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Image restoration and enhancement are important parts of digital image processing, belonging to the 
early visual image processing problems. Image pre-processing is the necessary preliminary work of 
image analysis, such as filtering to reduce image noise and to enhance the image edges. The image 
enhancement technique plays an important role in improving image quality and is good for image 
post-processing e.g. image segmentation and image tracking. Image restoration and enhancement 
have been widely used in military, medical, industrial production and other fields. Partial differential 
equation (PDE) as a sophisticated method of image analysis and processing is of great values of 
research and application, which needs a deep study. As both the variational model and the anisotropic 
diffusion model have a complete theoretical framework, a variety of models and sophisticated 
numerical schemes, introduction of which to the fields of digital image processing and computer 
vision provides a powerful tool to solve problems undoubtedly . This paper concerns about the 
applications of the PDE in image restoration and image enhancement. We mainly assay traditional 
methods of image analysis, study applications of the variational method and diffusion equations in 
image restoration, as well as their improved algorithm for image enhancement. 
 
Key words: Image restoration, image enhancement, forward and backward diffusion filtering. 

 
 
INTRODUCTION 
 
Image enhancement means a processing method to 
highlight some information in an image according to the 
specific needs, meanwhile weaken or remove the 
information unwanted. Its main purpose is to make the 
processed image more suitable for a particular 
application than the original image. Therefore, such 
treatments improve image quality for some application 
purpose. There are two kinds of image enhancement 
methods: the spatial domain method and the frequency 
domain method. The spatial domain method is mainly 
used to do direct operation on the pixel gray values in the 
space domain, such as the grayscale transformation, 
histogram modification, spatial domain smoothing, image 
sharpening and pseudo-color processing. 
 
 
 
*Corresponding author. E-mail: donghai@oslab.khu.ac.kr. 

The frequency domain method means calculating the 
image transformation value in a certain image transform 
domain, such as the Fourier transform first, then the 
image frequency domain filtering, finally performing 
inverse transformation of the filtered image 
transformation value to the spatial domain, to obtain the 
enhanced image. This is an indirect approach, the 
principle and process of which are shown in Figure 1 
(Lysaker et al., 2004; Ruan, 2007; Xia and Li, 2005). In 

Figure 1, ( , ), ( , )F u v G u v respectively represent the Fourier 

transforms of ( , ), ( , )f u v g u v  before and after process of 

the image, ( , )H u v  corresponds to the filter transfer 

function, 1F  is the inverse Fourier transform operator. 
The process is: 
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Figure 1. The principle and process of the frequency domain method.  

 
 
 

 
 

Figure 2. Grayscale image contrast enhancement. 

 
 
 

                                                (2) 
 
 
GRAYSCALE TRANSFORMATION, IMAGE 
SHARPENING AND EVALUATION 

 
Grayscale transformation 
 
The grayscale modification is a method to enhance an 
image in the spatial domain, simple and of remarkable 
effect. Different modification methods can be adopted 
depending on different degraded performances. There 
are two common methods: 
 
1. The grayscale transformation is used against a whole 
underexposed image or just a part of it. It aims at 
increasing the contrast of the image grayscale. The gray 
value of the original image shown in Figure 2 focuses in 
the middle gray area, after the contrast enhancement, the 
interval range of gray value in the original image gets a 
linear expansion, visual effects improve. 

 
 

Figure 3. Grayscale histogram equalization. 
 
 
 

2. Histogram modification. The method can make an 
image possess a grayscale distribution as wanted, and 
then highlight the desired image features selectively 
(Wang, 2004). The gray value distribution of the original 
image shown in Figure 3 is of non-linear expansion, the 
low gray value changes more, the overall vision of the 
image gets brighter, and some details are more 
prominent. 
 
 
Image sharpening 
 
Image sharpening is mainly used to enhance the edge of 
an image and the hopping part of the grayscale. It has 
two methods including spatial and frequency domain 
processing. The most common spatial domain method is 
to do image processing with the second-order Laplacian, 
which is similar to the differential process. The result of 
differential will make the edge of the image prominent. 
Therefore, the differential is one of the image sharpening 
processing methods. Take the image sharpening filter 
based on second-order differential for example, the 
simplest isotropic second-order differential operator is 
Laplacian, a Laplace transform of an image can be 
defined as: 
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Figure 4. Filtered image with a 3*3 Laplacian second-order differential operator. 
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Matrix 1. 3x3 Laplacian second-order 
differential operator.  

 
 
 

                                                 (3) 
 
When in discrete format, we replace differential by 

difference, so the first-order differential about 
1x is 

 

                                   (4) 
 

The second-order differential about
1x is 

 

                    (5) 
 

Similarly, the first-order differential about 
2x is 

 

                        (6) 
 
So, 
 

                                                                                 (7) 
 
This formula can be achieved with the filter 
corresponding to Matrix 1. So sharpening achieved by 
Laplacian can also  be  regarded  as  a  filtering  process. 

Filter results are shown in Figure 4. 
 
 

Evaluation of image enhancement results 
 

Evaluation methods of image processing quality 
 

The research of evaluation of image processing quality is 
one of the basic studies in image information science. 
The image is the mainstay of information for image 
processing or image communication morphology, while 
the quality of an image is the important indicator when 
measuring the system. Image enhancement is to improve 
the subjective visual display quality. While image 
restoration is used to compensate for image degradation, 
so that the quality of restored image can keep the same 
as the original one as possible. All these call for an 
appropriate evaluation method of image processing 
quality. 

Image processing quality encompasses two aspects: 
one is the fidelity of an image, that is the degree of the 
deviation between evaluated image and the original 
standard image; the other one is the intelligibility of an 
image, which means the ability of the image providing 
information for mankind or machines. The ideal situation 
is to find a quantitative discription method of fidelity and 
intelligibility of an image that can be seen as the basis of 
the image evaluation and the image system design. 
However, due to the lack of full understanding of both the 
characteristics of human vision system and quantitative 
description methods of human psychological factors, the 
most frequently used and most authorative method is the 
so-called subjective evaluation method. 
 
 

Subjective evaluation of images 
 

Subjective evaluation of images is to observe the images 
through people, who judge the qualities of images 
subjectively. We can get the final evaluation results by 
collecting and averaging their assessments. The 
evaluated qualities of images are associated with the 
observers’ characters and the observational conditions. 
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Objective evaluation of images 
 
Although the subjective evaluation of images is the most 
authoritative way, on some researchful occasions or 
owing to the restriction of experimental conditions, the 
quantitative discription of image qualities is preferred. 
The fidelity measurement is in common use. Fidelity can 
be defined as a normalized mean square error (NMSE). 
Another method is peak mean squar error (PMSE). 

As for digital images, assume ( , )f j k as the original 

reference image, ( , )f j k as its degraded image, then: 

 

                            (8) 
 

                             (9) 
 
Where 255,A M N ，

 
are the sizes of the image. 

 
 
Other methods 
 
On some specific occasions, there are some other 
evaluation methods. For example, when developing the 
MPEG.4 standard, ISO proposed two ways to evaluate 
the quality of a video image, one is called the quality 
evaluation based on feelings; the other one is called the 
quality evaluation based on tasks (Zhu et al., 2002). 
 
 
Features of traditional image processing 
 
Traditional algorithms of image enhancement are 
comparatively easiser and faster, but have limited effects. 
The results can not improve the signal to noise ratio 
(SNR),which can only make some characters more 
obvious to recognize. Nevertheless, when an image is 
polluted by noise, traditional enhencement algorithms are 
more likely to failure. When a polluted original image is 
sharpened by Laplace second-order differential, the 
outputting image no longer has the specific borderline as 
the original one, but becoming a blurred image with 
noise. However, in the real world, the images captured by 
photographic equipments are usually with noise. For the 
images with noise, denoising must be done before using 
traditional image enhancement algorithms. While some 
partial differential models can do the image denoising and 
the edge enhancement simultaneously, moreover, they 
are faster and more accurate. 
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OVERVIEW ON IMAGE RESTORATION AND 
ENHANCEMENT BASED ON THE PARTIAL 
DIFFERENTIAL EQUATIONS 

 
Applications of partial differential equations in image 
processing 

 
In the past 20 years, because human vision has high-
level pursuit of image restoration and enhancement, 
doing image processing by mathematical methods has 
became an important project. Among those methods, 
partial differential equations and functional analysis are 
preferred. Thus a series of mathematical methods are 
posed, including partial differential equation model used 
in image processing and solving partial differential 
equations with computer. The idea of doing image 
processing with partial differential equation could date 
back to Gabor and Jain (Gabor, 1965), but this method 
was not established until Koenderind (1984) and Witkin 
(1983). They introduced the concept of Scale Space, 
which represented a group of images in different scales 
simultaneously. Their distribution constituted the basis of 
doing image processing with partial differential equations 
to a great degree. The scales of an image are obtained 
by Gaussian smoothing, using the classical heat 
conduction equation for the image evolution can also 
bring the Scale Space. 

In the late 1980s, Humme (1989) proposed that the 
heat conduction equation is not the only one for Scale 
Space constitution and suggested some principles 
instead. The anisotropic diffusion model proposed by 
Perona and Malik (1990) is the most influential one in this 
field. They suggested replacing the Gaussian diffusion 
with a diffusion which can keep the selectivity of edge. 
This incurred large amounts of researches on theoretical 
and practical problems. Under the same framework, the 
Shock filter proposed by Osher and Rudin (1990) and the 
method of total variation (TV) reduction proposed by 
Rudin et al. (1992) further stressed the importance of the 
partial differential equations in image processing. In the 
fields of image processing and computer vision, some 
other partial differential equations are based on the curve 
and surface of curvilinear motion. Osher and Sethian 
(1998) developed the level set numerical algorithm. They 
tried to describe the deformation of curves, surfaces or 
images with a higher dimensional and hypersurface level 
set. This technique not only made the numerical results 
more accurate, but also solved the topology problem 
difficult to solve previously. Partial differential equations 
can also be used in image segmentation. The model 
proposed by Mumford and Shah (1989) combined a 
variety of image segmentation algorithms, incurring many 
new theoretical and practical problems. Proposed the 
image segmentation algorithm based on moving 
boundary also had a great influence, and later many 
scholars expanded their work with the geometric partial 
differential equations. 
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Partial differential equations can also be used in image in 
painting (Chan and Shcn, 2001; Mumford and Shah, 
1989). It is synonymous with the image interpolation, 
originally coming down from the artists who restored 
broken works of art by hand in museums. Currently the 
digital image in painting technique is widely applied to the 
image processing, visual analysis and digital technology, 
for example, image restoration, image enlargement, 
image super resolution analysis and error concealment in 
the wireless image transmission, etc. As the models for 
image processing emerging, multiple mathematical 
methods that solve the continual models represented with 
partial differential equations also appeared. 

In terms of speeding up the calculating speed, as 
describe, complexity calculation should be taken into 
account when calculating the continual integration with 
models based on partial differential equations. There are 
two kinds of methods to cope with. One kind of methods 
is to find a time integration algorithm without solving the 
anisotropic diffusion equation, the calculation speed of 
which is faster than solving the anisotropic diffusion 
equation. Meanwhile regularization can eliminate 
required demands of algorithms like of the sensibility to 
noise, instability and consistency of calculation, which 
means getting a parallel result to that of the anisotropic 
diffusion method by less calculated amount. Common 
methods are finite difference method, finite element, finite 
volume or spectral method Foyer and Zou, 2006; 
Caselles et al. 1998). The second kind of methods is to 
reduce the frequency of continuous integration equations 
that anisotropic diffusion equation needs by the adaptive 
grid algorithm, researches about the imaging of human 
retina to geometry structures indicate that it can result in 
enhanced image of large size by utilizing variable grid 
integrating algorithm in relatively less time. 

It shows that the basic equations for image processing 
are shock filter, total variation, anisotropic diffusion 
equation, moving boundary and so on. They can realize 
the recovery, enhancement and segmentation of images. 
Algorithms we studied in this paper are based on shock 
filter, total variation, and anisotropic diffusion. They are 
important parts of many image processing methods 
based on partial differential equation and the 
improvement and numerical calculation in these models 
have positive meanings. 
 
 
Main methods for recovery and enhancement of 
images based on anisotropic diffusion equation 
 

Recovery and enhancement of images are both 
technologies for improving images' quality. In the actual 
process of imaging, the original clear image may become 
fuzzy for various reasons. It will encounter in many actual 
applications. Image recovery is to recovery fuzzy images 
to original clear images. In recovery process, degradation 
model is firstly built, then against the quality decline 
process. We  adopt  a  method  to  recovery  and  rebuild 

 
 
 
 
original images. According to the difference of 
mathematical modeling, we can classify algorithms of 
noise removal and enhancement for common images of 
anisotropic diffusion equation as follows. 
 
 
Regularization methods of inverse problems 
 
Image recovery can be viewed as inverse problems of 

image degradation model f Au  or f Au boat  . That 

is getting original images from degradation images. In the 
above model, A is (usually linear case is considered) and 

assuming image functions u and f are uniformly bounded 

functions of 2R R  . According to actual situation of 

numerical image process, if problem is solved by 
changing it into linear equation, the spectral value of 
coefficient matrix will be smaller. Linear equations are 
always weak conditions and the solution in this condition 
is always ill-posed. So academia has imposed many 
regularization methods to solve ill-posed problems. These 
methods focus on maintaining stability as well as 
information of the solution, and use methods of statistics, 
iteration, and variation to get regularization solution of 
inverse problems. For example, by solving extreme 

value, among them, ( )f x represents the gradient of 

function ( )f x . Au f is used to maintain information of 

the solution. [ ( ) ]f x dx   used to maintain stability of 

the solution.   used to balance effect of the two. It is 

dainty in selection of norms  and  . 

 
 
Methods based on geometric character 
 
The diffusion methods are based on anisotropic diffusion 
equation. It can be divided into three kinds: linear 
isotropic diffusion filter, nonlinear isotropic diffusion filter 
and linear anisotropic diffusion filter. Linear isotropic 
diffusion filter is the simplest of image smoothing 
algorithms based on anisotropic diffusion equation which 
has distinct physical meaning. In the case of no 
production and extinction of substance, it can be viewed 
as a process of balance internal concentration difference. 
It can be represented by a mathematical formula: 
 

                                                         (10) 
 

The formula shows gradient of concentration u has 

produced flow j , and it will be compensated for gradient. 

The relationship between u and j  is described by 

diffusion tensor D . It is a positive symmetric matrix. 
When u and j are parallel, the diffusion methods are 

isotropic. In this condition, it can be represented by a 
diffusion coefficient g with positive scales. Usually when it 

 (3.1)j D u  



 
 
 
 
is anisotropic, u and j is not parallel. In image process, 

the diffusion rate of linear isotropic diffusion filter is 
constant; the diffusion rate of nonlinear isotropic diffusion 
filter corresponds to the local structure of images; the 
diffusion tensor of nonlinear anisotropic diffusion filter 
corresponds to the local structure of images. 

In the anisotropic equation, conductivity coefficient in 
every point is a matrix. Usually, it makes diffusion effect 
relevant to weak and strong direction by setting every 
coefficient of thermal conductivity matrix. Along other 
direction, diffusion should be stronger, so that it can 
achieve smoothing and removing noise. The design of 
thermal conductivity matrix depends on the gradient in 
current point of the image. So diffusion tensor is changed 
by spatial position. 

The diffusion process of conservation of matter above 
can be described by the following continuity equation: 
 

                                                              (11) 
 
Among it t represents time. By substitution of formula 

(10) into formula (11), we have:  
 

                                                      (12) 
 
The equation is present to many physical transmission 
processes and is called heat equation in the case of heat 
transfer. The level set method takes images as a set 
consisting of isodense outline. Considering noise is the 
main reason of degeneration of images, we take most 
noise as small targets with bigger curvature of isodense 
outline. We make isodense outline with big curvature in 
noise segment shrink to a point, even disappearing with 
the time evolution. Images with small curvature will be 
preserved by evolving into the outline of images. The 

general model of level set method is 0F u  or

( , ) ,tu x t F u    where F is speed function. On this base, 

average curvature flow model and max/min curvature 
flow model all get well development.  
 
 
The method based on image transformation 
 
It takes process of image enhancement as a process of 
image transmission. That is making operator Z acting on 

image function f . To achieve image processing, operator 

Z needs to meet some conditions. Alvarez Guichard 
Lions and Morel has generalized three kinds of 
conditions. 

 
 
Structure conditions 
 

1. Recursion: for any ( ) ( ( ) )t tT f hg T f gh Cht


      and 
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function ( )f x defined in nR , 
0 ( ) ,T f f

( ) ( ( ) ( ) .s t s t s tT oT f T T f T f f  character o represents the 

combination of operator. 

2. Causality: for any 0 ,s t   , 
,0 ,, .t t t s t s sT T T T oT  will 

be tenable with conversion operator cluster , .s tT  

Regularization: for any 0 , 1,h t  and smoothing 

functions f and g , ( ) ( ( ) )t tT f hg T f gh Cht


     will be 

tenable. 

3. Limitation: for any smoothing functions f and

( ) ( ) ( ) ( ),t tT f T g x o t   ( ) ( ),D f x D g x  is tenable with 

any 0  and nx R . So, when 0t  , there is (0) 0,tT 

( ) ( ) .t tT f C T f C    

 
 
Stability condition 

 
Comparison principle: for any functions f and g ,if f g , 

then for any 0t  , ( ) ( )t tT f T g is always tenable. 

 
 
Morphology condition 

 
1. Gray translation invariance: for any functions f and 

constant C , (0) 0,tT   ( )tT f C  ( )tT f C  is tenable. 

2. Gray scale invariance: assuming h is a non decreasing 

real function, for any functions f and any 

0, ( ( )) ( ( ))t tt T h f h T f  are always tenable. 

3. Scale invariance: for any tT and t , there will be a
't

making 't t
D T T D   tenable. 

4. Transmission invariance: for any , 0,nh R t   assuming

( )( ) ( )hof x f x h   is tenable, ( ) ( )t tT of o T f   will be 

tenable too. 

5. Isometry invariance: assuming R is  ( ) ( )Rof x f Rx , 

where R is an orthogonal transformation in nR . So for any

, 0f t  ,   ( )t tT Rof RoT f is tenable. 

6. Projection invariance: for any operator A and t , there 

will be a
't relevant to A and t making 't t

AoT T oA  tenable. 

't satisfies to all above conditions can do image process. 

 
 
The method based on variation 

 
Based on preserving original information of image as 
much as possible, it makes images smoothing so that 
optimization to some extent is achieved. Then a 
corresponding variation model is proposed. It is a mass 
of optimization: 

 , (3.2)tu div j  

 ( ), (3.3)tu div D u   

javascript:showjdsw('showjd_0','j_0')
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Among them, 2
2

min ( )

. . ,

J u

s t Au f Au f 


 



   



  
is aimed at 

preserving image information and ( )J u is functional to 

measure degree of irregularity of images. There are 
several styles. In some condition, optimization problems 
above can be changed into extreme value problem

2
( )

2
J u Au f


  . When  has value of 0 it can be viewed 

as a Gaussian Filter: 
2

min( ( ))J u u dx


  . This is a 

traditional 2L norm method based on gradient which 
causes solving problem of linear equation. 

In the aforementioned contents, four basic methods of 
image process based on partial differential equation were 
described. They have different senses. The regularization 
Method of Inverse Problems takes the process of image 
recovery as an inverse process of image degeneration; 
Level set method takes images as a set of isodense 
outline. And the curvature of isodense outline of noise is 
partly bigger; the method based on image transformation 
focuses on conditions which image transformation need 
to meet; variation method focuses on not only decreasing 
degree of irregularity of image but also preserving original 
image information when processing images. It makes a 
feature of the image optimal. 
 
 
The basic theory related to image enhancement 
algorithm 
 
The image enhancement algorithms that based on partial 
differential equation mainly are diffusion method and 
variation method. Compared to other methods, there are 
some advantages in calculation. Firstly, they can process 
important geometric characters directly which affects 
visual effect. Such as gradient, angle, curvature and so 
on. The diffusion method can do simulation effectively on 
linear and nonlinear diffusion. Secondly, the diffusion 
method and variation method get well development on 
calculation of current relative mathematics analysis 
theory and partial differential equation. Next we will 
introduce some basic theory related to algorithms. 
 
 
The representation model of images in the method of 
partial differential equation 
 

For processing images efficiently, we firstly should know 
how to understand and represent images in term of 
mathematics. The  image  model  and  its  representative 

 
 
 
 
method largely determine the process model of images. 
There are common three kinds of models: random field 
model, wavelet model and regular space model. 
 
1. Random field model takes the image as a sampling 
result of random field model. The image can be simulated 
by some Gibbs or Markov random field model. The 
statistical characteristics of random field model often can 
be established by filter techniques and learning theory. 
The random field model is the most ideal in term of 
describing nature images (such as trees and hills) with 
relatively rich texture. 
2. Wavelet model is based on time and frequency 
analysis theory. Every transient component of images 
maps to time. The location of frequency plat corresponds 
to component main frequency, occurrence time and 
amplitude. So the space the image located in is three-
dimensional which can be viewed as a lamination. There 
are three techniques related to wavelet which are filter 
group theory, multi-resolution or time field scale analysis 
(especially pyramid representation) and sub-band coding. 
The successful compression of new JEPG2000 protocol 
and FBI fingerprint database are the two most influential 
applications. 
3. In the traditional linear filter theory of image process, 

an image is viewed as an element in the 1( )H  in the 

Sobolev space. For the function in Sobolev space is 
continuous, Sobolev model is good in processing some 
flat field in an image. But it is not good as a model of a 
whole image for it blurs important visual information- 
edges. Currently there are two famous models 
represented by partial differential equation can process 
edge problems. One is Mumford and ‘object-edge’ from 
Shah. The other is an image model BV (bounded 
difference) from Rudin, Osher and Fatemi. "object, Edge" 
model is based on the assumption that image U is 

consisted of different flat blocks 1[ , ] ( ( ))k k k ku u H   and 

regular boundary k . BV model assumes that the total 

variation Du


  of the image is bounded. 

From the point of specific styles of partial differential 
equation, here our study involves two kinds. The most 

representative is oval Laplace equation 

2 2

2 2
0

I I

x y

 
 

 

and parabolic heat conduction equation

2 2

2 2

I I I

tx y

  
 

 
. 

For determining the solution of partial differential equation 
completely, proper conditions of definite solution should 
be given. The definite solution involved in this paper 
contains initial condition and edge condition. Usually 
initial condition is an image with noise which is going to 
be processed. Boundary should meet condition 
Neumann. That is on the boundary of the image, the 
value of exterior normal derivative  is  0.  Both  differential 
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equation and definite condition consist of the definite 
solution problem. 
 
 
Gaussian smoothing 
 
Convolution is a very important method in typical image 
processing techniques. And in convolution method the 
most common convolution kernel is Gaussian 

convolution. The convolution on a gray image f and 

Gaussian filter can be represented as follow: 
 

                          (14) 

Where K represents two-dimension Gaussian kernel of 

variance
2 : 

 

                                      (15) 
 

The frequency of convolution of time field can be 
represented as follow: 
 

             (16) 
 

Among it,  
 

 
 
 

The equivalence relation between linear diffusion 
process and Gaussian filter  
 

For image f , the linear diffusion process is as follows: 

 

                                                              (17) 
 

                                                            (18) 
 
It has only one solution 
 

                                 (19) 
 

Assuming ( , )u x t  meets the condition:

2
( , ) exp( ) ( , 0),u x t M a x M a    image f  meets max 

and min  theorem  in 2 [0, )R   : 
2

2

inf ( , ) sup .
R R

f u x t f 
  
 In 
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the theory of partial differential equation, the Gaussian 
convolution for initial signal is just solution to heat 
conduction equation. Gaussian kernel is the basic 
solution to heat conduction equation. The variance of 
Gaussian kernel is relative to the time of basic solution. 
We can see from formula (3.3) that time t  corresponds to 

the variance of time field of Gaussian kernel 2t . The 

smoothing structure of degree should be stopped on 

the time 21

2
T  . According to this observation, people 

proposed the first partial differential equation- heat 
transmission equation used as image process: 

 

             (20) 

 
Among it, ( , , )I x y t represents the image on time t . Initial 

image ( , ,0)I x y is initial condition. Through the Fourier 

analysis, we can see the high frequency component in 
initial image is gradually removed as the time to getting 
the solution of the equation increases. So the equation 
has the effect of low pass filter. Heat transmission 
equation is a linear equation with the diffusion feature of 
isotropic. Heat transmission coefficient is always equal to 
1 at any place. This is equivalent to apparent ‘heat’ (gray 
value) will be spread. At last we will get an image with 
consistent gray value. It is equivalent to the average of 
initial ‘heat’ (gray value). We can conclude that the linear 
diffusion filter is similar to the mean filter. In terms of filter 
effect, Gaussian filter and average filter is equivalent. At 
the same time of removing noise, the boundary of the 
image is often blurred too (Figure 5). 
 
 
Gaussian function 
 
In order to know the structure of the image, one should 
analyze the deviation of gray value in the neighborhood 
of every pixel. That is calculating the gradient information 
of the image. However, affected by noise and so on, a 
small disturbance of the initial image can cause arbitrarily 
large deviation of derivative. So the regularizing method 
is needed. One available regularizing method is making 
convolution between the image and Gaussian kernel 
firstly. We can find that all images seeking derivative 
experience the same Gaussian smoothing process which 
is equivalent to the convolution between an image and a 
Gaussian function from equation 

1 2 1 2
( ) ( )n m n m

x x x xK f K K f          . Gaussian derivative 

can also show differential invariance after rotation 

transmission. Such as K u  and K u  . It is very 

useful in checking the boundary and other structures of 
the image.  

  ( ) ( ) ( ) (3.4)
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Figure 5. The image after Gaussian lowpass filtering. 

 
 
 

 
 

Figure 6. Cannyhe and LoG operator boundary detector.  

 
 
 

The boundary detector Canny often used is from first 
derivative of the image after Gaussian smoothing. The 
location with bigger gradient amplitude is set as boundary 
as shown in Figure 6. The method is the best linear 
boundary detector. It is almost a criterion of boundary 
detector. When doing specific calculation, Gaussian 
function can be decomposed to simplify calculation 
process. Another interesting boundary detector is 
operator Marr-Hildreth. It is a convolution kernel used in 

Gaussian Laplace (LoG) K  as shown in the right of 

Figure 6.  

The boundary of the image f is defined by zero 

crossings K f  . This does not need further post-

processing and can always get a close boundary. An 
interesting phenomenon can be viewed if we study time 
field evolution of zero crossings of the image after linear 
diffusion filter. When increasing smoothing scale , it will 

not appear new zero crossings with more precise scale. 
The evolution feature is closely related to the max-min 
principle of determining parabolic operator. To get actually 
stable result, additional information should be added 
when rebuilding original image from time field evolution of 
zero crossing of Laplace operator. However, the evolution 
feature of zero crossings is important thought in scale 
space theory. 

Scale space 
 
Scale space is the representation of the image in 
continuous scale space. We assume that the image have 

the smooth structure with Invariance, the image f  

consists of its gradually simplified version family. When 
the image’s scale changes from fine to rough, this smooth 
transformation should never generate the artifact, this is 
so called the process of information reducing. In Oshe 
and Sethian (1998), many people like Alvarez study the 
relation between the space theory and partial differential 
equation (PDE). The image after filtering must become 
the viscous solutions of second order parabolic partial 
differential equations using the following filtering axiom: 
Comparison theorem can keep characteristics when we 
make sure power exponent (the time of continuously 
differential), but it do not have enhancement. Axiom is the 
generalization of nonnegative smooth nuclear in the 
nonlinear cases. 

Assuming 2 2: ( ) ( )t b bT C R C R  is the bounded 

function space having any number of derivatives. We use 

X to express 2( )bC R  below. 
 

(A1) Recursiveness: 

0 ( ) , ( ), , 0, .s t s tT u u T T T u s t u X       



 
 
 
 
(A2) Consistency: 

( ) ( ( ) ) , , ,t tT u hv T u hv cht u v X c      rely on u  and v . 

(3) Directionality: 

( ( ) ( ))( ) ( ), 0 ,t tT u T v x o t t     for all the ,u v X   and all 

the 0   satisfy ( ) ( )u x v x    

(A4) Comparison theorem (limit theorem): 

For all the 0t   and , ,u v X  if ( ) ( )t tT u T v  we have 

u v . 

(I1) The invariance of gray translation: 

For all the , ,u v X  and all the constants c , if (0) 0tT   

then we have ( ) ( ) .t tT u c T u c    

(I2) The invariance of transference: 
For all the h, in the place which satisfies 

( )( ) ( ),ku x u x h   , we have ( ) ( )t k k tT u T u   in linear 

cases, many demands above can be satisfied, but they 
may not be met in nonlinear cases. 
 

We join linear conditions in the axioms above, for 

example ( ) ( ) ( ), 0, , ,t t tT au bv aT u bT v t a b R       and 

we join the Isometric unchanged characteristics, for 

instance, for all the , 0f t   and all the orthogonal 

transformation R , we have ( ) ( ).t tT Rf RT f  in reference 

[12], we can obtain the linear scale space (Gaussian 
scale space). Gaussian scale space is gained from the 
convolution of itself and Gaussian functions. Gaussian 
functions have increased width which is equal to linear 
diffusion filter. 
 
 

The estimation criterion which variational method 
adopts  
 

The estimation criterion which variational method 
removing noise adopts is MAP criterion. Its core ideology 
is creating regular functions according the MAP criterion 
and geometric knowledge. We assume that for the 

unknown digital image u , its prior probability is ( )p u , its 

MAP estimator can be expressed as 

 0arg max log ( ) log ( )
u

u p u u p u  , 0( )p u u  is the 

conditional probability for u  to get 
0u . The normal mode 

of prior probability is MRF, its characteristic is Gibbs 

distribution. 
1 ( )

( ) exp
F u

p u
Z 

 
  

 
. Z  is the partition 

function,   is a constant, F  is the energy function, 

reference [38] prove that Gibbs distribution is equal to 
MER. For the image which is polluted by Gaussian noise, 

the formula 

2

0

0 2
( ) exp

2

u u
p u u K



  
  

  

is workable, then 

MAP estimator can be expressed as 

2

0arg min ( )
2u

u F u u u
 

   
 

. 
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The Dirichlet integral function and total variational 
integral function in image denoising can be separately 

defined as 
21

( )
2

D u u dx


   and ( ) .TV u u dx


  Then 

the minimization problem total variational method of 
corresponding can be expressed as 

2

0arg min ( ) ,
2u X

u F u u u dx





 
    

 
 x  is the appropriate 

image space which has smooth functions like 1( )C   or 

image function space ( )BV   which have bounded 

variation or Sobolev space 1 1,2( ) ( )H W   . ( )BV   is 

the Banach space which have norm 
2 2 2

'( )H
u u u


   . 

 
 
The discrete method of partial differential equation 

 
In generally, the partial differential models used to image 
denosing and image enhancement are continuous, it is 
tough to gain analytical solutions, in generally, and we 
often obtain the numerical approximation solution 
(approximate solution). In practical problems, if the image 
has the value in fixed and equidistant grid (or pixel), it 
needs to be discretized into the continuous partial 
differential functions. We adopt the equivalent 
discretization to approximate convolution process and the 
diffusion equation when we solve the linear diffusion 
equations and handle the Gaussian convolution nuclear. 
Like images and Gaussian kernel for airspace 
convolution, we use the image in the limited domain and 
Gaussian kernel separately to do FFT. It can reduce 
calculated amount if we multiply the results and do IFFT. 
According to the calculated amount of FDCT and IDCT, 
this process is very effective for the large kernels. 
However, when we convolve in space region, we often 
need to truncate the Gaussian sampling kernel, the 
shortcoming of this method is that it cannot keep semi-
attributes of continuous Gaussian scale space. 

Lindeberg (1990) put forward linear space theory 
specific to semi-discrete conditions. He prove that the 
discretization of Gaussian kernel can be expressed as 
rectifying Bessel function, because this scale space is 
obtained from the semi-discrete form of diffusion 
equations. He made draw a conclusion that the 
approximation of diffusion equations should priori to 
discrete the convolution integral. In many methods used 
to approximate linear diffusion equations, FD is 
constantly used. Among those methods, there are few 
implicit methods, in other words, explicit methods are the 
main methods. When we need to effectively approximate 
Gaussian scale space, we adopt the multigrid method. 
Gaussian pyramid (Butt and Adelson, 1983), presents 
multilevel representations of scale space which consist of 
different image resolution. This method  uses  the  display
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Figure 7. Filtering effect of P.M model on gray noise image. (a)gray noise 
image, (b) the image after the P-M filter. 

 
 
 

representations of diffusion equations to do image 
filtering. 

According to the results limited in a coarse grid, we can 
gain the image representation in a thicker grid in next 
level. As this method is very simple and effective, pyramid 
decomposition is integrated into commercial hardwares. 
In most applications of nonlinear diffusion filters, FD is 
preferentially used, because it is simple to handle each 
point’s pixels of the image for the real value image having 
been discretized in the fixed grid. Explicit methods are 
simple and popular used because it has good local 
qualities, which is suitable for parallelism. However, we 
need to set a small step length in computing to make the 
algorithm stable. The semi-implicit algorithm has better 
stability properties. 
 
 
The discrete method of differential operator 
 
The simplest discrete method of the derivative of 1-
dimensional function use two-point method to become 
difference function. 
 

                               (21) 
 

h  is the sampling interval, when h  is very small, we can 

use the first difference to approximate 0'( )f x , the error of 

this discrete method is ( )o h , if 0h  ,then we call it 

forward difference, if 0h  , then we call it backward 

difference. 2-dimensional differential operator use small 
regional template convolution to compute approximately. 
The gradient of 2- dimensional functions is defined as  
 

                                 (22)  
 

xG  and 
yG  use the same template. According to the  size 

of the template, the element values are different, now 
people have put forward many kinds of different 
operators. Some kinds of Common gradients’ templates 
include Roberts cross operator, Prewitt operator and 
Sobel operator. Figure 7 is the template of the Laplace 
operator of 2- dimensional derivatives, when we compute 
operator, we adopt the way which is similar to 
convolution. Let the template move to 11, we compute the 
gradient value of the central pixel in each place. When 
we have the discretization, we have to ensure the 
correctness of discretization, also we hope to do the 
following points: 

 
1. The results of discretization need to be as simple as 
possible. We need to use the iterative method when we 
solve the partial differential equations; the complicated 
discretization will make analysis and calculation tough. 
2. The symmetry of discrete operator. It means that the 
discrete operator of a point is center symmetric with itself 
and it can ensure the invariance of direction of the 
operator compared to the image. The results of 
transformations of the operator compared to the image 
are the same after rotating the image 90° and rotating the 
image 180°. So when we compute the first derivation, we 
often use the central differencing scheme. We also can 
find that the central differencing scheme has higher 
precision compared with the forward differencing scheme 
and the backward differencing scheme. 

 
 
The typical differencing scheme of diffusion 
equations 

 
Taking the one-dimensional constant coefficient self-

defocusing equations 
2

2

I I

t x


 


 
 for example, 

, 0,x R t a   is positive integer. The step length of time t  

is t , the step length of space x  is h . We assume that 

( , ) ( , )I x t I jh k t  . There are  three  kinds  of  differencing 

 
   (a)                                                     (b)  
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I x y G G

x y

 
  

 



 
 
 
 
schemes often used. 
 
1. The forward differencing scheme (explicit formulation) 
 

                                   (23) 
 
The truncation error of the forward differencing scheme is 

2( )o t h   by Taylor series expansion, we can have the 

growth factor 2( , ) 1 4 sin
2

h
G t ar


   , 

2

t
r

h


 , if 

1

2
ar  , 

then ( , ) 1G t   . So Von Neumann is met, the stability 

condition of this forward differencing scheme is 
1

2
ar  . 

2. The backward differencing scheme (implicit 
formulation) 
 

                                    (24) 

 

The truncation error is 2( )o t h  , the growth factor is 

2

1
( , )

1 4 sin
2

G t
h

ar




 



, because 0a  , for all the grid 

ratios r , ( , ) 1G t   . This scheme is stable without any 

conditions. The forward differencing scheme and the 
backward differencing scheme are the scheme that time 
is a one order precision and space is second order 
precision. 
3. The weighted implicit formulation combined the explicit 
formulation and the implicit formulation 
 

        
                                                                                (25) 

 
0 1   is the weighting efficient . We assume that 

( , )I x t  is the fully smooth solution of the equation (22). 

Let equation (25) do the Taylor series expansion in 

( , )j kx t  and dissolve, then we can have the truncation 

error
3

2 2

2

1
( ) [ ] ( )
2

k

j

I
E a t o t h

x t



     

 
, if 

1

2
  , the 

truncation error is 2 2( )o t h  ; if 
1

2
  , the truncation 

error is 2 21
( )

2
o t h    . The differencing scheme which 

1

2
   is called Crank-Nicolson scheme or CN scheme, 

this is a scheme with two order precision. 
The growth factor of the weighted implicit formulation is 

Jin et al.         3777 
 
 
 

2

2

1 4(1 ) sin
2( , ) ,

1 4 sin
2

h
ar

G t
h

ar









 

 



 the stability condition is 

obtained according to ( , ) 1G t   , if 
1

0
2

  , 

1

2 (1 2 )
r

a 



; if 

1
1

2
  , the scheme is stable without 

any conditions. Expected three schemes; there are three 
layer explicit format, three layer implicit format, stagger 
scheme, PMECME and Asymmetric format (Zhang, 
2006). What this article adopts is the explicit format, 
though it is conditional stability, its computation speed is 
the fastest. 
 
 
The characteristics and research meaning of partial 
differential equations 
 
Broadly speaking, the image processing technology 
based on partial differential equations has the following 
characteristics: Let partial differential equations and the 
field of curvature used to image analysis, the image can 
be expressed as a continuous signal, partial differential 
equations can be considered the iteration with the Locally 
Filter having infinite dimension neighborhood. The 
discretization of local nonlinear filters is easier to be 
understood. The property not relying on grids and the 
isotropy simplify the calculation formula (Kass et al., 
1988). Because Mathematics has a long-term further 
research about the numerical approach of partial 
differential equations, we can gain the numerical solution 
of high accuracy and stability. When we consider the 
image processing and the numerical solution, we will 
suffer the derivation problem of the non-smooth signal 
inevitably. 

The viscous solution of computing math provides the 
strict mathematical theory to handle such problems. 
There is the good mathematics foundation of the method 
of partial differential equations, therefore this method can 
provide deep theoretical results, and the algorithm has 
good stability. We lead the partial differential equations 
theory into image processing and computer vision, 
because the theory not only has ready-made mature 
algorithms, but also provides rich theoretical results, like 
the provement of the existence, stability and uniqueness 
of results. 

We deal with the image from the perspective of partial 
differential equations and we find new methods. These 
methods include more invariants compared with typical 
methods, like the filtering keeping the structure, linear 
enhancement and so on. At the same time, partial 
differential equations make the synthesis of image 
processing method very nature. For example, we give 

two different  image  processing  methods:  
1( ( , ))

I
F I x t

t





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and 
2 ( ( , ))

I
F I x t

t





, they can be composited as 

1 2 ,
I

F F
t




 


 R  , if 
1F  and 

2F  are two Euler-

Lagrange operators having the minimum energy 
1E  and 

2E , then the minimum energy flow of the composition 

plan is 
1 2E E . The synthesis of models has the 

practical uses: the image smoothing and boundary 
keeping, this application can make the program of 
removing noises and keep boundary at the same time 
possible (Shah, 1996; Chen and Bose, 2001; Wu and 
Ruan, 2006; Peng et al., 2006). 

Some classical methods like Gaussian filtration, 
median filtration, corrosion swelling and so on get a 
brand-new explanation in the unity framework of PDE. 
Taking removing noises for example, we have proved that 
wavelet technology is the optimal regularization problem 
of Sobolev space, on the other hand, by Gibbs formula 
statistically. Bayes procedure can be associated with the 
variational method based on regularization. Partial 
differential equations have widely used in image 
processing, so the study of the subject is of great 
significance. Firstly, it is good for the image processing 
research based on partial differential equations. On one 
hand, it makes the development in this field expand in its 
application field, so we can work out more various 
problems; on the other hand, with the development of this 
subject, people more and more deeply mine image and 
the essence of the image processing, they try to take 
advantage of strict mathematical theory to reform the 
existing image processing methods, which make the 
results of the image processing more ideal. Secondly, the 
image processing based on partial differencing equations 
promotes the development of the theory of partial 
differential equations at the same time which in the use of 
partial differential equations theory, it also injects new 
contents into the theory of partial differential equations. 
The study at it also has certain stimulative effect on other 
image processing methods and has a big effect on the 
final results of the image processing. 
 
 
DISCUSSION AND ANALYSIS OF THE IMAGE 
ENHANCEMENT TECHNIQUES BASED ON THE 
PARTIAL DIFFERENTIAL EQUATION 
 
The diffusion model 
 
Many Smooth or fuzzy processes can be described with 
the partial differential equation. In the 1960s, Gabor 
noticed that the difference between the image f and the 
image f after the fuzzy process is proportional to the 
Laplacian operation of the image f; Witkin (1983) proved 
that, the linear diffusion of the image is equal to do the 
convolution with the image using Gaussian filter in the 
traditional image processing, while, the  reverse  diffusion 

 
 
 
 
is the same as the removing convolution process. To 
achieve the purpose of removing noises and keep the 
edge information of the image at the same time, Perona 
and Malik (1990) put forward the famous P-M equation, 
which smooth the noise with the nonlinear opposite 
diffusion. the P-M equation model is as follow: 
 

                                               (26) 
 
P-M equation uses the Gaussian function based on the 
Lorentzian norm: 
 

                                                           (27) 

 
or the Cauchy function 
 

                                                               (28) 

 

As the diffusion coefficient function, K is the gradient 

threshold. so, the P-M equation is the anisotropic 

diffusion process, its diffusion coefficient |)(| Ig   is 

relying on the local features of the image. in the flat field 
of the image, the gradient amplitude is lower, which fulfils 

KI  || , so the diffusion coefficient |)(| Ig   is higher, 

at this time the P-M model plays a role in smoothing the 
noise; in the area near the edge, the gradient amplitude 

is higher, which fulfils KI  || , so the diffusion 

coefficient |)(| Ig   is lower to keep the edge. The 

filtering effect of the P-M model can be seen in Figure 8. 
What we can know from the Figure 8 is that, the P-M 

model can filter out most of the noise in the image, and 
can keep most of the detail information of the image. 
However, the P-M model has the disadvantages itself, on 
the one hand, in the noisy point, the gradient of image 

|| I  may be very higher, the P-M model is more likely 

to keep the noise as the edge; on the other hand, the 
anisotropic diffusion equation in (26 to 28) is a sick 
equation in mathematics, which cannot ensure the 
uniqueness and stability of the solution. Catte et al. 
(1992), etc. prove that the diffusion equation itself has the 
pathological properties they put forward the regularization 
P-M equation. 
 

                                       (29) 
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Figure 8. Filtering effect of P-M Model c) RGB noise image (d) the image (c) 
after the P-M filter. 

 
 
 

noise image after the convolution filter with the Gaussian 
function whose variance is  . Because the 
regularization model can control the Gaussian noise, it 
solves the problem that the model cannot distinguish the 
edge and edge to a certain extent, and guarantee the 
existence and uniqueness of the solution of equation. 
However, the regularization model is easy to dim the 
information of the edge and texture in the image, the 
parameters of Gaussian kernel is hard to determine 
beforehand.  

The diffusion coefficient in the P-M model usually 
convergences more slowly, it leads to the faster diffusion 
speed. The diffusion coefficient still keeps the feature of 
keeping subtle diffusion in the area where the gradient is 
high, so it may remove the important detail information 
which is not too obvious and weakens high contrast area 
(In Figure 8(d) the texture information of the hat is 
obviously blurred). According to the relation between the 
robust estimation model and anisotropic diffusion 
coefficients, Black et al. (1998), conduct the robustness 
anisotropic diffusion (RAD) model, it uses the diffusion 
coefficient based on the Turkey Error norm and the robust 
estimation operator: 
 

                                    (30) 
 
Where, K is the robustness threshold value scale. 
compared with the Lorentzian error norm in the P-M 
model, the Turkey Error norm can ‘estimate’ more quality 
image information of the edge and the detail, it can also 
see that how the error model ‘end’ the diffusion behavior. 
but the robustness anisotropic diffusion model still can 
not remove the effect of the salt and pepper noise. in 
allusion to the problem of the small target, low contrast, 
blur edge and testing difficultly, Wang Yanhua put forward 

the improved anisotropic diffusion algorithm to enhancing 
the small target, its expression is as followed: 
 

                                              (31) 

 

Where |)(| Ig   means the diffusion coefficient, 

|)(| Iv   is sharpen coefficient, w  is the smooth and 

sharpen weighted factor. w  is bigger, and the sharpen 
effect of the algorithm is larger; w  is smaller, and the 
effect of smoothing the noise of the algorithm is larger. 
this algorithm couples the regional smoothing and the 
edge sharpening, whose essence is taking the coupling 
norm. this algorithm can primely combine the noise 
smoothing with the edge sharpening in the condition of 
low noise environment, which can be seen in Figure 9. 
Figure 9(a) is a degraded image due to noise; Figure 9(b) 
is the result of filtering Figure 9(a) with the Wang method. 
In Figure 9(b), the noise is filtered basically, and the rear 
window of the white minibus is sharpened, thus the 
image quality is lowered more. 
 
 
TV model 
 

As the quadratic norm
2L especially emphasizes the 

‘punishment’ to great grads, which is inimical to inherent 
characteristics of images, while with respect to the 

quadratic norm
2L , 

1L  has stronger power to protect the 
edges so that it gives people clearer subjective feeling. 
Rudin et al. (1992), proposed the total variation (TV) 
Model based on linear norm, the energy functional of 
which is: 
 

                               (32) 
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Figure 9. The designsketch of enhancing image with the Wang model (a) 
noise image, (b) the filter image with the Wang method. 

 
 
 

 
 

Figure 10. Filtering effective figures of TV model (a) image with noise, (b) filtered image with TV 
algorithm. 

 
 
 

The second term in the right of formula (32) is fidelity 
term, used to descript the appropinquity degree of filtered 
image and the initial one. TV model has only solution, the 
corresponding grads katabatic drainage is: 
 

                                       (33) 
 
Where,  
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。Filtering effective 

images of TV model are shown in Figure 10. It can be 
seen that TV model is a kind of image restoration models. 
The ‘fragmentation constant’ effect is always in the stable 
solution of TV model, which does not completely suit to 
the morphology theory of image processing. 

Shock wave filter 
 
Because of the usual diffusion model is a kind of 
algorithm approximately to keep edge smooth, it can’t de-
noising and enhance image at the same time. So Osher 
and Rudin presented a Shock Wave Filter, mathematical 
model of which is: 
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The enhancement action of image signals of shock wave 
filter has the following characteristics: 
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Figure 11. Filtering effect figures of Sum method (a) image with noise (b) restored 
image of Sum method. 

 
 
 
1. The enhancement of signals produces on the zero-
crossing point of second derivative, in another word, in 
the edge of the image. 
2. Weak solution of Shock Wave Filter is fragmentation 
constant, discontinuous in the inflection point; 
3. Enhancement process of Shock Wave Filter 
approximates the de-convolution process. 
The shortage of Shock Wave Filter is that it is very 
sensitive to noise. In theory, in the continuous domain, 
any white noise joining in signals may join countless 
inflection point, damaging signal enhancement 
thoroughly. 
 
 
Improved P-M model 
 
In Sum and Cheung (2007), Anthony K. W. Sum thought 
fidelity could be used to strengthen the robustness in the 
iterative process of TV model, and when used in P-M 
equations, it was able to reduce the loss of image detail 
information affected by iteration. He has improved the P-
M model: 
 

                             (35) 
 
In the above formula, we notice that at any given time t, 
the second term on the right of equation is nonnegative 
constant, making the whole gray value of the image 
increase, and be easy to produce a saturation point 
(Figure 11), then cannot guarantee the robust in the 
restoration process very well, and can't sharpen image 
edges. 

So, Zhou and Liu, (2011), gave the corresponding 
improvement. Firstly on account of the discomfort of 
original P-M model, he did regularization processing, that 

is:  ),,(* tyxIGI   .  Then,   minimize  the  following 

energy functional: 
 

               (36) 

 

Where  IIgI  )()( . The first term on the 

right of equation (36) is used to do anisotropic diffusion to 
smooth image, the second term is fidelity, to ensure that 
image detail information in spread and restoration 
processes will not be lost. So, the grads drop flow is: 
 

                             (37) 

 
 
Comparison of various algorithms 
 
In order to verify the performance of each algorithm, the 
experiment about a set of benchmark images was taken. 
First, by adding a certain degree of Gaussian noise to 
noise-free image, then the original PM model, Anthony 
KWSum improve the PM model (Sum method) and Zhou 
methods were used to filter separately, and we also 
compared the filtering performance. To enhance the 
comparability, different iterative algorithms use the same 
number of iterations (80 times). Figure 12 is the filtering 
results of the algorithms. Figure 12 (a) and Figure 12 (b) 
are the original image and the noise image, Figure 12 (c), 
Figure 12 (d), Figure 12 (e) are the results of Figure 12 
(b) using the PM model, Sum method and Zhou methods. 
Lena image, the Shenzhou images and plane image plus 
noise variance were 50, 25, and 30 respectively. Peak 
signal-to-noise ratio (PSNR) is a criterion to measure the 
performance of different methods of filtering. PSNR 
results of each image are shown in Table 1. It can be 
seen from Table 1, the PM model increased fidelity  avoid
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Figure 12. Comparison of all the methods (a) initial image (b) noise image (c)P-M method (d)Sum method 
(e)Zhou method. 

 
 
 

Table 1. PSNR comparison of different methods. 
 

Image name (bmp) Origin image noise P-M model Sum model Improved P-M model 

Lena  17.38189 29.40671 27.93841 29.56522 

Shenzhou  23.03554 35.54492 34.16889 35.99998 

Plane  21.47833 30.42956 28.26197 30.92465 

 
 
 
the shortage of the original PM model take strong noise 
as the edge and filters, so the filtering performance has 
improved to some extent. 
 
 
CONCLUSION 
 
In this work, we review the applications of partial 
differential equations for image enhancement. The 
motivation of this review is two-folds: firstly, image 
enhancement is an important preprocessing technique in 
image processing area. It is worthy to do research for it. 
Secondly, partial differential equations are relatively new 
techniques which are superior to traditional methods. At 
the end of this review, a comprehensive discussion is 
presented. We believe our review can contribute to the 
researchers who are interested to apply partial differential 
equations for image enhancement. 
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