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Periodicity is an interesting property of many time series data sets. A period can be defined as a self 
repeating pattern. This pattern provides useful information about the inherent structure in cyclic data 
set. In this paper, a filter based Fisher g-test approach is introduced. The filtering approach is based on 
the singular spectrum analysis. The power and running time of the proposed filter based approach are 
compared with non robust approaches. To evaluate the performance of the proposed approach we have 
performed a comprehensive simulation study. The results confirm the superiority of the proposed 
approach, considering various criteria which is insensitive to heavy contamination of outliers and short 
time series. 
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INTRODUCTION 
 
Periodicity provides useful information about the inherent 
structure in cyclic data set. For example the human 
respiration pattern is an example of an important periodic 
process. Deviation from normal periodic behavior is 
observed in many diseases. Periodicity can be used to 
derive the signature of normal breathing patterns and 
thereby facilitating abnormality detection. Periodicity not 
only helps to understand the properties of a single time 
series, but can capture complex relationships among 
multiple time series. For example, the heart rate, chest 
volume and blood oxygen concentration can be related 
through their periodic pattern. A fundamental 
nonparametric tool for detecting the periodicities of time 
series data is the periodogram. Although it is a basic 
spectrum estimation tool widely applicable in different 
application, but it is not a consistent estimator of the 
spectral density function. However, despite the 
inconsistency of the periodogram as a spectrum 
estimator, it is a useful tool for developing statistical 
inference methods for the spectral since its statistical 
properties are known. Consequently, many of the 
traditional statistical tests of the detection of periodic time 
series such as Fisher's test (Fisher, 1929) can be 
expressed in terms of the periodogram. Although the 
aforementioned methods provide exact test because they 
are based on a Gaussian assumption and a type of least 

squares estimation; they are not robust and can fail if the 
original noise assumptions do not hold. For example in 
many applications, the exact noise characteristics are 
usually unknown and can be remarkably non-Gaussian. 
Furthermore, the observed time series data can exhibit 
outliers, short length and distortion from the original wave 
form. Therefore, the computational methods should 
preferably be in robust such anomalies in the data. To 
solve this problem, a robust version of the fisher g-test 
has been introduced by Wichert et al. (2004) and 
Ahdesmaki et al. (2005). We review this method in this 
study and compare it with the proposed approach in there 
after. Here we consider another alternative approach. 

According to this approach, we start with filtering the 
perturbed data in order to reduce the effect of existence 
of outliers and then we use fisher g-test. It is expected 
that the obtained results by this approach are more 
effective than the first two as we do not remove outliers. 
Furthermore, our proposed approach works very well 
even for a small sample size. Moreover, we reduce the 
noise level in order to increase the data quality 
improvement. In line with this research, it has been 
shown that noise reduction is important for curve fitting in 
the linear and nonlinear regression models (Hassani et 
al., 2009a, 2010a, b, c). The next challenge is to choose 
a proper filtering technique. There are several  linear  and  
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nonlinear methods for filtering noisy data. It has been 
shown that the singular value decomposition based 
techniques are more effective than the other ones for the 
noise reduction and filtering (Golyandina et al., 2001). 
Here, we use the singular spectrum analysis (SSA) 
technique which is an SVD-based approach as a filtering 
tool. SSA is designed to look for nonlinear, non–
stationary, and intermittent or transient behaviour in an 
observed time series and following its successful 
application in the physical sciences, applications in 
economics and finance are now also finding favour 
(Thomakos et al., 2002; Hassani and Zhigljavsky, 2009; 
Hassani et al., 2009b). It is noticeable that there are 
several modification of SSA procedure (Golyandina et al., 
2001; Hassani, 2010), however here we use basic 
version of SSA. 

The structure of this paper is as follows: subsequently, 
we introduce the periodogram method as a standard 
periodicity detection tool to obtain Fisher's test and robust 
version of it, after which the new approach based on SSA 
is introduced. This is followed by a presentation of the 
result of comparison based on simulation studies. Finally, 
a brief conclusion is presented. 
 
 
THE PERIODOGRAM AND FISHER G-TEST 
 

Given a time series [ ]1,..., ny y  in the following Fourier 

representation: 
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Where 
t

e  is the noise term with distribution
2(0, )N σ . In 

Model 1 we can test 

The 

fundamental, nonparametric tool for spectrum estimation 
is to use the periodogram as defined as follows: 
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We can also compute it at a discrete set of Fourier 

frequencies 2 / , 0,1,...,[ / 2].
k

k n k nω π= =
 
Preiestly 

(1981) showed that for each ω  we may write ( )
n

I ω  in 

an alternative form: 
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function at lag s. Thus, we are able to test whether a 
series contains multiple m periodic components by 
postulating the model. It should be noted that if we 
observe that the periodogram contains a number of sharp 
peaks, we should not conclude immediately that each of 
these peaks corresponds to a genuine periodic 

component obtained from series
t

y . It has been 

recommended that we need to apply a suitable test to the 
periodogram peak to determine whether its value is 
significantly larger than that which would be likely to arise 
if there were no genuine periodic components in the 
model. The usual procedure is to start by plotting the 
periodogram ordinates at the standard 

frequencies 2 / , 0,1,...[ / 2]
k

k N k nω π= = , and then 

test the value of the largest observed peak. Fisher (1929) 
derived an exact test for the detection of hidden 
periodicities of unspecified frequency in time series 
based on the following statistic: 
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Test statistic (3) known as Fisher's g-test statistic. Since 
the g-statistic divides the maximum periodogram ordinate 
by the sum of all periodogram ordinates, large values of g 
indicate a strong periodic component and can lead to the 
rejection of the null hypothesis. Fisher showed that (for 

the case n odd) the exact distribution of g under 
0

H  is 

given by: 
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Where "a" is the largest integer less  than .  Thus,  for  



 
 
 
 

any given significance levelα , we can use Equation 3 to 

find the critical value αg , such that .)gg(p α=> α  If 

the g value calculated from the series is larger than αg  

then we reject the null hypothesis and conclude that the 

series
t

y contains the specified periodic component (Wei, 

1990). 
 
 
Robust Fisher g-test 
 
Let us turn back to the spectrum estimation problem. As it 
was mentioned in Priestley (1981), the periodogram 

)(ω
n

I is equivalent to the correlogram spectral 

estimator )(ˆ kr , that is: 

 

 
 

Where )(ˆ kr is the biased estimator of the autocorrelation 

function. Since the time series data is often contaminated 
with different types of outliers, the spectral estimation 
method and our test results are not reliable in most 
cases. To overcome this problem we consider a ranked 
based autocorrelation estimator for the problem of 
spectrum estimation. This estimator is a moving-window 
extension of the Spearman rank correlation coefficient, 
quantifying the association between sequences {yj} and 
{yj + k}. More specifically, we consider the correlation 

coefficient between the data ranks Ry(i) and )(iRy
′  

defined by Ahdesmaki et al. (2005) as: 
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Where C is a normalization factor, Ry(i) denotes the rank 

of yi in the set S = {yj : j ∈ Im} and )(iRy
′ denotes the 

rank of yi + m in the set S' = {yj + m : j ∈ Im}, where 
m

I  is 

the set of time indices k for which both
k

y and
mk

y + are 

available and 
mm

Ik = . By selecting either C = Km or C 

= N in Equation 5 yields the unbiased or the biased 
estimate of the correlation coefficient between the rank 
sequences, respectively. The robust version of spectral 
density function is as follows: 
 

 
 
Wichert et al. (2004) and Ahdesmaki et al. (2005)  
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suggest using the g-statistic and evaluate the following 
statistic: 
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We called the aforementioned test statistic as ‘robust 
fisher g-test statistic’. Note that, the exact distribution of 
the g-statistic, for example, under the Gaussian noise 
assumption is unknown. Therefore, to obtain the 
significance values we may consider the simulation 
studies. Moreover, this method requires intensive 
numerical computations. 
 
 

FILTER BASED FISHER TEST 
 

Here, we aim to use a filter based approach as a new 
approach to circumstances which there are outliers in the 
dataset. We use singular spectrum analysis (SSA) that is 
a powerful technique for time series analysis 
incorporating the elements of classical time series 
analysis, multivariate statistics, multivariate geometry, 
dynamical systems and signal processing (Golyandina et 
al., 2001). In what follows we give a breif explanation of 
the SSA method (Hassani, 2007). 
 
 

Singular spectrum analysis 
 

The SSA technique consists of two complementary 
stages: decomposition and reconstruction and both of 
which include two separate steps. The original time 
series is decomposed into a number of additive time 
series, each of which can be easily identified as being 
part of the modulated signal or as being part of the 
random noise. This is followed by a reconstruction of the 
original series. A brief description of the method will be 
given here. Consider the real-valued non-zero time series 
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],[=)(=
1

,

1=, K

KL

jiij
XXx KX

 
 
Where: 
 

T

jLjj
yyX ),,(=

1−+K . 

 





















++ TLLL

K

KL

jiij

yyyy

yy

yyyy

x

K

MMMOM

MMK

K

21

32

321

,

1=, =)(=X             (7) 



3720            Sci. Res. Essays 
 
 
 
Note that X is a Hankel matrix which means that all the 
elements along the off diagonal are equal. We then 

consider X  as multivariate data with L  characteristics 

and 1= +− LTK  observations. The columns 
T

jLjj
yyX ),,(=

1−+K  of X  considered as vectors lie in 

an L -dimensional space 
LΡ . Define the matrix .

T
XX  

Singular value decomposition (SVD) of 
T

XX  provides us 

with the collections of L  eigenvalues 

0
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normalized eigenvector corresponding to the 

eigenvalue iλ  ),1,=( Li K . If we denote 

ii

T
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trajectory matrix X can be written as: 
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If we choose the first r  eigenvectors 
r

UU ,,
1
K , then the 

squared 
2

L -distance between this projection and X  is 

equal to j

L

rj
λ∑ +1=

. According to the basic SSA 

algorithm, the L -dimensional data is projected onto this 
r -dimensional subspace and the subsequent averaging 
over the off diagonals allows us to obtain an 
approximation to the original series. The main postulate 
of SSA procedure is that this approximation has the least 
noise effect, therefore we expected that the resluts 
obtained by this method have high precision. 
 
 

SIMULATION STUDIES 
 
Let us now evaluate the performance of our proposed 
approach using simulation study. The test signal model is 
as follows: 
 

             (8) 

 

Where t = 1,…, N and  is uniformly randomly chosen 

and  is an i.i.d. noise sequence. We consider two types 

of noise levels: 
 

i) Gaussian noise (zero mean). 
ii) Gaussian noise and impulsive noise. 
 

For the second case, we consider several data points 
randomly and multiply them with a constant number. 

 
 
 
 
Power test 
 
Let us now examine the power of our proposed test, that 
is, the probability that the test will reject a false null 
hypothesis. The power of the test is estimated for the 
three different procedures; that is, non-robust fisher g-
test, robust fisher g-test and filter approach based on 
SSA. We have also considered different time series 
lengths and different noise parameters. The simulations 
were repeated 1000 times. The test power has been 
calculated as follows: using GenCycle package written by 
Ahdesmaki et al. (2005), we obtain the p-value of both 
the fisher-g-test and robust fisher g-test. Then, proportion 
of the rejection of false null hypothesis from 1000 p-value 
of the simulation runs gives the power test. Another point 
that we must to clarify is the parameters of the SSA. 
Certainly, the choice of the parameters depends on the 
data and the analysis we have to perform. Many rules 
have been proposed in the literature (Golyandina et al., 
2001; Golyandina, 2010). According to common 
suggestion of the researchers for choosing the SSA 
parameters, we use half of the time series length for 
window length parameter. Choosing the number of 
needed singular values for the filtering stage, r depends 
on the structure of the series (Golyandina et al., 2001). 
Here we use r = 2 singular values to refine the series as 
we have a simple sine series and there is no intercept in 
the model. To gain a better understanding of the effect of 
filtering and evaluating the performance of the proposed 
approach, we consider our simulation studies with 

several  levels,  parameters, different percentage of 

contaminations and various noise levels. For all these the 
case-specific noise assumptions are used for both the 

null hypothesis (H0: β = 0) and the alternative hypothesis 

(H1: β > 0). Figures 1 to 4 represent the results. Solid, 
dashed and dotted lines denote SSA, non-robust fisher g-
test and robust fisher g-test, respectively. Figure 1 shows 
the test power for periodicity detection with alpha levels 

0.01, 0.05, 0.10 and 0.15 for Model 8 (considering β = 2 

and  = 0.05). As can be seen from the figure, there is a 

significant difference between the power of the filter 
based approach and other approaches for all cases. 
Figure 2 shows comparison of three methods with 

selected parameters β = 0.5, 1.0, 1.5 and 2.0. The results 
confirm the superiority of filter based approach. Figure 3 
shows the results for four noise levels σ = 1.5, 2, 2.5 and 
3. As can be seen from the figure, the power of new 
approach becomes better by increasing noise level. 
Different percentages of contamination considered in 
Figure 4. The results indicate that the power of filtered 
based fisher g-test remains high in the circumstances of 
high percentages of contamination. 
 
 
Running time 
 
Let us now consider the performance of all  aforementioned
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Figure 1. Power test with respect to Alpha. 

 
 

 

 
 

Figure 2. Power test with respect to parameter β. 
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Figure 3. Power test with respect to noise level. 

 
 
 
 

 
 
Figure 4. Power test with respect to contamination percent. 
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Table 1. Run time for three approaches. All programs were run on a computer with 2 GHz CPU and 2 GB of RAM. 
 

Size of time series Fisher g-test (s) Filtered base Fisher g-test (s) Robust fisher g-test (s) 

10 0.00 0.00 53.07 

20 0.00 0.00 109.25 

50 0.00 0.00 285.92 

100 0.00 0.02 590.07 

200 0.00 0.06 1261.14 
 
 
 

test with respect to running time. Table 1 represents the 
results. The results indicate that the running time of the 
proposed approach is also faster than the robust fisher g-
test. 
 
 
Conclusion 
 
Our simulation results with strong evidence confirmed 
that the filtering approach using SSA and then using 
fisher g-test is more robust than the robust fisher g-test. 
The proposed approach yields powerful results in finding 
periodicity in time series. As illustrated in the simulations 
study, the proposed filtered based approach has clearly 
better performance than the Fisher test and robust 
version of it considering different aspects. Moreover, the 
results confirm that the running time of the filtered based 
approach substantially is less than the robust version and 
has been used so far. 
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