f + t + v’ + g + h + 2q 
 
Assuming (1), t + u + v’ + w = 4v 
 
2v = a + g 



 
 
 
 

 
 
Figure 1. A spherical construction. 

 
 
 
Adding the above three equations (eqns.), 2z + 2u + 2w + 
i + j + k + l = 2v +2 g + 2q + c + d + e +f + h 
 
3v + c = y + z + m                                                          (4) 
 
v+ d  = x + y                                                                   (5) 
 
v + e =    y + z                                                                (6) 
 
2v + f = m + z                                                                 (7) 
 
3v + h = n + p + q                                                          (9) 
 
p + q + r = 3v + I                                                           (10) 
 
n + p = v = j                                                                  (11) 
 
p + q = v + k                                                                 (12) 
 
r + q = 2v + l                                                                (13) 
                                                                    
Adding the above ten eqns., 2v + 2u + 2w + 2p + 2r = x + 
3y + z + 2m +2g 
x + y + z + m = 5v + a                                                   (2) 
 
2y + 2q = 4v + 2u from                                                (15) 
 
6v + 2i = 2p + 2q + 2r                                                   (10) 
 
Adding the above four eqns.,   2i + 2w = v + m + g 
(10) + (17) gives, 2p + 2q + 2r + 2m + 2n = 10 v + 2i + 2w 
From (8) we have, 10 v + 2g = 2n + 2p + 2q + 2r 
 
Adding the above three eqns., m = v = 180 degree [from 
(1)]                                                                               (18) 
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That is, the sum of the interior angles of the spherical 
triangle ESD is equal to two right angles ---------------- (19) 
and hence the proof of the theorem. 
 
 
DISCUSSION 
 
Needless to say, we have derived (19) without assuming 
Euclid’s parallel postulate. This establishes that the fifth 
Euclidean postulate can be deduced from the first four 
postulates (Effimov, 1972; Smilga, 1972). But the mere 
existence of consistent models of non-Euclidean geo-
metries demonstrates that the fifth postulate is a special 
case. So this is a serious problem. Our application of 
number theory and the laws of algebra are consistent. 
Further studies will unlock the hidden treasures of 
mathematics. 
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