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The load frequency control (LFC) problem has been one of the major subjects in electric power system 
design and operation. LFC is becoming much more significant today in accordance with increasing size, 
changing structure and complexity in interconnected power systems. Practice LFC systems use simple 
proportional-integral (PI) controllers, but parameters of PI controllers are usually tuned based on the 
trial-and-error approaches and they are incapable to obtain good dynamic performance under a wide 
range of operating conditions. For this problem, in this paper quantitative feedback theory (QFT) 
method is used for LFC problem. A multi-area electric power system with a wide range of parametric 
uncertainties is given to illustrate proposed method. To show effectiveness of proposed method, a 
classical PI type controller optimized by genetic algorithms (GA) is designed to compare with QFT 
controller. The simulation results visibly show the validity of QFT method in comparison with traditional 
method.  
 
Key words: Multi-area electric power system, electric power system load frequency control, robust control, 
quantitative feedback theory method. 

 
 
INTRODUCTION 
 
For large scale power systems with interconnected areas, 
load frequency control (LFC) is important to keep the 
system frequency and the inter-area tie power as near to 
the scheduled values as possible. The input mechanical 
power to the generators is used to control the frequency 
of output electrical power and to maintain the power 
exchange between the areas as scheduled. A well 
designed and operated power system must cope with 
changes in the load and with system disturbances, and it 
should provide acceptable high level of power quality 
while maintaining both voltage and frequency within 
tolerable limits. 

Many control strategies for load frequency control in 
power systems had been proposed by researchers over 
the past decades. This extensive research is due  to  fact  
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that LFC constitutes an important function of power 
system operation where the main objective is to regulate 
the output power of each generator at prescribed levels 
while keeping the frequency fluctuations within pre-
specifies limits. robust adaptive control schemes had 
been developed by Lim et al. (1996), Wang et al. (1998) 
and Stankovic et al. (1998) to deal with changes in 
system parametric under LFC strategies. A different 
algorithm has been presented by Taher and Hematti, 
(2008) to improve the performance of multi-area power 
systems. Viewing a multi-area power system under LFC 
as a decentralized control design for a multi-input multi-
output system, it has been shown by Yamashita and 
Miagi, (1991) that a group of local controllers with tuning 
parameters can guarantee the overall system stability and 
performance. The reported results demonstrate clearly 
the importance of robustness and stability issue in LFC 
design. In addition, several practical and theoretical 
issues have been addressed by Xiaofeng and Tomsovic, 
(2004), Doolla and Bhatti  (2006),  Grigor’ev   (2005)  and   
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Figure 1. Four-area electric power system with interconnections. 

 
 
 
Gvozdev and Samkharadze (2005), which include recent 
technology utilized by vertically integrated utilities, 
augmentation of filtered area control error with LFC 
schemes and hybrid LFC that encompasses an 
independent system operator and bilateral LFC. The 
applications of artificial neural network, genetic algorithms 
and optimal control to LFC have been reported by 
Hematti et al. (2008), Rerkpreedapong et al. (2003) and 
Liu et al. (2003).   

Many practical systems are characterized by high 
uncertainty which makes it difficult to maintain good 
stability margins and performance properties for the 
closed loop system. There are two general design 
methodologies for dealing with the effects of uncertainty: 
(1) Adaptive control, in which the parameters of the plant 
are identified online and the information obtained is then 
used to tune the controller, and (2) Robust control, which 
typically involves a worst-case design approach for family 
of plants (representing the uncertainty) using a single 
fixed controller. In this paper, a robust control method 
(QFT technique) is used for LFC problem. QFT is a 
robust control method developed during the last two 
decades which deals with the effects of uncertainty 
systematically. It has been successfully applied to the 
design of both SISO (single input - single output) and 
MIMO (multi input - multi output) systems. It has also 
been extended to the nonlinear and time-varying cases. 
QFT often results in simple controllers which are easy to 
implement (Dazzo and Houpis, 1988; Horowitz, 1979, 
1982).    

The objective of this paper is to investigate the load 
frequency control problem for a multi-area electric power 
system while taking into consideration the uncertainties in 

the parameters of system. A robust decentralized control 
scheme is designed using quantitative feedback theory 
(QFT) method. The proposed method is simulated for a 
four-area power system. To show effectiveness of 
proposed method, the proposed controllers are compared 
to classical PI type controllers optimized by genetic 
algorithms. Simulation results show that the QFT 
controllers guarantee robust performance under a wide 
range of operating conditions and have better perfor-
mance than the optimized PI type controllers.  
 
 
PLANT MODEL 
 
A four-area electric power system is considered as a test 
system and shown in Figure 1.  

The block diagram for each area of interconnected 
areas is shown in Figure 2 (Wood and Wollenberg, 2003):  
 
Bi = (1/Ri) + Di: Frequency bias factor of ith area 
 
�Ptie ij: Inter area tie power interchange from ith area to jth 
area.  
 
where, I = 1, 2, 3, 4, j = 1, 2, 3, 4 and I�j 
 
The inter-area tie power interchange is as (1) (Wood and 
Wollenberg, 2003): 
 
(��tieij = (��i - ��j) × (Tij/S)                       (1)  
                       
where, Tij = 377 × (1/Xtieij) (for a 60 Hz system), Xtieij: 
impedance of transmission line  between  i  and  j  areas.  
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Figure 2. Block diagram for one area of system (ith area). The parameters in Figure 2 are defined as 
follow: �, Deviation from nominal value; Mi = 2H, Constant of inertia of  ith area; Di, Damping constant 
of  ith area; Ri, Gain of speed droop feedback loop of  ith area;  Tti, Turbine Time constant of  ith area; 
TGi, Governor Time constant of  ith area; Gi, Controller of ith area; �PDi, Load change of ith area; ui, 
Reference load of ith area.  

 
 
 

 
 
Figure 3. Block diagram of inter area tie power 
(�Ptieij). 

 
 
 

The �Ptie ij block diagram is shown as Figure 3.   
Figure 2 shows the block diagram of ith area and Figure 

3 shows the method of interconnection between ith and jth 
areas. The state-space model of four-area interconnect-
ted power system is as shown in Equation (2) (Wood and 
Wollenberg, 2003). 
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Where:  
U = [�PD1  �PD2  �PD3  �PD4  u1   u2  u3  u4] 
Y = [��1   ��2   ��3   ��4   ��tie1,2  ��tie1,3 
 ��tie1,4   ��tie2,3  ��tie2,4   ��tie3,4 
X = [�PG1  �PT1  ��1   �PG2  �PT2  ��2   �PG3 
  �PT3  ��3   �PG4    �PT4  ��4   ��tie1,2  ��tie1,3 
 ��tie1,4  ��tie2,3  ��tie2,4  ��tie3,4] 
 
The matrixes A and B in (2) and the typical values of 
system parameters for nominal operating condition are 
given in appendix. The system parametric uncertainties 
are obtained by 40% changing parameters from their 
typical   values.  Based   on   these   uncertainties,  some  

operating conditions are defined and given in appendix. 
 
 
PROBLEM SPECIFICATION 
 
After system modeling, the controllers are simultaneously 
designed based on the QFT technique. These controllers 
have been shown in Figure 2 as Gi. Since four controllers 
should be simultaneously designed, therefore the problem 
is a 4 × 4 MIMO problem. To design controller in this 
system, the design technique for MIMO systems should 
be considered. SSince controller design for MIMO 
systems is a sophisticate procedure, so in first, the MIMO 
system is converted to equivalent MISO (multi input - 
single output) systems and then controllers are designed 
for these MISO systems. Using fixed point theory 
(Horowitz, 1979) the MIMO problem for a m×m system 
can be decentralized into m equivalent single-loop MISO 
systems. Each MISO system design is based upon the 
specifications relating its output and all of its inputs. The 
basic MIMO compensation structure for a m×m MIMO 
system is shown in Figure 4; it consists of the uncertain 
plant matrix P and the diagonal compensation matrix G. 
These matrices have been shown in Equation (3):  
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Figure 4.The MIMO control structure for a m× m system. 

 
 
 

Fixed point theory develops a mapping that permits the 
analysis and synthesis of a MIMO control system by a set 
of equivalent MISO control systems. For m×m system, 
this mapping results m equivalent systems, each with m 
inputs and one output. One input is designated as a 
desired input and the others as disturbance inputs. The 
inverse of the plant matrix is represented in Equation (4): 
 

 
                                     
                                                                                              

                                                                                                   
(4) 
 

 
The m effective plant transfer functions are formed as 
shown in Equation (5): 
 

 
                                                                                     
                                       (5)                                                
 

There is a requirement that determine P to be minimum 
phase. The Q matrix is then formed as shown in Equation 
(6). 
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The matrix P-1 is partitioned as (7) 
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where � is the diagonal part and B is the balance of P-1.  
The  system  control  ration  (system  transfer  function)  

relating r to y is given in Equation (8): 
 
T= [I+PG]-1PGF        (8) 
 
Pre-multiplying both sides of Equation (8) by [I+PG] yields 
Equation (9): 
 
[I+PG] T = PGF                                                   (9) 
                                                            
When P is nonsingular, Pre-multiplying both sides of 
Equation (9) by P-1 yields Equation (10):  
 
(10) [P-1+G] T = GF                                             (10) 
                                                    
Using Equation (6) and with G diagonal, Equation (10) 
can be rearranged as given in Equation (11): 
 
 T = [�+G]-1[GF-BT]                                            (11) 
                                                     
This equation is used to define the desired fixed point 
mapping where each of the m matrix elements on the 
right side of (11) can be interpreted as a MISO problem. 
Proof of the fact that design of each MISO system yields 
a satisfactory MIMO design is based on the schauder 
fixed point theorem (Horowitz, 1979).  

Based on the above discussions, in this study the LFC 
control problem specifications are as follow: 
 
1. Number of controllers: 4 controllers for 4 areas  
2. Plant matrix P(S) is a 4 × 4 matrix  
 
Diagonal compensation matrix G contains four 
compensators G1, G2, G3 and G4 

Using dynamic state-space model of the power system 
presented in (2), the plant transfer function matrix P(S) is 
obtained with the related inputs and outputs which are 
shown in Figure 5. Where, the P(S) is uncertain plant 
transfer function of system and it is clear that the P(S) is a 
4×4 matrix. Using Figure 5, the structure of the control 
system can be shown as Figure 6.  

Where the P(S) is obtained using the state space 
model of the system presented in (2) at any operating 
condition, G1, G2, G3 and G4 are cascade   compensators  
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Figure 5. Open-loop system for load frequency control. 

 
 
 

 
 
Figure 6. Closed-loop system for load frequency control. 

 
 
 
which are designed so that the variations of �� and �Ptie 
(system outputs) be within the acceptable range  under  a 
wide range of operating conditions.   

The system operating conditions have been given in 
appendix. According to these operating conditions and 
plant transfer function for any operating condition, the 
effective plant transfer functions defined in (5) (q11

 , q22, 
q33 and q44) are obtained at any operating condition. 
Then, according to fixed point theory, first area controller 
(G1) is designed based on the effective plant transfer 
function q11 and second area controller (G2) is designed 
based on the effective plant transfer function q22 and etc. 
In fact the MIMO problem is converted to four MISO 
problems. In the next part, the controller design process 
for these MISO systems is proposed using QFT method. 
 
 
CONTROLLERS DESIGN USING QFT METHOD  
 
In this investigation, the QFT method is proposed for load 
frequency control. This approach is briefly developed.  
 
 
QFT method 
 
Quantitative Feedback Theory (QFT) is a unified theory 
that emphasizes the use of feedback for achieving the 
desired system performance tolerances despite plant 
uncertainty and plant disturbances. QFT quantitatively 
formulates these two factors as following form: 

(1) Sets  �R = {TR}  of  acceptable   command  or  tracking  
input-output relations and sets �D = {TD} of acceptable 
disturbance input-output relations.   
(2) Sets � = {P} of possible plants.  
 
The object is to guarantee that the control ratio (system 
transfer function) TR = Y/R is a member of  �R  and TD = 
Y/D is a member of �D for all P(S) in �. QFT is essentially 
a frequency-domain technique and in this paper is used 
for multiple input – single output (MISO) systems. It is 
possible to convert the MIMO system into its equivalent 
sets of MISO systems to which the QFT design technique 
is applied. The objective is to solve the MISO problems, 
that is, to find compensation functions which guarantee 
that the performance tolerance of each MISO problem is 
satisfied for all P in �. The detailed step-by-step 
procedure to design controllers using QFT technique is 
given by Dazzo and Houpis, (1988) and Horowitz (1979, 
1982).    
 
 
First area controller design 
 
In this research, the frequency control importance of all 
four areas is considered as equal. Based on the 
descriptions above, the structure of control system for ith 
area is as shown in Figure 7. It is clearly seen that the 
system is a MISO system and compensator G1 will be 
designed based on q11.  

Base  on  QFT  technique  (Dazzo  and  Houpis,  1988;  
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Figure 7. The structure of control system for first area. 
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Figure 8. Templates of effective plant transfer function q11. 

 
 
 
Horowitz, 1979, 1982) the first step in the design process 
is to plot the plant uncertainties in Nichols diagram. This 
plot is known as system templates. The Templates of q11

 

at various operating conditions are obtained by MATLAB 
software in some frequencies and shown in Figure 8. The 
compensator G1 is a cascade compensator and designed 
so that the variation of output response (��1) be within 
the acceptable range under the uncertainties of q11. The 
templates of q11 for various operating conditions are 
shown in Figure 8. 

In LFC problem, the output signals such as �� or �Pti 
should drive back to zero after step change in demand 
and in fact the system outputs are regulated by 
controllers. It means that in LFC problem, the controllers 

with regulatory characteristics and tracking charac-
teristics are not considered. Therefore considering the 
tracking specifications is not necessary and consequently 
the tracking bounds are not considered for LFC problem.  
But for disturbance rejection purposes, the disturbance 
rejection bounds are considered to design compensator 
G1. It should be noted that input disturbance rejection 
bounds are considered to design controllers. The output 
response (��1) is acceptable if its magnitude be below 
the limits given by the disturbance rejection bounds. 
Based on the desired performance specifications, the 
disturbance rejection bounds are obtained according to 
QFT method using QFT toolbox of MATLB software. 
Since in this case  the  tracking  bounds  have  not   been  
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Figure 9. Composite bounds, U-contour and an optimum loop shaping for first area controller design. 

 
 
 
considered, so the disturbance rejection bounds (BD (j�i)) 
are considered as composite bounds (BO (j�i)). Also, 
minimum damping ratios 	 for the dominant roots of the 
closed-loop system is considered as 	 = 1.2, this amount, 
on the Nichols chart establishes a region which must not 
be penetrated by the template of loop shaping (LO) for all 
frequencies. The boundary of this region is referred to as 
U-contour. The U-contour and composite bounds (BO 
(j�i)) and an optimum loop shaping (L1) based these 
bounds are shown in Figure 9. The transfer function L1 is 
as given in Equation (12). 
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Using (12) the compensators G1 is obtained as in (13). 

Figure 9 shows that the nominal open-loop transfer 
function (loop-shaping) is exactly based QFT bounds and 
according to QFT theory, the design objectives have been 
met.  

The other areas controllers 
 
Since all four areas have the same specifications and 
features, the controller design for the other areas is like 
that for the first area and developed method is applied to 
design the other areas controllers. Using developed 
method in section 4.2, the compensators G2, G3 and G4 
are obtained as follow:  
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RESULTS  
 
Here, different comparative cases are considered to show 
the   effectiveness   of   QFT   controllers.   These   cases  
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Table 1. Optimum values of KP and KI for PI controllers. 
 

 KP KI 
First area controller (G1 1.8674 5.2070 
Second area controller (G2) 3.1846 4.2829 
Third area controller (G3) 2.4916 2.6287 
Fourth area controller (G4) 1.8912 5.8094 

 
 
 

Table 2. Step increase in demand of 1st area (��D1). 
 

Operating condition 
Performance index 

QFT controllers Optimized PI controllers 
1 0.963 1.1373 
2 0.9759 1.3261 
3 1.0342 1.3285 
4 1.0522 1.1974 
5 1.3650 1.9430 

 
 
 

 
 
Figure 10. The structure of PI type controller. 

 
 
 
have been simulated by MATLAB software. To compare 
and show effectiveness of QFT method, a classical PI 
type controller optimized by Genetic Algorithms (GA) is 
designed for LFC. The structure of PI type controller is 
shown in Figure 10.  

The optimum value of the Parameters KP and KI for PI 
controllers optimized using GA have been obtained and 
summarized in the Table 1 (Randy and Sue, 2004). In GA 
case, a continuous type of GA has been used and also 
performance index for GA optimization has been 
considered as shown in Equation (17):   
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The classical method to compare QFT and optimized PI 
responses is to show responses following step change at 
inputs. The responses ��tie12, ��tie13, ��tie14, ��tie23, 
��tie24, ��tie34, ��1, ��2, ��3 and ��4 should be 
showed to comparison purposes. Since showing many 
figures is not favorable, so defined performance index in 
(17) can be considered for more comparison purposes.  

In fact performance index is the total area under the 
curves (output responses) and this performance index is 
a suitable benchmark to compare QFT controllers and 
optimized PI controllers with each other. The parameter 
"t" in performance index is the simulation time and in 
simulation, the parameter "t" is considered form zero to 
settling time of response. It is clear to understand that the 
controller with lower performance index is better than the 
other controller or in other words, the controller with lower 
performance index has better performance than the other 
controller. The performance index has been calculated 
following step change at inputs in several operating 
conditions (The operating conditions have been given in 
appendix). The results are shown as Tables 2 to 5. It is 
seen that following step change at different inputs, QFT 
controllers have better performance than optimized PI 
controllers at all operating conditions. QFT controllers 
have lower performance index in comparison with 
optimized PI controllers and therefore the QFT controllers 
can damp power system oscillations successfully. 
Although the Tables result are enough to compare two 
methods, but it can be useful to show responses in 
figures. For more comparison purposes, three operating 
conditions are considered as follow: 
 
1. Nominal operating condition (operating condition 1) 
2. Heavy operating condition (operating condition 3) 
3. Very heavy operating condition (operating condition 5) 
 
Figure 11 shows ��1 at nominal, heavy and very heavy 
operating conditions following step increase in demand of 
first area (��D1). It is clear to seen that at all operating 
conditions QFT controllers have better performance than 
optimized PI controllers in electric power  system   control  
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Table 3. Step increase in demand of 2nd area (��D2) 
 

Operating condition 
Performance index 

QFT controllers Optimized PI controllers 
1 1.2190 1.2190 
2 1.3214 1.3214 
3 1.3512 1.3512 
4 1.3730 1.3730 
5 2.1759 2.1759 

 
 
 

Table 4 . Step increase in demand of 1st area (��D1) and 0.5 step increase in demand of 4th area 
(��D4. 
 

Operating condition 
Performance index 

QFT controllers Optimized PI controllers 
1 1.0478 1.4313 
2 1.0676 1.2166 
3 1.1260 1.2620 
4 1.1491 1.4324 
5 1.4678 2.2888 

 
 
 

Table 5. Step increase in demand of 2nd area (��D1) and 0.5 step increase in demand of 3rd 
area (��D3). 
 

Operating condition 
Performance index 

Optimized PI controllers QFT controllers 
1 1.7159 2.1178 
2 1.8169 2.2604 
3 1.8301 2.2978 
4 1.8480 2.4253 
5 3.1800 3.2363 

 
 
 
and mitigating oscillations. 
 
 
DISCUSSION 
 
The simulation results obtained by time domain simula-
tion of electric power system in several different cases 
are presented. It is obvious that based on these results 
(tables and figures) the robust controllers have better 
performance than classical PI type controllers in all 
operating conditions. The tables and figures clearly show 
the validity of QFT method for LFC problem and their 
controllers may be used to increase the flexibility and 
controllability of power system operation which ends in 
system stability and cause better utilization of existing 
power systems.  

Due to the fact that the classical controllers are based 
on nominal operating performances, they cannot guarantee 

a robust and acceptable performance when either the 
system parameters or the operating conditions are 
changeable. 

In this paper, robust controllers for a family of plants 
with changeable system operating condition are pre-
sented and it is shown that they are robust under these 
situations and the system responses are all in acceptable 
range. 

From another point of view, QFT method has better 
performance and leads to a high order controller in 
comparison with classic ones but the implementation of 
these controllers is very complicated and expensive. In 
general, high order controllers lead to better system 
performance, whereas the implementation of these 
controllers need more budgets, while low order con-
trollers lead to poor system performance, but easier 
implementation. Therefore, choosing a suitable controller 
depends on the system requirements and importance.  
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Figure 11. Dynamic response ��1 following step change in 
demand of first area (��D1). a: Operating condition 1;   b: 
Operating condition 3;  c: Operating condition 5. 

 
 
 
Conclusions 
 

In this paper, a new robust approach for Load Frequency  
Control using QFT method in a  four-area  electric  power 
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system has been successfully proposed. Design strategy 
includes enough flexibility to setting the desired level of 
stability and performance, and considering the practical 
constraint by introducing appropriate uncertainties. The 
proposed method was applied to a typical four-area 
power system containing system parametric uncertainties 
and various loads conditions. Simulation results demon-
strated that the designed controllers capable to guarantee 
the robust stability and robust performance such as 
precise reference frequency tracking and disturbance 
attenuation under a wide range of uncertainties and load 
conditions. Also, the simulation results showed that the 
QFT method is robust to change in the system para-
meters and it has better performance than the 
conventional PI controllers at all operating conditions. As 
future work, the application of the others robust control 
methods (such as 
-synthesis and H�) can be considered 
for LFC problem.  
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APPENDIX 
 
The typical values of system parameters for the nominal operating condition are as follow: 
 

1st area parameter 
TT1 = 0.03 TG 1 = 0.08 M1 = 0.1667 R 1 =  2.4 
D1 = 0.0083 B1 = 0.401 T12 =0.425 T13 = 0.500 
T14 = 0.400 T23 = 0.455 T24 = 0.523 T34 = 0.600 
TT2 = 0.025 TG2 = 0.091 M2=0.1552 R2 = 2.1 
 
2nd area parameter 
D2 = 0.009 B2 = 0.300 T12 = 0.425 T13 = 0.500 
T14 = 0.400 T23 = 0.455 T24 = 0.523 T34 = 0.600 
TT3 = 0.044 TG3 = 0.072 M3 = 0.178 R3 = 2.9 
 
3rd area parameter 

 

D3 = 0.0074 B3 = 0.480 T12 =0.425 T13 = 0.500 
T14 = 0.400 T23 = 0.455 T24 = 0.523 T34 = 0.600 
TT4 = 0.033 TG4 = 0.085 M4 = 0.1500 R4 = 1.995 
 
4th area parameter 
D4 =0.0094 B4 = 0.3908 T12 = 0.425 T13 = 0.500 
T14 = 0.400 T23 = 0.455 T24 = 0.523 T34 = 0.600 

 
 
 

By ±40% changing parameters from their typical values the system uncertainties are obtained 
and then system operating conditions can be defined in the uncertainties area. Five operating 
conditions are defined as follow:  
 

Operating condition 1  
Nominal operating condition  
 
Operating condition 2 
1st area parameters × -5% 2nd area parameters × +10% 
3rd area parameters × -15% 4th area parameters × +12% 
 
Operating condition 3 
1st area parameters × -20% 2nd area parameters × +15% 
3rd area parameters × -15% 4th area parameters × +22% 
 
Operating condition 4 
1st area parameters × +25% 2nd area parameters × -25% 
3rd area parameters × +30% 4th area parameters × -32% 
 
Operating condition 5 
1st area parameters × +30% 2nd area parameters × -35% 
3rd area parameters × +40% 4th area parameters × -40% 
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Also the matrixes A and B in (2) are as follow:  
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