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Other than the classical methods, the use of standard forms for control system design is well known. 
Since first introduced in 1950s, many new contributions have been proposed in the literature. In these 
contributions, the standard forms are obtained for all poles and with no zero, one zero and two zeros 
systems. In this study, for the first time, optimum values of standard form coefficients with five pole 
and two variable zeros are obtained for the integral squared time error (ISTE) and integral of the 
squared time error (IST

2
E) criteria. Again in this study, a generalized controller design approach using 

standard forms with all pole and two variable zeros has been given for n
th

 degree all pole systems. In 
the proposed approach, a proportional integral derivative (PID) controller in the feed forward path and a 
polynomial controller, which its degree changes according to system degree in the inner feedback 
path, have been used. Parameters of these controllers are obtained using standard form coefficients 
and the proposed simple mathematical operations. Comparative examples for the use of the proposed 
approach together with some well known methods are also given in the MATLAB. 
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INTRODUCTION 
 
Because of the robust performance and easiness of the 
design steps, the use of classical controllers is still 
popular despite of many proposed modern controller 
design methods. One of these classical methods is the 
optimal controller design method. Main idea of this 
method is to minimize the error signal by adjusting the 
controller parameters with respect to the system transfer 
function. In the literature, many error criteria have been 
proposed for minimizing the error signal. One of the most 
popular criteria is the integral squared error (ISE) criterion 
since these allowed solutions to be obtained in the s-
domain by using Parseval’s theorem (Chen, 1994).  
Others are integral absolute error (IAE) and integral time 
absolute error (ITAE) criteria. But, despite of the ISE 
criterion, the results of the IAE and ITAE criteria, which 
can be found in many textbooks, are obtained using 
extensive computations or by simulations. In the classical  
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approach of the optimal controller design method, in 
every case, this minimization operation must be 
performed for the system. Thus, this method takes long 
time and needs expert person. It is therefore not very 
practical. Graham and Lathrop (1953) introduced a new 
approach to solve these problems. In this method, closed 
loop transfer function of the system is introduced as a 
standard form, which is given in Equation 1. Then, this 
closed loop transfer function’s parameters are obtained 
by minimizing the error signal of the transfer function with 
respect to the well known error criteria.  

Subsequently, this readily available transfer function 
can be used to obtain the controller parameters with the 
uncompensated system transfer function by simply 
equating these two closed loop transfer function.  Thus, 
the approach eliminates the time consuming optimization 
procedures and need of the expert person. 
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Graham and Lathrop (1953) have used the IAE and ITAE 
criteria for obtaining the standard forms. They have also 
suggested the optimal standard form coefficients for only 
all pole standard forms. In 1996, Dorf and Bishop (1996) 
suggested the ISE criterion, but they did not give the 
standard form coefficients. Instead, they have obtained 
the standard form coefficients for the systems with one 
zero using the ITAE criteria for a ramp input.  

Dorf and Bishop (1995, 1996) and some textbooks, 
devoting a separate section for the subject, suggest and 
use, c0 = d0 and c1 = d1 to have a zero steady-state error 
for a ramp input for obtaining the closed loop transfer 
functions of m poles standard forms with one zero. On 
the other hand, this restricts the independently chosen 
controller parameters. Also this does not mean that the 
obtained optimal coefficients are also optimal for the step 
input signal. If the optimal coefficients of the standard 
forms with a zero want to be obtained for a step input, 

then c1 ≠ d1 must be chosen (Atherton and Boz, 1998).   
Otherwise, obtained standard forms may cause very 

oscillatory step responses for the same systems and 
overshoot of the responses increases. Coefficients of the 
standard forms with all pole and one zero have been 
obtained for ISTE and IST

2
E criteria by A. F. Boz and the 

results are given in Boz (1999). Recently, for four poles 
with two zeros systems, optimum values of standard form 
coefficients have been obtained for the ISTE criterion by 
Sari and Boz (2009) and for the IST

2
E criterion by Boz 

and Sari (2009a). In 2009, Boz and Sari (2009b) have 
also suggested a new approach to obtain the parameters 
of the PI controller, which is used in the feed forward 
path, and a polynomial controller, which is used in the 
feedback path, using the standard forms with a zero for 
all pole systems. In this study, for the first time, optimum 
values of standard form coefficients with five pole and 
two variable zeros are obtained for the ISTE and IST

2
E 

criteria.  
Again in this study, to show the use of obtained 

standard form coefficients in the controller design, a new 
simple generalized controller design approach for the 
systems with all pole transfer function is introduced. The 
design approach uses the standard forms with c1 ≠ d1, 
and c2 ≠ d2 optimized for the ISTE and IST

2
E criteria. In 

the proposed approach, a proportional integral derivative 
(PID) controller, which is in the feed forward and a 
polynomial controller, which is in the feedback path, are 
used. Degree of the polynomial controller can be 
determined according to the degree of the all pole 
system. Parameters of these controllers are obtained 
using standard form coefficients and the proposed simple 
mathematical operations.  
 
 
MATERIALS AND METHODS 
 
Integral performance criteria 

 
A dynamical system’s performance is usually defined with its 
transient response. The transient response of a system  for  a  ramp  
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or a step input is determined by measuring the system’s output in 
terms of rising time, settling time, overshoot and steady-state error.  
Ideally, output signal of the system must follow the input signal 
exactly. Thus, ideally, all of these measurements must be zero. On 
the other hand, in practice, this is impossible; therefore the output 
must follow the input as close as possible.  If the system’s 
performance is not the desired one, then a controller is usually 
added to the system to achieve the desired responses. In the 
literature, many different controller structures and design methods 
can be found. Amongst the popular controller design methods, 
optimization methods can be counted.  

As it was explained before, minimization of the error signal is 
performed by using a known function, which is called performance 
index. A performance index consists of some performance 
characteristics, which the system tries to achieve. This function, 
depends on the controller parameters, and is optimized numerically. 
This procedure yields optimal controller parameters and these are 
also appropriate for the desired system response. Adjusting the 
performance index to its minimum value by using the system 
parameters yields the optimal response. Therefore, this type of 
system is called optimum controller system. The performance index 
value of a system is always a positive number or zero. Therefore, 
ideal system is described as a system which minimizes this index.  

The controller is normally required to minimize the error signal, 
which is the difference between reference input (r(t)), and controlled 
output signal (c(t)) as given in Equation 2  

 

0)( →te   0≥t .                                                                           (2) 

 
Thus, a criterion suitable to characterize the time response of a 
system is usually given as an integral function of the error, or its 
weighted products. A general form of an integral error criterion may 
be represented as follows 
 

∫
∞
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Therefore, an optimum dynamic performance may be taken as the 
time response which gives a minimum value of J. The integral 
performance criterion can be expressed in different forms thus a 
control system is considered optimal if the selected performance 
index is minimized by varying the controller parameters. Since the 
optimal parameters depend directly on the selected criterion, it is 
important to reexamine some of the well known integral perfor-
mance criteria. For over forty years, many approaches have been 
used for developing design criteria for optimum transient behavior 
of a system. Two of the most frequently used criteria, which are the 
ISE and the IAE, were suggested by Graham and Lathrop (1953). 
The performance indices of the two criteria are given by  
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Time weighted versions of these two criteria have also been 
introduced in Zhuang (1992) for ISE and Graham and Lathrop 
(1953) for IAE. More general representations of these criteria are 
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which is the general time weighted integral squared error criterion, 
and  
 

∫
∞

=′

0

),()( dttetJ n
n θθ                                                                   (7) 

 
which is the general time weighted integral absolute error criterion 

where θ denotes variable parameters which are chosen to minimize 

Jn (θ). According to Formula (6), the J0, J1 and J2 are called ISE, 
ISTE and IST

2
E, respectively. 

Graham and Lathrop (1953) have obtained these optimal transfer 
functions by using experimental methods in the time domain. These 
methods also give relatively high error rate and they are difficult to 
implement. Therefore, there was no interest to this issue until 
recently. On the other hand, Astrom (1970) proposed an algorithm 
to calculate the ISE or its derivatives without error for linear systems 
in 1970.   

In the proposed structure, 
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is given in the s domain as follow, 
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where, 
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sE = .  Polynomials of A(s) and B(s) are also 

given as follow; 
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Again, time-weighted integral squared error criterion, which is given 

in the form of [ ] dttetj
n

n ∫
∞

=
0

2

)( , can be easily calculated in the s 

domain using [ ] )()( sF
ds

d
ttfL

−
=  property (Astrom, 1970). 

 
 
Standard forms 
 

Today, standard forms take more and more interest by the scientist. 
Many of the textbooks devote a chapter for this subject as well. 
Amongst the reasons of this, simple algebraic operations, which 
give the optimal system coefficients, can be countered.   

Generally, the closed loop transfer function of a plant can be 
represented by 
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The steady-state error of this system can be  shown  to  be  as, 
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The form of the input r(t) determines the size of the steady-state 
error. In order to get zero steady-state error for a step function 
input, it is required that c0 = d0. Since the order of the numerator of 
C(s)/R(s) can be less than or equal to the order of the denominator, 
there are many possibility of C(s)/R(s) for which the steady-state 
error is zero with a step input.  

On the other hand, steady-state error with a ramp function input 
only become zero when c0 = d0 and c1 = d1. This means that the 
system is type 2 or higher.  
 
 
RESULTS  
 
Standard forms with two zeros 
 
With two zeros, the transfer function of a standard form 
may be denoted by T2j(s) with the denominator given as 
in the all pole form and the numerator by c2s

2
+c1s+1, 

which is 
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In many cases, contrary to the classical textbooks 
devoting a chapter for this subject, it is not appropriate to 
take c1 = d1, and c2 = d2 for controller design and 
minimizing the error index procedures. In the case of c2 ≠ 
d2 and c1 ≠ d1, the optimum values of the d coefficients 
vary with the choice of c1 and c2. Recently, for four pole 
with two variable zeros systems, optimum values of 
standard form coefficients have obtained for the ISTE 
criterion by Sari and Boz (2009) and for the IST

2
E 

criterion by Boz and Sari (2009a). In this study, optimum 
values of standard form coefficients with five pole and 
two variable zeros are obtained for the ISTE and IST

2
E) 

criteria. The optimum values of these coefficients for the 
J1 and J2 criteria for T24 (s) as a function of c1 and c2, are 
given here in Figures 1 and 2, respectively.  The optimum 
values of these coefficients for the J1 and J2 criteria for 
T25(s) as a function of c1 and c2 are given here in Figures 
3 and 4, respectively. 
 
 

Optimal controller design approach for n
th

 degree all 
pole systems  
 
Here, a new optimal controller design approach for n

th
 

degree all pole systems has been introduced. In the 
suggested controller scheme, as shown in Figure 5, a 
PID controller in the feed forward path and a polynomial 
controller, which its degree changes according to system 
degree, in the inner feedback path  have  been  used.   In  
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Figure 1. Optimum values of d1, d2 and d3 for T24 (s) with ISTE criterion. 

  
 
 

2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

10

c
1

d
1
,d

2
,d

3

d
2

d
1

d
3

                   c
2
=1

                   c
2
=2

                   c
2
=3

                   c
2
=4

 
 
Figure 2. Optimum values of d1, d2 and d3 for T24 (s) with IST

2
E criterion. 

  
 
 

the suggested approach, generalized formulae for 
designing optimal controller parameters have been 
obtained using the standard forms with two zeros. Two 
comparative examples are given here to show the validity 
of the method. 
 
 

Generalized optimal controller design approach for 
n

th
 degree all pole systems 

 
n

th
   degree  all  pole  system’s  transfer  function  can  be  

represented by 
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This system can be controlled using a PID controller in 
the feed forward path and a polynomial controller in the 
inner feedback path as shown in Figure 5.  

Closed loop transfer function of the inner feedback 
controller and the system can be represented as, 
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Figure 3. Optimum values of d1, d2, d3 and d4 for T25 (s) with ISTE criterion. 
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Figure 4. Optimum values of d1, d2, d3 and d4 for T25 (s) with IST

2
E criterion. 
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and the resulting closed loop transfer function of )(
'

sG , 

the PID controller and the unity feedback is given by,  
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which can be normalized to the form 
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Figure 5. The use of PID controller in the feed forward path for n

th
 degree all pole systems. 
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means that the response of the system will be faster than 

the normalized response by a factory of α.  To simplify 
the analysis, numerator and denominator coefficients of 
the normalized system’s closed loop transfer function can 
be arranged as,  
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Substituting these values into the Equations (18) gives 
the new transfer function of the system, to be 
 

1.....

1
)(

1

2

2

1

1

1

1

2

2

)1(2
++++++

++
=

−
−

++

mm

n

mn

n

mn

n

m

mm
mn

sdsdsdsds

scsc
sT        (27) 

 
n+1 degree standard form with two variable zero can be 
represented as in Equation (27). Using Equations (19) to 
(26) with the transfer function given in Equation (27) the 
controller parameters results as,  
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Table 1. Suggested controller design method’s results 
for Example 1. 
 

 PID  IST
2
E PID  ISTE 

c1 6 6 

c2 4 4 

d1 6.747 6.671 

d2 8.68 8.26 

d3 4.188 3.523 

 

l2 1.9006 2.6855 

l1 3.4037 5.717 

l0 0.6773 1.3523 

k1 1.557 2.1904 

k0 -0.5764 -0.3607 
  
 
 

Table 2. Controller parameters, which are obtained using the   
R.Z-N, A-H and Gain-phase methods for Example 1. 
 

 R. Z-N A-H Gain-phase 

Kc 2.334 2.334 2.334 

ωc 1.4144 1.4144 1.4144 

Tc 4.4423 4.4423 4.4423 

α   4  

mφ   45  

β  0.7307  

Kp 1.4004 1.6504 1.1882 

Ti 2.2212 3.4138 1.961 

Td 0.5553 0.8534 0.5453 
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or generalizing the formula for  k = 0, 1, 2, 3, 4, …. n-2, 
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can be obtained.   
 
 
DISCUSSION 
 
Here, advantages and validity of the proposed approach 
over some well known design methods are given with two 
different examples for comparison. 
 
 
Example 1 
 
Consider the third order transfer function, 
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Comparing the transfer function of this system with 
Equation 14, gives the following values, n = 3, a0 = 3, b3 = 
1, b2 = 5, b1 = 2 and b0 = 3. Then choosing  c1 = 6 and c2 = 
4 for ISTE and IST

2
E criteria from Figures 1 and 2  and 

using them in the generalized formulae, which are given 
in Equations 36 and 37, result in the controller 
parameters and these data are summarized in Table 1. 
For the same system, results of some well known PID 
controller design methods are also obtained. These are 
refined Ziegler-Nichols (R.Z-N) (Hang et al., 1991), 
Astrom Hagglund (A-H) (Astrom and Hagglund, 1984) 
and Gain-phase (Zhuang and Atherton, 1993) controller 
design methods. Summary of the results obtained from 
these methods are given in Table 2. Finally, step 
responses of all design methods together with that of the 
suggested design method are plotted in the same figure 
for comparison (Figure 6).  

It is seen from Figure 6 that, the Gain-phase method 
gives most oscillatory response and longest settling time 
together with the A-H method. On the other hand, result 
of the suggested design approach for IST

2
E gives 

minimum overshoot, settling time and little oscillation. 
ISTE design also gives relatively less overshoot and 
short settling time but its response is faster than the 
IST

2
E design. 

 
Example 2 
 
In this case, consider the fourth order transfer function, 
 

71595

5
)(

234 ++++
=

ssss
sG                 (40) 

 
Coefficients of the transfer function are n = 4, a0 = 5, b4 = 
1, b3 = 5, b2 = 9, b1 = 15 and b0 = 7. Again, choosing c1 = 6  
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Figure 6. Step responses for Example 1. 

  
 
 

Table 3. Suggested controller design method’s results 
for Example 2. 
 

 PID  IST
2
E PID  ISTE 

c1 6 6 

c2 4 4 

d1 7.2598 7.1453 

d2 12.2592 11.3414 

d3 9.5002 8.746 

d4 3.754 2.947 

 

l2 1.8902 3.9071 

l1 3.7765 9.9435 

l0 0.8383 2.8118 

k2 1.5707 3.2352 

k1 0.903 4.171 

k0 -0.6071 0.498 
  
 
 

Table 4. Controller parameters, which are obtained 

using the   R.Z-N, A-H and Gain-phase methods for 
Example 2. 
 

 R. Z-N A-H Gain-phase 

Kc 2.2047 2.2047 2.2047 

ωc 1.7318 1.7318 1.7318 

Tc 3.6281 3.6281 3.6281 

α   4  

mφ   45  

β  0.9468   

Kp 1.3228 1.559 1.1218 

Ti 1.8141 2.788 1.5292 

Td 0.4535 0.697 0.4472 

and c2 = 4 for ISTE and IST
2
E criteria from the Figures 3 

and 4 gives the d coefficients as seen in Table 3. Using 
these coefficients in the Equations 36 and 37, result the 
suggested controller parameters, which are summarized 
in Table 3. For the same system, the R.Z-N, A-H and 
Gain-phase methods yield the controller parameters, 
which are given in Table 4. Step responses of the all 
design methods are also given in Figure 7.   

As can be seen from Figure 7, R. Z-N method gives 
biggest overshoot. Again R. Z-N, A-H and Gain-phase 
methods give sluggish responses. On the other hand, 
IST

2
E method provides minimum overshoot and also the 

settling time of the IST
2
E method is better than that of the 

other methods. ISTE method also gives relatively fast 
response with little oscillation.    
 
 

Conclusion 
 
In this work, a new approach to obtain the optimal PID 
and polynomial controller parameters for the n

th
 degree 

all pole system has been introduced. The suggested 
approach basically uses the optimized standard forms 
with two variable zeros. Also the approach directly targets 
the step response shaping in the time domain. It is shown 
in the work that, in the contrary of the literature, choosing 
c2 ≠ d2, c1 ≠ d1 in the standard forms yields relatively 
better system performances for the step input. It is also 
generalized formulae for the optimal controller design is 
suggested in the work, thus the design procedure is 
simplified and also the need of expert person in controller 
design is eliminated. Again the suggested approach 
introduces simple algebraic operations, thus there is no 
need to optimize the system every time. Therefore, 
design time is also shortened. As it was shown in the 
examples,   the   approach  gives  better  responses  over  
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Figure 7. Step responses for Example 2.  

 
 
 

some well known design methods, thus it can be pre-
ferable in designing the optimum controller. The results of 
the work can also be used in the state feedback. Addition 
of these, the work also introduces optimum values of 
standard form coefficients with five pole and two variable 
zeros for the ISTE and IST

2
E criteria. 
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