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This paper investigates learning and achievable bit error rate (BER) performance of ultra-wideband 
(UWB) systems that use intelligent multiuser detector (MUD) when communicating over UWB channels 
that experience both multiuser interference (MUI) and intersymbol interference (ISI), in addition to 
multipath fading. Multiple access interference (MAI) degrades performance of conventional single user 
detector in UWB systems. Due to high complexity of the optimum multiuser detector, suboptimal 
multiuser detectors with less complexity and reasonable performance have drawn considerable 
attention. By taking advantage of heuristic values and collective intelligence of tabu search with 
Hopfield neural networks (TAHNN), the proposed detector offers almost the same BER performance as 
a full-search-based optimum multiuser detector does, while greatly reducing computational complexity. 
To evaluate performance and robustness of our proposed TAHNN based MUD, we experiment with a 
number of test problems. Computational results show that our proposed TAHNN in almost all cases 
outperforms other foregoing heuristics applied to this paper.  
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INTRODUCTION 
 
It is well known that multi-access interference (MAI) limits 
direct sequence ultra-wide band (DS-UWB) system 
capacity. Considering large complexity involved in 
optimal multiuser detection (OMUD), which is exponential 
in the number of active users, most current work centers 
on investing suboptimal approaches (Reed, 2005; 
Molisch et al., 2003; Scholtz, 1993; Ghavami et al., 2004; 
Shen et al., 2010). UWB systems offer many advantages 
over narrow-band or conventional wide-band system: 
e.g., reduced fading margins, simple transceiver designs, 
low probability of detection, accurate positioning (Shen et 
al., 2010; Ahmed et al., 2011; Oppermann et al., 2004). 
Traditional receiver for such a UWB system is a simple 
matched filter (Molisch et al., 2003;  Scholtz,  1993),  with  
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performance degraded due to MAI and intersymbol 
interference (ISI). Multiuser detection techniques like 
interference cancellation can solve the problem. OMUD 
(Ismail and Huseyin, 2007; Verdú, 1998; Verdú, 1986) for 
UWB systems requires the solution of an NP-hard 
combinatorial optimization problem. It is well known that 
computational complexity of OMUD is exponential in 
number of active users in the systems. Evolution of that 
study (Ismail and Huseyin, 2007; Verdú, 1998; Verdú, 
1986) indicated OMUD possessing high-computational 
complexity and its implementation not viable in real time, 
especially when number of active users in the system 
becomes expressive. 

To overcome these drawbacks, several advanced 
receiver structures have been proposed. Unlike the 
conventional receiver with treats MAI as if it were AWGN, 
multiuser receivers treat MAI as additional information to 
aid in detection. In  order  to  improve  the  bit  error  ratio  



 
 
 
 
(BER) performance, multiuser detectors, such as 
minimum mean-square error (MMSE) MUD (Li and 
Rusch, 2002), may be employed by UWB systems at the 
expense of higher complexity. The MMSE-MUD is 
capable of automatically combining all multipaths 
presenting within time-duration of an observation window 
(Li and Rusch, 2002), hence it retains constant 
complexity. Furthermore, MMSE-MUD is convenient to 
implement by low-complexity adaptive techniques (Ismail 
and Huseyin, 2007), yielding adaptive MUD. 

More researches into optimal multiuser detection for 
DS-UWB system multiple accesses can also be found in 
(Qiu et al., 2005; Foerster, 2002; Yoon and Kohno, 2002; 
Yihai et al., 2005; Tan-Hsu et al., 2006; Fogle, 2000) and 
references therein. In (Qiu et al., 2005), it is shown that it 
outlined design of OMUD based on joint ML sequence 
detection. In (Foerster, 2002), recursive multiuser 
detection is proposed for a direct-sequence-UWB (DS-
UWB) system, which can offer near-optimal performance 
relative to ML detector with reduced computation 
complexity. Nevertheless, those approaches are similar 
to previous joint demodulation techniques proposed for 
code-division multiple-access (CDMA) and time-division 
multiple-access (TDMA) systems. They have very high 
computational complexity, which increases exponentially 
with total number of users. In (Yoon and Kohno, 2002), it 
is shown that genetic algorithm (GA) based MUD 
approaches single-user performance bound at lower 
complexity as compared with ML optimum MUD. In (Yihai 
et al., 2005), it is shown that each multipath component 
associated with a particular path collectively exhibits 
distortion after reflections, diffraction and scattering; thus 
does not resemble the ideal received signal 
corresponding to line-of-sight (LOS) path, which makes it 
difficult for practical communications receivers to fully 
exploit multipath diversity in a received signal. In (Tan-
Hsu et al., 2006), it is shown that an approach to analyze 
pulse waveform dependent bit error rate performance of 
a DS-UWB radio working in frequency selective fading 
channel. It is well known that premature convergence 
degrades GA performance and reduces search ability 
(Fogle, 2000).  

Analysis takes into account almost all real operational 
conditions: e.g., asynchronous transmissions, MAI, 
multipath interference, noise. In (Zi-Wei et al., 2006; 
Kechriotis and Manolakos, 1996; Yoon and Rao, 2000), 
Hopfield neural network approach (HNN) yielded better 
results than other conventional methods, outperforming 
the multistage detector; its drawback is requiring 
knowledge of optimal parameter values for networks. 
Tabu (TA) (Glover, 1989; Lee and Kang, 2000; Li et al., 
2002) with a heuristic function based on matched filter 
outputs and ML function-controlled position mechanism 
has been demonstrated to achieve near-optimal BER 
performance in relatively low computational complexity. 

This paper combines MUD and optimization 
techniques,   MUD   based   on  tabu  learning  algorithm,  
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which applies tabu search concept to neural network for 
solving optimization problems. In this paper, in order to 
improve BER performance of DS-UWB systems by 
employing conventional RAKE receivers, adaptive MUD 
scheme using with Hopfield neural networks technique is 
proposed to suppress ISI and MAI.  
 
 
METHODOLOGY 
 
Transmitter model 

 
We consider K-users DS-UWB system over UWB indoor multipath 
fading channels, where each user employs unique DS spreading 

code. Transmitted signal ( )kq t  for kth user is obtained by 

spreading a set of binary phase-shift keying (BPSK) data symbol 

[ ]kb t onto a spreading waveform ( )ks t , written as follows: 

 

1

( ) [ ] ( ),
P

k k k k b

i

q t E b i s t iT                                           (1) 

 
where Ek is symbol energy of kth user, P packet size, 

[ ] 1kb i  the ith data symbol of kth user, and Tb is symbol 

interval duration. Spreading waveform sk(t) is also written as 
follows: 
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where 
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,
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G c , k=1,2,…,K, , 1k nc  is the nth chip of 

the kth user, Nc is the chip numbers, Tc is the chip interval duration, 

and ( )w t  is the chip waveform of duration Tc = Tb / Nc. 

 
 
Multipath channel model 

 
The UWB indoor channel model is based on the Saleh-Valenzuela 
(S-V) approach (Chen et al., 2007; Karedal et al., 2004) where the 

impulse response is composed of the exponential decay clusters to 
model the dense multipath components. For the UWB indoor 
transmission environment, the channel impulse response of UWB 
indoor channel model is formulated as follows: 
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where Lk denotes the total number of propagation paths of the kth 

user, ,k l  is the channel coefficient of the lth path of the kth user 

and ,k l  is the multipath delay of the lth path of the kth user. In this  
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paper, we suppose that the multipath delay ,k l  is an integral 

multiple of Tc, L1 = L2 = … = LK = L, and the system is assumed to 
be synchronous. 

When passing the signal through the indoor environment, the 

obstacles in the transmitted path will cause the multipath 
transmission. Therefore, the total received signal can be formulated 
as follows: 
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where  is linear convolution, n(t) is zero-mean additive white 

Gaussian noise and ( ) ( ) ( )k k kv t s t h t  is defined as 

template signal of the kth user, which is a convolution between the 
kth user’s spreading code and channel coefficient. 

The template signal vk(t) that is transmitted over a channel is 
corrupted by channel noise. Hence, the function of the receiver 
must detect the template signal vk(t) for each user. According to 

(Foerster, 2002), we note that a filter which is matched to a 
template signal vk(t) of duration (Nc+L-1)Tc is characterized by an 
impulse response. The channel response for kth user can be 
written as follows: 
 

*

, ( ) ( ).opt k kh t v t                                                                      (5) 

 

Without loss of generality, the output of the filter which is matched 
to a template signal vk(t) can be written as follows:  
 

,( ) ( ) ( )k opt ky t r t h t *( ) ( )kr t v t  
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For our application, it is more convenient to express the associated 
signals in discrete-time format. Invoking Equation (6) describing the 
discrete-time impulse response sampling at t = iTb is represented as 
follows: 
 

[ ] ( ).k k by i y iT                                                                         (7) 

 
Then the discrete-time received signal after sampling (iTb) is written 
as follows:   
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Where 
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Hence, the signal that received by a conventional detection (CD) 
can be detected:  
 

ˆ [ ] sgn [ ] ,CD

k kb i y i                                                               (9) 

 
Each filter is matched to one of the signature waveform. In a direct-
sequence (DS) spread spectrum system where all users employ the 
same chip waveform, the continuous-time-to-discrete-time 
conversion of the bank of K matched filters can be implemented by 

a single chip-matched filter. In our DS-UWB systems, we consider a 
synchronous system; all users adopt the same packet length and 
chip waveform. Hence, the output vector of the bank of K matched 
filter outputs (Ghavami et al., 2004; Ismail and Huseyin, 2007; 
Verdú, 1998; Verdú, 1986) can be written as follows: 
 

,y RAb n                                                                          (10) 

 
where y is the received signal vector, R is the cross-correlation 
matrix which is KP×KP dimensional matrix, A is the transmitted 
amplitude matrix with KP×KP dimension, b is transmitted bit vector 

with KP×1 dimension and n  is a Gaussian random variable vector 
with zero-mean and covariance matrix σ

2
R. Their expressions are 

formulated as follows:  
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Figure 1. The structure of ML detector for DS-UWB systems. 

 
 
 
where R[i, j] is a K×K dimensional matrix. In our DS-UWB systems, 

we assume that the crosscorrelation matrix R  is invertible. The 

decorrelating detectors (DD) apply the matrix 
1

R  to the output of 
the matched filter: 
 

DD 1ˆ sgn ,b R y                                                                 (11) 

 
In order to reduce the effects of noise enhancement in the DD, the 
minimum mean square error (MMSE) detector were proposed in 
(Shen et al., 2010). Due to the fact that the MMSE detector takes 
background noise into account, it balances the trade-off between 
reducing multiple access interference and minimizing noise in the 
detector output. Its formula is written as follows: 
 

1
MMSE 2 2ˆ sgn .b R A y                                      (12) 

 
In fact, the DD is one case of the MMSE detector. If we let σ→0, 
then (R+σ

2
A

-2
)
-1

→R
-1

. Therefore, as the signal-to-noise ratios (SNR) 
2 2/A  go to infinity, the performance of BER for DS-UWB 

systems that employs MMSE detector is approximated to the DD 
(Shen et al., 2010). 
 

 
Maximum likelihood detector 
 
In this section we will derive the joint optimum decision rule for a K-
user UWB system based on the synchronous model. Specifically, 
we want to maximize the probability of jointly correct decision of K 
users supported by the system based the received signal of 

Equation (10). From Equation (10) we note that there are 2Km  

possible combinations of b. we shall denote the kith combination as 

kb  and the combined transmit signal of all users in Equation (10) 

corresponding to the kth combination as ( )k kb q t . Based on 

the notations, we can express the joint maximum a posteriori (MAP) 
probability criterion as (Ismail and Huseyin, 2007; Verdú, 1998; 
Verdú, 1986): 
 

ˆ arg max[ ( ( ) ( )]
k

k
b

b P q t y t                                               (13)                     

where b̂  denotes the detected bit combination. Using Bayes’s 

theorem, the a posteriori probability expression of Equation (13) 
can be written as (Verdú, 1998; Verdú, 1986): 
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k k
k

p y t q t P q t
P q t y t

p y t
                       (14) 

 

Where ( ( ) | ( ))kp y t q t  is the conditional joint probability density 

function of the received signal ( )y t  in Equation (10), ( ( ))kP q t  

is the a priori probability of the signal containing the kth bit 

combination and ( ( ))p y t is probability density function of the 

received signal. Since the transmitted data bits of the K users are 

independent, the a priori probability 1( ( ))
2KkP q t  is equal 

for all 2Km  bit combinations. Furthermore, the received signal 

probability density function ( ( ))p y t is independent of which of the 

2Km  bit combinations is transmitted. Consequently, the 

decision rule based on finding the signal that maximizes 

( ( ) | ( ))kP q t y t  is equivalent to find that signal that 

maximized ( ( ) | ( ))kp y t q t . This decision criterion based on the 

maximum of ( ( ) | ( ))kp y t q t  is termed as the Maximum 

Likelihood (ML) criterion and ( ( ) | ( ))kp y t q t is referred to as a 

likelihood function. Because the probability of bk[i] = +1 is equal to 
the that of bk[i] = -1, the maximum likelihood estimation can be 

generalized by the MAP estimation.  
For a more in-depth discussion on the MAP method, the reader is 

referred to (Verdú, 1998). As a result, the optimal multiuser detector 
that fulfils ML sequence estimation (Shen et al., 2010; Verdú, 1998) 
gives the best performance. However, its computational complexity 
which grows exponentially with the number of the users forbids 
application in real system. The formula of ML detector is written as 
follows and the detector structure is shown in Figure 1. 
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Tabu-HNN based multiuser detector for UWB detector 
 

Tabu search method 
 
The roots of Tabu search go back to the Glover’s work in the 1989 
(Glover, 1989). Tabu search is an iterative improvement procedure 
that starts form some initial feasible solution and attempts to 
determine a better solution in the manner of a greatest descent 
neighborhood search algorithm. It escapes local optima by 
imposing restrictions, using a short-term memory of recent solutions 
and strategies implied from long-term memory processes, to guide 
the search process. In tabu search, the neighborhood, which is 
being used to generate a subset of neighbors from which to select 

the next solution/move, is modified by classifying some moves as 
tabu, others as desirable. This is the key element of tabu search 
and is called tabu list management. In other words, tabu list 
management concerns updating the tabu list, i.e. deciding on how 
many and which moves have to be set tabu within any iteration of 
the search. The tabu search can seen the basic components of the 
tabu search are the moves, tabu list and aspiration level. It is thus a 
metaheuristic to solve global optimization problems, based on multi-
level memory management and response exploration. It requires 

the concept of a neighbourhood for a trial solution. 
 
 

The Hopfield neural network based multiuser detector 
 
In this section, the Hopfield Neural Network (HNN) algorithm (Zi-
Wei et al., 2006; Kechriotis and Manolakos, 1996; Yoon and Rao, 
2000; Hopfield, 1982) is introduced and applied to multiuser 
detection for DS-UWB systems. The HNN algorithm is one case of 

the neural network. The neural network consisting of hardware and 
software is a parallel computing system, and it employs a large 
number of artificial neurons to simulate the ability of biological nerve 
network. The neural network can be divided into recurrent network 
and feed-forward network. A representative recurrent network is the 
Hopfield network, and the feed-forward network is the back-
propagation network. In general, the neural network has some 
advantages such as parallel processing, wrong tolerance, associate 

memory, VLSI implementation and optimization. However, the 
neural network has a serious weakness. It has many local 
minimums, but it is unable to determine which minimum is the 
global minimum. The Hopfield network that is a kind of single layer 
and symmetric network can be used to deal mainly with the problem 
of the associative memories. Hopfield employed a viewpoint of 
energy state of statistical mechanics to explain a phenomenon of 
memory. The variation of states causes the variation of energies. 
Hence, the training of network can reduce energy to achieve a 
stable state. Since the Hopfield network can be modeled as an 
electronic circuit, it can easily be implemented on hardware. 

The network model proposed by Hopfield in 1982 was a discrete 
type, and all outputs of Hopfield Network were activated at either +1 
or -1. Besides, the discrete Hopfield network has two updating: 
synchronous and asynchronous. The synchronous updating 
converges fast than asynchronous updating, but the performance of 
synchronous updating is worse than that of asynchronous updating. 
Therefore, we applied the discrete Hopfield network with 
asynchronous updating to perform multiuser detection for DS-UWB 
systems. The Hopfield network that is a kind of neural network is 
single layer networks with output feedback consisting of simple 
neurons that can collectively provide good solutions to difficult 
optimization problems. The Hopfield network is also called Hopfield 
neural network (HNN). 

The typical HNN algorithm with N neurons is formulated as 
follows: 

 

( ) signl lX m U  
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sign ( 1) ,
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l j j l

j
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where Wl,j is the connection weight between the output of the jth 
neuron and the input of the lth neuron. Xl(m) that is the output of lth 
neuron at the mth iteration is either +1 or -1, Vl that is the decision 
threshold of the lth neuron has the range -1<Vl <1 and Ul is network 
weighting value of the lth neuron. The sign { } is sign activation. The 
typical HNN is also named HNN. The connection weights of HNN 
have the following restrictions: 
 

Wl,l = 0, l  (no neuron has connection with itself) 

 

Wl,j = Wj,l, ,j l  (connections are symmetric) 

 
The above restrictions are used and then the equations of motion 
for the activation of the neurons of the HNN always lead to 
convergence to a stable state. If non-symmetric weights are used, 
the network may exhibit chaotic behavior. 

Besides, we apply hyperbolic tangent activation to HNN that is 
named tanh HNN and its algorithm is written as follows: 
 

( ) tanhl lX m U  
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1

tanh ( 1) ,
N

l j j l

j
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where ( )lX m  that is the output of lth neuron at the mth iteration 

has the range 1 ( ) 1lX m . 

In order to understand the process of HNN, we must analyze it by 
the viewpoint of energy. This viewpoint is from Lyapunov function 
(Zi-Wei et al., 2006; Kechriotis and Manolakos, 1996; Yoon and 
Rao, 2000; Hopfield, 1982). According to Lyapunov function, the 
state of motion is equal to the equilibrium of system if the energy 
achieves to minimum. In the discrete HNN with N neurons, an 
energy function which is considered to be a Lyapunov function is 
defined to express the energy of network, and it is formulated as 
follows: 
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1 1 1
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( ) ( ) ( ) ( ),

2

N N N

l j h j l l

l j l
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where ( )lX m  is the state value of the lth neuron, ( )jX m  is the 

state value of the jth neuron, ,l jW  is the connection weight 

between the lth neuron and the jth neuron, and lV  is the decision 

threshold of the lth neuron. 

We assume that the output of the ith neuron at time (m+1) 
changes and then the variation of that is written as follows:   
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Hence, the variation of network energy due to the variation of lth 

neuron is written as follows: 
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Because ( )iX m  of discrete HNN is either +1 or -1, there are 

three cases to be discussed. 
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In the above cases, 0lE  illustrates that the energy of network 

decreases, and 0lE  shows that it increases. If the 

relationships of 
1 2 0NE E E  are formed due 

to N successive asynchronous iterations, then the HNN achieves 
local minimum of energy function (Zi-Wei et al., 2006; Kechriotis 
and Manolakos, 1996; Yoon and Rao, 2000). 

The energy function of HNN can be rewritten by vector-matrix,  
 

1
( ) ( ) ( ) ( ),

2

T TE m m m mX WX V X                        (22) 
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T

KPm X m X m X mX , 

1 2, , ,
T

KPV V VV  and 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

KP

KP

KP KP KP KP

W W W

W W W

W W W

W , 

 

With , 0l lW , for 1,2, ,l KP . 

 
 
The tanhHNN based multiuser detector 
 
Optimum multiuser detection based on the ML decision was 
proposed by Verdu (Verdú, 1998; Verdú, 1986). Its performance is 
optimal, but its time complexity grows exponentially with number of 
users (Ismail and Huseyin, 2007; Verdú, 1998; Yihai et al., 2005; 
Tan-Hsu et al., 2006). To reduce computational complexity, we 

employ HNN and tanhHNN detectors that can approximate to ML 
detector for DS-UWB systems. Recall Equation (22), it can be 
rewritten as follows: 
 

ML
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ˆ arg max 2
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b
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KP

T T

b
b Ay b Hb  

[ 1, 1]

1
arg min

2KP

T T

b
b Ay b Hb  

[ 1, 1]

1 1
arg min ,

2 2KP

T T T

b
b Ay b H D b b Db        (24) 

 

where H = ARA and ( )diagD H .Because 

( )T traceb Db D  for any 1, 1
KP

b , the (24) can be 

rewritten as follows: 
 

ML

[ 1, 1]

1 1ˆ arg min ( )
2 2KP

T T trace
b

b b Ay b H D b D  
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[ 1, 1]

1
arg min ,

2KP

T T

b
b Ay b H D b                   (25) 

 

Comparing Equation (23) with Equation (25), we obtain these 
relationships:  
 

,N KP  

,V Ay  

,W H D  

lim ( ).HNN

m
mb X                                                                 (26) 

 
Hence, we apply Equation (26) to build HNN and tanhHNN 
detectors for DS-UWB systems. Computational complexity of these 
is lower than ML detector due to iterative method. 
 
 
Implementing Tabu-HNN based multiuser detector 

 
TA schemes developed for multiuser detection in code-division 
multiple-access (CDMA) communication, (Lee and Kang, 2000; Li 
et al., 2002) require knowledge of multipath channel. Yet focus on 
interference cancellation receiver depicted in recent works of UWB 
transmission has slightly differed from that in CDMA systems. In 
this paper, TA algorithms can also be used in UWB system as 
suboptimal detectors in multiuser detection, with length of tour in 

MUD related to objective function of ML. However, TAHNN 
algorithms have never been applied to the multiuser detection in 
DS-UWB system.  

It is shown that the problem of minimizing objective function of 
OMD can be translated into minimizing energy function of neural 
network is given by (Li et al., 2002; Hopfield, 1982). 
 

0

1
( )

2

T TE V H E V y V                                                (27) 

 

where 
TV EV is always a positive constant number and E the 

identity matrix. To compensate for this effect, we may simply follow 
approach similar to (Li et al., 2002), to obtain the TAHNN algorithm. 

In Tabu search algorithm, energy surface 0E  is continuously 

increased in a neighborhood of the current state. At time t, energy 
surface is given by 
 

0 ( )t tE E F V                                                                      (28) 

 

Where 
( )

0
( ) ( , ( ))

T
s t

tF V e P V V s ds , with scalars  

and  as positive constants and ( , )P V W  measuring vectors V  

and W  proximity. This paper selects quadratic proximity function 

given by (Li et al., 2002; Soujeri and Bilgekul, 2002)     
                          

1
( , ) (1 )(1 )

8
i i j j

i j i

P V W VW V W                          (29) 

 

Then the neural network that performs gradient descent on tE  has 

the state equation 

 
 
 
 

1
i i i ij ij j i i

ji

Lu u T S V y J
R

                       (30) 

 

where ( ), 0iiT H E S  and ( )( )ijS t i j and ( )iJ t  

satisfy this definition: 
 

,
4

( 1)
4

( )

ij ij i j

i i i

i i

S S VV

j J K V

V sign u

                                                     (31) 

 
Basic procedure used in TAHNN search algorithm to find minimum 
total cost route can be summarized in the following steps: 
 
Step 1: At the beginning of TAHNN search process, starting point is 

chosen by the random selection in feasible solution space and sent 
to HNN for optimization process. Tabu search algorithm has global 
searching ability and is used to provide initial point for HNN. In this 
paper, the first individual of TAHNN algorithm may be randomly 
initialized, but preliminary simulations showed initialization with 
outputs of RAKE receivers both improving the best found solution 
and reducing computational load. 
Step 2: To find the neighborhood solution, next starting point is 

selected and sent to HNN again to obtain better result accordingly. 
Vector from previous to new starting point is stored in memory. 
Step 3: New result is compared with the best one among previous 

searches. If the new one is better than the best in memory, it 
replaces the old one; if not, the new one is added to the Tabu list on 
the condition that it is not the best one among the Tabu list. 
Step 4: In case the last search result proved best, next starting 

point is selected toward previous search direction, using vector in 
Step 2, and the search procedure is repeated from Step 2. If the 

last result was not the best, new starting point is selected randomly, 
and the procedure also goes to Step 2. 
 
 
Complexity issues 
 
In this subsection, we give a brief description of the computational 
complexity of the proposed TAHNN multiuser detector. As we 
known, in full-complexity ML MUD scheme, calculation of the object 
function-equation (13) for all possible data vector b results an 
exhaustive search complexity which increases exponentially with K. 

Hence, the computational complexity is ( 2 )KO K  per bit per 

iteration (Verdú, 1998; Verdú, 1986). Clearly, the complexity is 
prohibitive for heavy loaded system with large number of users. The 

computational complexity of detecting K bits in DD is of order 
2K . 

The computational complexity/bit of the suboptimum DD and MMSE 

detector is linear with K on the order of O(K) (Scholtz, 1993; 
Ghavami et al., 2004). The computational complexity of TAHNN-
based MUD can be significantly reduced by employing a candidate 
list. In this way, the complexity turns to be proportional with the 

cardinality of the candidate list dN . We assume a total number of 

steps sm  and the number of particles in generations hN . Thus, the 

computational complexity per bit per iteration of the TAHNN based 

MUD is then ( )s dO Km N . It is worth noting that K fixed in certain 

systems which depends on the number of active users, modulation  
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Table 1. The comparisons of computational complexity for ML, HNN, tanhHNN and TAHNN 
detectors. 
 

Detectors Multiplications Adders 

ML 2
N
(2N

2
+4N+1) 2

N
(N

2
+N-1) 

HNN with M iterations M(N-1) M(N-1) 

tanhHNN with M iterations M(N-1) M(N-1) 

TAHNN with ks and ms 
sk ×

sm ×(N-1) 
sk ×

sm ×(N-1) 

 
 
 
schemes and the transmit antennas. So the complexity of the 

TAHNN-based MUD is directly decided by
sm and

sk . 
sk denotes 

particle population. 
The idea of employing hybrid TA method comes from the fact 

that we can use embedded HNNs to accelerate convergence and 

save the search steps 
sm  . In general, it is possible to reduce the 

complexity by restricting the number of embedded HNNs to 

h dN N .  The next section will illustrate that the value of 
dN  

can be fixed to be a small value comparing with 
hN . Meanwhile, 

the embedded HNNs helps to reduce the number of steps 
sm  

without a loss of performance. 
According to Equation (15), we let N=KP. Hence the formula of 

ML detector can be rewritten as follows:  

 

ML

[ 1, 1]

ˆ arg max 2
N

T T

b

b b Ay b ARAb  

 
By above formula, we can compute the multiplications and adders 
of ML detector. The first part of Equation (15) is written as follows:  
 

1,1 1

2,2 2

1 2 ,

1

,

0 0

0 0
2 2 2 ,

0 0

N
T

N i i i i

i

N N N

A y

A y
b b b b A y

A y

b Ay
   

 

where term 2 T
b Ay  wastes (2N+1) multiplications and (N -1) 

adders. The second part of (15) is written as follows:  

 

1,1 1,2 1, 1 1,1

2,1 2,2 2, 2 2,2

1 1,1 2 2,2 ,

,1 ,2 , ,

N

NT

N N N

N N N N N N N

r r r b A

r r r b A
b A b A b A

r r r b A

b ARAb
 

 

1, ,

1

2, ,

11 1,1 2 2,2 ,

, ,

1

N

i i i i

i

N

i i i i

iN N N

N

N i i i i

i

r b A

r b A
b A b A b A

r b A

 

1 1,1 1, , 2 2,2 2, , , , ,

1 1 1

,
N N N

i i i i i i i i N N N N i i i i

i i i

b A r b A b A r b A b A r b A

   

where term 
T

b ARAb  wastes N(2N+2) multiplications and [N(N–

1)+(N–1)] adders. For each pattern b of ML detector, the 

multiplications are equal to 2N
2
+4N+1 and adders are equal to 

N
2
+N-1. Besides, the ML detector must compute 2

N
 patterns. For 2

N
 

patterns, the multiplications are equal to 2
N
(2N

2
+4N+1) and adders 

are equal to 2
N
(N

2
+N-1). 

The typical HNN algorithm with N neurons is written by Equation 

(16). The term 
,

1,

( 1)
N

l j j

j j l

W X m  of HNN algorithm wastes 

(N-1) multiplications and (N-2) adders. So, 

,

1,

( 1)
N

l j j l

j j l

W X m V  wastes (N-1) multiplications and (N-1) 

adders. Besides, the sign activation can be complemented by OP 
amplifier. For M iterations of HNN detector, it wastes M(N-1) 
multiplications and M(N-1) adders. The tanhHNN detector is 
represented by Equation (17) and its activation can be implemented 
by OP amplifier. If we neglect the complexity of hyperbolic tangent, 

the operators of tanhHNN detector are equal to HNN. In our 
TAHNN detector, the parameters of ks and ms increase the 
iterations of tanhHNN detector. It mainly wastes ks×ms×(N-1) 
multiplications and ks×ms×(N-1) adders. The operators of above 

detectors are listed in Table 1.  
 
 
RESULTS AND DISCUSSION 
 
In this section we compare performance of six different 
detections: DD, MMSE, ML, HNN, tanhHNN and TAHNN 
by extensive simulations of synchronous ten-user DS-
UWB systems. The UWB channel model 1-4 discussed in 
this paper indicate different transmission distance for 
indoor environment, all Rake receiver adopted for 
channel model 1-4. In addition, we assume packet size 
as four bits and the number of users as ten for DS-UWB 
systems. Figure 2 depicts simulation of BER for DS-UWB 
systems that employs DD, MMSE, ML, HNN, tanhHNN 
and TAHNN with UWB CM 1. Figure 2 shows HNN 
detectors yielding poorer performance than other 
detectors; ML detector performs best, but its 
computational complexity is high. The TAHNN detector 
outperforms DD, approaching MMSE detector. 

Similarly, Figures 3 to 5 display UWB CM 2, CM 3 and 
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Figure 2. Simulation of BER for DS-UWB systems that employ CD, DD, MMSE, ML, HNN and 

tanhHNN detectors with UWB CM 1. 

 
 
 

 
 
 

SNR (cB)  
 
Figure 3. Simulation of BER for DS-UWB systems that employ CD, DD, 

MMSE, ML, HNN and tanhHNN detectors with UWB CM 2. 

 
 
 
CM 4. Figure 3 shows the performance of TAHNN 
detector for UWB CM 2 as superior to DD, its 

performance approaching that of MMSE detector. Figure 
4 shows performance of TAHNN detector for UWB CM 3 
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Figure 4. Simulation of BER for DS-UWB systems that employ CD, DD, MMSE, 

ML, HNN and tanhHNN detectors with UWB CM 3. 

 
 
 

 
 
Figure 5. Simulation of BER for DS-UWB systems that employ CD, DD, MMSE, 

ML, HNN and tanhHNN detectors with UWB CM 4. 

 
 
 
better than DD, also approaching that of MMSE detector. 
Figure 5 shows TAHNN detector for UWB CM 4 

outperforming both DD and MMSE. The hardware of 
TAHNN detector resembles that of HNN; software of 
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Figure 6. MSE of TAHNN, HNN, and tanhHNN detectors. 

 
 
 
TAHNN needs more time than HNN. This is a trade-off 
between performance and time. The TAHNN detector 
can behave as a suboptimal detector in terms of 
performance and time.  

These figures show performance of tanhHNN detector 
always better than HNN detector at the same iteration. 
Moreover, performance of tanhHNN detector 
approximates DD at SNR=0-6dB for other UWB channel 
models, but worse at SNR=8-12dB for others. Neuron 
output of HNN detector with sign activation is either +1 or 
-1; neuron output of tanhHNN detector is distributed form 
-1 to +1. This is the main difference between sign and 
hyperbolic tangent activation. With the proposed scheme, 
MUD objective function is mapped on HNN energy 
function, a penalty section added to the energy function 
according to TA method, upon which solution search 
always tends towards states not yet visited. This 
procedure enables the state trajectory to climb out of 
local minima thereby converge toward optimal and near-
optimal solution. This algorithm, justified by simulation 
experiments, is extremely effective due to global 
convergence capability together with square computation 
complexity. This is the original motive of our work. 

Figure 6 presents convergence profiles of three 
investigated MUD when SNR is fixed at 7dB. From this 
we can see MSE of TAHNN MUD converging faster than 
the other MUD when iteration number is 120. Compared 

with HNN multiuser detector, both TAHNN and tanhHNN 
multiuser detectors exhibit robust convergence profiles. 
Still, TAHNN multiuser detector reaches robust 
convergence faster than the tanhHNN multiuser detector 
by at one order of magnitude at 100 iterations. Moreover, 
HNN and tanhHNN detectors waste fewer multiplications 
and adders to approach performance of ML detector. 

Comparing results for HNN, tanhHNN and TAHNN 
MUD, we see that the MSE for TAHNN MUD reduced by 
one and two orders of magnitude at 120 iterations. Figure 
6 shows TAHNN detector outperforming others after 120 
iterations, yet wasting more time than others, a trade-off 
in terms of performance and time. 
 
 
Conclusion 
 
Development of heuristic MUD means TAHNN algorithm 
can solve MAI problems. To improve performance of the 
HNN problem, a hybrid method is developed in this 
research to combine HNN and TA together (TAHNN). 
Such a method affords better solution diversity and good 
convergence ability during evolutionary procedure. This 
paper presents iterative MUD based on heuristic 
technique for DS-UWB systems. The proposed scheme 
is featured as an effective TAHNN-based MUD technique 
greatly reducing  computational  complexity  with  minimal  



 
 
 
 
penalty in performance compared with conventional 
MUD. Numerical results demonstrate performance of our 
algorithm lending better performance/complexity 
compromise than conventional MUDs. 
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