
Scientific Research and Essays Vol. 7(31), pp. 2835-2848, 9 August, 2012 
Available online at http://www.academicjournals.org/SRE 
DOI: 10.5897/SRE12.297 
ISSN 1992-2248 ©2012 Academic Journals 
 
 
 
 

Full Length Research Paper 
 

Prediction of compression index using artificial neural 
network 

 

Farzin Kalantary1 and Afshin Kordnaeij2* 
 

1
Department of Geotechnical Engineering, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, 

Iran. 
2
Faculty of Engineering, Institute of Higher Education Allameh Mohaddes Noori, Noor, Mazandaran, Iran. 

 
Accepted 6 June, 2012 

 

Over the decades, a number of empirical correlations have been proposed to relate the Compression 
Index of normally consolidated soils to other soil parameters, such as the natural water content, liquid 
limit, plasticity index and void ratio. In this article too it has been attempted to establish a correlation 
between compression index and physical properties for the clayey soils of Mazandaran region. Due to 
the multiple effects of various parameters, Artificial Neural Network (ANN) has been adapted for 
predicting the compression index from more simply determined index properties. In order to develop 
the ANN model, four hundred consolidation tests for soils sampled at 125 construction sites in the 
province of Mazandaran, in the north of Iran were collected and 90% of these were used to train the 
prediction model and the other 10% were used to test it. A comparison was carried out between the 
experimentally measured compression indexes with the predictions. Furthermore, the predictions of a 
number of previously proposed empirical correlations were obtained using the available data and it has 
been shown that an improvement of 1 - 4% with respect to the other correlations has been achieved.  
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INTRODUCTION 
 
Settlement prediction is an important task in geotechnical 
engineering. Several researchers have predicted 
settlement by considering different uncertainty para-
meters, probabilistic measurements, analytical methods, 
regression analysis and simplified methods (Wakita, 
1993; Du and Zhang, 2001; Fenton et al., 1996; Hornig, 
2010). 

An increase in stress caused by the construction of 
foundations or other loads compresses the soil layers. 
The compression is caused by (a) deformation of soil 
particles, (b) relocation of soil particles, and (c) expulsion 
of water or air from the void spaces. In general, the soil 
settlement caused by loads may be divided into three 
broad categories: 
 
1. Immediately settlement, which is caused by the  elastic  
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deformation. 
2. Primary consolidation settlement. 
3. Secondary consolidation settlement (Das, 2004). 
 

To calculate settlement in clayey soil layers, laboratory 
consolidation tests which depict one-dimensional 
compression behavior need to be performed on samples 
taken from representative layers (Terzaghi, 1925; Lambe, 
1967). 

One of the manners for settlement  calculation of 
normally consolidated fine soil is by using the 
compression index from the conventional oedometer test 
(ASTM, 1998). Using the calculated values of Cc, the 

settlement (Sc) due to an increase in load ( ) can be 

determined from the following equation: 
 

                                        (1) 

 

Where,  Sc  =  Settlement  due  to  primary   consolidation  
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caused by an increase in load; Cc = Compression Index; 
H = Initial thickness of the in situ cohesive soil layer; e0 = 
Initial void ratio of the in situ saturated cohesive soil layer; 

 = Initial vertical effective stress of the in situ soil; and 

 = load increment. 

As the oedometer test in laboratory  takes a much 
longer time than simpler index property tests various 
attempts have been made to estimate this index to obtain 
an initial estimate and also to cross check the results of 
the consolidation test. Empirical formulas relating various 
parameters to the compression index have been 
presented by many researchers (Azzouz et al., 1976; 
Koppula, 1981; Herrero, 1983a,b; Park and Lee, 2011; 
Nishida, 1956; Cozzolino, 1961; Sower, 1970; Bowles, 
1989; Ahadiyan et al., 2008; Hough, 1957; Gunduz and 
Arman, 2007; Mayne, 1980; Terzaghi and Peck, 1967; 
Nagaraj and Murty, 1985; Al-Khafaji and Andersland, 
1992; Yoon and Kim, 2006; Ozer et al., 2008). 

However, due to fact that the index is affected by 
multiple parameters, simple regression analysis does not 
suffice and thus multiple regression techniques or better 
known Artificial Neural Network (ANN) is needed. ANN is 
potentially useful, where the underlying physical process 
relationships are not fully understood and well-suited in 
modeling such systems. Therefore it is proposed to be 
used here for predicting the compressibility charac-
teristics of soils. The advantage of the ANN is that it is 
very useful in learning complex relationships between 
multi-dimensional data.  

ANNs have been applied in a number of geotechnical 
problems where mathematical models sustain simplify-
cations, lack of robustness or are not available at all. 

The authors have collected the data from four hundred 
consolidation tests for soils sampled at 125 construction 
sites in province of Mazandaran, Iran and classified the 
soil parameters according to the void ratio, natural water 
content, liquid limit, plastic index and specific gravity.  
 
 
Artificial Neural Network (ANN)  
 
The concept of an artificial ANN was inspired by the 
complex architecture of the human brain, regarded as a 
highly non-linear, parallel operating system (Haykin, 
1999). 

An ANN is developed for a specific application, such as 
pattern recognition or data classification, through a 
learning process. There are various types of ANN which 
differ in their operations, such as data prediction, data 
classification, data association, data conceptualization, 
and data filtering. The common type of ANN consists of 
three interconnected layers: input, hidden and output. 

Multi-layer network use a variety of learning tech-
niques; the most popular is back-propagation. Back-
propagation networks are probably the most well-known 
and widely  applied  of  the  neural  networks  today.  The  

 
 
 
 
feed-forward, multi-layer perception’s ANNs have be-
come the most popular ones in geotechnical engineering.  

ANNs do not have any prior knowledge about the 
existing problem. Therefore, training is required to make 
the network more intelligent. Training a neural network is 
conducted by presenting a series of example patterns for 
associated input and   bases are set to random values. 
The performance of ANN model is measured in terms of 
an error criterion between the target output and the 
calculated output.  

The most important step in designing an ANN is the 
determination of the ANN architecture and the selection 
of a training algorithm. An optimal architecture is able to 
obtain good performance with minimal resulting error. 
The number of hidden layers and the number of nodes in 
each hidden layer are usually determined by a trial-and 
error procedure (Kolay et al., 2008). 

At the end of the training phase, the neural network 
represents model able to predict a target value when 
given the input value. 

Recently ANNs have been employed to model complex 
relationships between input and output datasets in 
geotechnical engineering (Sinan, 2009; Ozer et al., 2008; 
Park et al., 2009; Cho, 2009; Park, 2010; Park and Cho, 
2010; Park and Lee, 2011; Park and Kim, 2010; 
Mollahasani et al., 2011; Goktepe et al., 2010).  
 
 
Database compilation 
 

Following the previous trend of studies, in the present 
study the compression index of the soils was assumed to 
be affected by the void ratio (eo), natural water content 

( ), liquid limit (LL), plastic index (PI), and specific 

gravity (Gs). The data was produced by the Technical 
and Soil Laboratory of Mazandaran Province which is 
one of the most experienced consultants in the country 
(appendix 1). The samples were all collected using a 
standard procedure and tests were carried out using 
ASTM D 2435-96. Table 1 display the descriptive 
statistics of each variable. 
 
 

Comparison of existing equations 
 

As the oedometer test is relatively time-consuming test 
compared with standard index tests, various attempts 
have been made to estimate the compression index from 
tests more easily carried out. Many researchers have 
used single parameter models for the estimation of the 
compression index, that is,, liquid limit, natural water 
content or in-situ void ratio. However, others recommend 
multiple soil parameter models for the estimation of this 
index. Several of these empirical correlations (one and 
multi–variable equations) are presented in Table 2.  

Absolute fraction of variance ( ), root mean squared 

error (RMSE), mean absolute percent error  (MAPE)  and  



 
 
 
 

Table 1. Descriptive statistics of variables. 
 

Variable Minimum Maximum Mean 

 
0.357 1.882 0.767 

 
10.2 70 28.62 

 
24 81 39.8 

 
3 50 18.58 

 
2.43 2.8 2.64 

 
0.05 0.628 0.206 

 

= natural water content (%), = initial void ratio, LL= liquid 

limit (%), PI= plastic index (%), = specific gravity of soil 

particles, = compression index. 

 
 
 
mean absolute deviation (MAD)  were used to evaluate  
the performance of the proposed equations and models, 
which are defined as follows (Abedimahzoon et al., 
2010):   
 

                      (2) 

 

                          (3) 

 

                              (4) 

 

                                              (5) 

 

Where, n is the number of data points,  and  are 

respectively the actual measured and predicted output 
value from the i

th
 output. The lower the RMSE, MAPE and 

MAD values, the better the model performance. Under 
ideal conditions an accurate and precise method gives 

 of 1.0, RMSE, MAPE and MAD of 0. In Table 3, the 

RMSE, MAPE, MAD and  of empirical equations are 

compared for all data sets collected in this study (400 
data sets). 

It can be seen that the multi variable equation proposed 

by Azzouz et al. (1976) using ,  and  as 

predictor variables gave the lowest RMSE value (0.0428), 
the lowest MAPE value  (16.51),  the  lowest  MAD  value  
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(0.0339) and the highest  value (0.97) (Equation 26 in 

Table 3).  
Among the single variable equations, the equation with 

the lowest RMSE value (0.0445), the lowest MAPE value 
(17.32), the lowest MAD value (0.0356) and the highest 

 value (0.96) was that proposed by Azzouz et al. 

(1976)  using  as predictor variable. (Equation 9 in 

Table 3(  
 
 

Development of new empirical equations 
 

K-fold cross validation was used to obtain the best 
prediction using single variable as well as multiple 
parameters. The formulas using single parameters of the 
void ratio and natural water content show better 
performance than other types of formulas using the single 

parameter. The developed equations and their , 

RMSE, MAPE and MAD indices are shown in Table 4.  

It can be seen that the proposed equation 3 using , 

,  and  as predictor variables gave the lowest 

RMSE value (0.0385), MAPE value (14.86), MAD value 
(0.0306) and the highest absolute fraction of variance 

( = 0.97) (Equation 3 in Table 4 and Figure 3.  .(  

Also the single variable equation with  as variable 

parameter has the least error toward the single variable 
relations in the past. (RMSE=0.044, MAPE=17.12, 

MAD=0.0352 and = 0.96)(Equation 2 in Table 4 and 

Figure 2. 
(Figures 1 and 2 show the relationship between output 

targets and predicted values obtained from the proposed 
relationships (R, Coefficient of Correlation). It can be 
seen that the proposed equation results in points more 
closely located around the 1:1 line. 
 
 

Development of the ANN model 
 

In order to develop the artificial neural network (ANN) 
model, it is common practice to divide the available data 
into two subsets: training set to construct the ANN model 
and an independent validation set to estimate model 
performance. 

We divided the data set randomly into two separate 
data sets—the training data set (90% of the total data 
set) and the testing data set (10% of the total data set).  

In this study, among 400 data sets, 40 randomly 
collected data sets were used in the testing stage and 
360 data sets were used in the training stage. The five 

parameters, , , LL, PI and  were included in the 

input layer of all ANN models (Table 5). The network 
uses the default Levenberg-Marquardt algorithm for 
training. In  the  training  stage  the  application  randomly  
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Table 2. Some widely used compression index equations. 
 

Independent 
variable 

Equation Reference 

Single variable equation 

   Azzouz et al. (1976)  

 Koppula (1981) 

 Herrero (1983b) 

 Park and Lee (2011) 

   Nishida (1956) 

 Cozzolino (1961) 

 Sower (1970) 

 Park and Lee (2011) 

 Azzouz et al. (1976) 

 Bowles (1989) 

 Ahadiyan et al. (2008) 

 Hough (1957) 

 Gunduz and Arman (2007) 

  Azzouz et al. (1976) 

 Mayne (1980) 

 Terzaghi and Peck (1967) 

 Park and Lee (2011) 

 Bowles (1989) 

Multi-variable equation 

 
 

Nagaraj and Murthy (1985) 

 

 
Park and Lee (2011) 

,     Koppula (1981) 

 
 Azzouz et al. (1976) 

,    (Azzouz et al. 1976) 

,    Al-Khafaji  and Andersland (1992) 

 
 Ahadiyan et al. (2008) 

, ,    Azzouz et al. (1976) 

 
 Yoon and Kim (2006) 

,    Herrero (1983a) 

, LL, ,    Ozer et al. (2008) 

 
 Ozer et al. (2008) 

 
 
 
divides input vectors and target vectors into three sets as 
follows: 
 
1. 60% are used for training. 
2. 20% are used to validate that the network is  
generalizing and to stop training before over fitting. 

3. The last 20% are used as a completely independent 
test of network generalization. 
 
In the present study feed forward with back-propagation 
neural network is utilized for data. MATLAB 7.6 is used in 
training  and  simulation  of  data.   Various   numbers   of  
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Table 3. Statistical results for conventional empirical formulas ( ). 

 

Equation No Equation 
 

MAPE RMSE MAD 

1   0.918 25.17 0.0629 0.0517 

2   0.80 41.83 0.0975 0.086 

3   0.937 21.26 0.0553 0.0437 

4   0.85 33.79 0.0845 0.0695 

5   0.93 21.27 0.0572 0.0437 

6   0.95 18.63 0.0478 0.0383 

7   0.86 29 0.0820 0.0596 

8   0.87 31.46 0.0781 0.0647 

9   0.96 17.32 0.0445 0.0356 

10   0.80 39.31 0.0983 0.0808 

11   0.957 17.5 0.0458 0.036 

12   0.89 28.72 0.0723 0.059 

13   0.30 95.38 0.2499 0.196 

14   0.87 29.45 0.0792 0.0605 

15   0.79 37.41 0.1012 0.0769 

16   0.74 41.96 0.1111 0.0863 

17   0.045 91.4 0.2244 0.188 

18   0.81 36.81 0.0965 0.0757 

19 
  

0.84 33.42 0.0867 0.0687 

20 
  

0.6426 53.98 0.1313 0.111 

21   0.3984 122.09 0.2597 0.251 

22   0.92 24.87 0.0621 0.0511 

23   0.95 18.326 0.0468 0.0377 

24   0.95 19.17 0.0498 0.0394 

25   0.95 17.7851 0.0492 0.0366 

26   0.97 16.51 0.0428 0.0339 

27   0.88 29.45 0.0766 0.0605 

28   0.94 19.39 0.0538 0.0398 

29   0.96 18.03 0.0455 0.0371 

30   0.95 18.89 0.0475 0.0389 

 
 
 

Table 4. Suggested empirical equations and statistical results. 
 

Equation No Equation 
 

MAPE RMSE MAD 

1   0.95 19.48 0.0513 0.04 

2   0.96 17.12 0.044 0.0352 

3   0.97 14.86 0.0385 0.0306 
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Figure 1. The measured compression indexes obtained 
from the consolidation test versus the suggested equation 
estimated compression indexes (Equation 2, Table 4). 

 
 

 

 
 

Figure 2. The measured compression indexes obtained from 
the consolidation test versus the suggested equation 
estimated compression indexes (Equation 3, Table 4).  

 
 
 

neuron in the hidden layer and the combinations of 
transfer functions were tested to find the optimal structure 
for the ANN model. The value of the minimum mean 
squared error, mean absolute percent error and mean 
absolute deviation were varied based on the correlation 
coefficient ( ) for the testing results.  

 
 
 
 

 
 

Figure 3. The measured compression indexes 
obtained from the consolidation test versus the 
ANN estimated compression indexes (result of 
training process). 

 
 
 

The combination of two hidden layers gives better 
results than single hidden layer and also the combination 
of transfer functions composed of log-sigmoid, tan-
sigmoid and linear function gives good results. The ANN 
model with five neurons in the input layer, nine neurons in 
the first hidden layer, three neurons in the second hidden 
layer, and one node in the output layer gives the best 
results. Figures 3 and 4 shows the relationship between 
output targets and predicted values obtained through the 
training and testing process. 

The model shows very good correlation for both the 
training and testing data compared with the conventional 
empirical formulas and the suggested formulas.  

In Table 6, the predictability of the ANN model is statis-
tically compared with the empirical formulas. The value of 
RMSE, MAPE and MAD are found to be minimum for the 
ANN model in both training and testing stage. Therefore, 
the developed ANN model is more efficient than the 
existing and proposed empirical formulas and by using it 
we can accurately estimate the consolidation settlement 
of this aria. 

 
 
Conclusion 
 
In this study, the performances of widely used single and 
multi-variable empirical equations for the estimation of 
the compression index were evaluated using a database 
consisting of 400 wide-ranging samples from the 
Province of Mazandaran, Iran. Using the same database, 
new single and multi-variable empirical equations were 
developed. Furthermore, an attempt has been made to 
predict this index by using neural network simulation. The  
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Table 5. Descriptive statistics of variables used in the ANN. 
 

Variable 
Test (40 data set) Train (360 data set) 

Mean maximum minimum mean Maximum minimum 

 

 

Input 

 0.357 1.882 0.767 0.476 1.647 0.769 

 10.2 70 28.51 14.5 64.1 29.47 

LL 24 81 39.9 27 64 39.15 

PI 3 50 18.68 7 35 17.85 

 2.43 2.8 2.64 2.44 2.74 2.62 

Output    0.05 0.628 0.2054 0.076 0.53 0.2067 
 

= natural water content (%), = initial void ratio, LL= liquid limit (%), PI= plastic index (%), = specific gravity of soil particles, 

= compression index. 

 
 
 

 
 
Figure 4. The measured compression indexes obtained 
from the consolidation test versus the ANN estimated 
compression indexes (result of testing process). 

 
 
 

Table 6. Statistical results for the best empirical formulas and ANN. 
 

Equation No Equation 
 MAPE RMSE MAD 

1 ,  Herrero (1983) [12] 0.937 21.26 0.0553 0.0437 

2  , in this study 0.95 19.48 0.0513 0.04 

3  , Azzouz et al. (1976) [10] 0.96 17.32 0.0445 0.0356 

4  , in this study 0.96 17.12 0.044 0.0352 

5  , Azzouz et al. (1976) [10] 0.97 16.51 0.0428 0.0339 

6 
 , in 

this study 
0.97 14.86 0.0385 0.0306 

7  ,    ANN model (training) 0.975 13.34 0.0348 0.0274 

8  ,    ANN model (testing) 0.978 13.17 0.0337 0.0272 
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results indicate that:  
 

1. Among the single variable equations, the equation 
proposed by Azzouz et al. (1976) (Equation 9 in Table 3(, 
utilizing initial void ratio as the variable, has the lowest 
error. 
2. Among the multi variable equations, the equation 
proposed by Azzouz et al. (1976) (Equation 26 in Table 
3( gave the best performance using initial void ratio, 
natural water content and liquid limit of soil as predictor 
variables. 
3. Based on the regression analysis, the formulas using 
single parameters of the void ratio and natural water 
content show better performance than other types of 
formulas using the single parameter. 
4. The proposed equation using void ratio shows the 
lowest RMSE, MAPE, MAD and the highest regression 
coefficient which is better than the existing single variable 
equations. 
5. Among the suggested equations, the equation 

 shows the lowest RMSE value (0.0385), MAPE value 
(14.86), MAD value (0.0306) and the highest regression  
coefficient for the compression index. 
6. The predictions of artificial neural network model 
agreed well with the measured compression index of the 
consolidation tests. Therefore, reliable predicting capa-
bilities were obtained.  
7. The developed ANN model is more efficient than the 
existing and proposed empirical formulas and by using it 
we can accurately estimate the consolidation settlement 
of this aria. 
 
 

ACKNOWLEDGEMENTS 
 

Authors are thankful to engineers Afshin Khatami, 
Mohsen Taheri and Hadi Shirsavar for their help. Authors 
also thank the Technical and Soil Laboratory of 
Mazandaran Province for collecting the borehole data. 
 
 

REFERENCES 
 
Abedimahzoon N, Molaabasi H, Lashtehneshaei MA, Biklaryan M 

(2010). Investigation of undertow in reflective beaches using a 
GMDH-type neural network. Turk. J. Eng. Environ. Sci. 34:201-213. 

Ahadiyan J, Ebne JR, Bajestan MS (2008). Prediction Determination of 
Soil Compression Index, Cc, in Ahwaz Region (In Persian). J. Faculty 
Eng. 35(3):75-80. 

Al-Khafaji AWN, Andersland OB (1992). Equations for compression 
index approximation. J. Geotech. Eng. ASCE. 118(1):148-153. 

ASTM D 2435-96 (1998). Standard Test Method for One-dimensional 
Consolidation Properties of Soils, Annual Book of ASTM standards. 
Vol. 04.08, Soil and Rock (I). Standard. Pennsylvania pp.207-216. 

Azzouz AS, Krizek RJ, Corotis RB (1976). Regression Analysis of Soil 
Compressibility. Soils Found. 16(2):19-29. 

Bowles JE (1989). Physical and Geotechnical Properties of Soils. 
McGraw-Hill Book Company Inc. New York, pp. 442-448. 

Cho SE (2009). Probabilistic stability analyses of slopes using the ANN-
based response surface. Comput. Geotech. 36:787-797. 

Cozzolino VM (1961). Statistical forecasting of compression index. In: 
Proceedings of the fifth international conference on soil mechanics 

 
 
 
 
and foundation engineering. Paris pp.51-53. 

Das BM (2009). Principles of geotechnical engineering. 7nd edition. 
Thomson Engineering p. 294. 

Du JC, Zhang LM (2001). Simplified Procedure for Estimating Ground 
Settlement under Embankments. In: Third International Conference 
on Soft Soil Engineeringc. Hong Kong pp.193-198. 

Fenton GA, Paice GM, Griffiths DV (1996). Probabilistic Analysis of 
Foundation Settlement. Proceedings of the ASCE Uncertainty. 96 
Conference. Madison. Wisconsin. Aug. ASCE Geotechnical Special 
Publication 58(1):657-665. 

Goktepe F, Arman H, Pala M (2010). A new approach for classification 
of clayey soil: A case study for Adapazari region, Turkey. Sci. Res. 
Essays 5(15):2037-2043. 

Gunduz Z, Arman H (2007). Possible Relationships between 
Compression and Recompression Indices of a Low–Plasticity Clayey 
Soil. Arab. J. Sci. Eng. 32(2B):179-189. 

Haykin S (1999). Neural Networks. A Comprehensive Foundation (2nd 
edn). Prentice-Hall: Upper Saddle River. New Jersey. 

Herrero OR (1983a). Universal compression index equation. 
Discussion. J. Geotech. Eng. Div. ASCE. 109(10):1179-1200. 

Herrero OR (1983b). Universal compression index equation. Closure. J. 
Geotech. Eng. Div. ASCE. 109(5):755-761. 

Hornig ED (2010). Field and Laboratory Tests Investigating Settlements 
of Foundations on Weathered Keuper Marl. Geotech. Geol. Eng. 
28:233-240. 

Hough BK (1957). Basic Soils Engineering. The Ronald Press 
Company. New York pp.114-115. 

Kolay PK, Rosmina AB, Ling NW (2008). Settlement Prediction of 
Tropical Soft Soil by Artificial Neural Network (ANN). The 12th 
International Conference of International Association for Computer 
Methods and Advances in Geomechanics (IACMAG) pp.1843-1848. 

Koppula SD (1981). Statistical estimation of compression index. 
Geotech. Test. J. 4(2):68-73. 

Lambe TW (1976). Stress Path Method.  JSMFD. ASCE. (SM6) 93:309-
331. 

Mayne PW (1980). Cam-clay predictions of undrained strength. J. 
Geotech. Eng. Div. ASCE. 106(11):1219-1242. 

Mollahasani A, Alavi AH, Gandomi AH, Rashed A (2011). Nonlinear 
Neural-Based Modeling of Soil Cohesion Intercept. KSCE. J. Civ. 
Eng. 15(5):831-840. 

Nagaraj TS, Murty BRS (1985). Prediction of the preconsolidation 
pressure and recompression index of soils. Geotech. Test. J. 
8(4):199-202. 

Nishida Y (1956). A brief note on compression index of soils. J. SMFE. 
Div. ASCE. 82(3):1-14. 

Ozer M, Isik NS, Orhan M (2008). Statistical and neural network 
assessment of the compression index of clay-bearing soils. Bull. Eng. 
Geol. Environ. 67(4):537-545.  

Park HI (2010). Development of neural network model to estimate the 
permeability coefficient of soils. Marine Geosourc. Geotechnol. 
29(4):267-278. 

Park HI, Cho CH (2010). Neural Network Model for Predicting the 
Resistance of Driven Piles. Marine Geosources and Geotechnol. 
28(4):324-344. 

Park HI, Keon GC, Lee SR (2009). Prediction of Resilient Modulus of 
Granular Subgrade Soils and Subbase Materials Based on Artificial 
Neural Network. Road Mater. Pavement Design. 10(3):647- 665. 

Park HI, Kim YT (2010). Prediction of Strength of Reinforced 
Lightweight Soil Using an Artificial Neural Network. Int. J. Computer-
Aided Eng. 28(5):600-615. 

Park HI, Lee SR (2011). Evaluation of the compression index of soils 
using an artificial neural network. Comput. Geotech. 38(4):472-481. 

Sinan N (2009). Estimation of swell index of fine grained soils using 
regression equations and artificial neural networks. Sci. Res. Essays 
4(10):1047-1056. 

Sower GB (1970). Introductory soil mechanics and foundation. 3rd ed. 
London: The Macmillan Company of Collier-Macmillan Ltd. p.102. 

Terzaghi K (1925). Erdbaumechanik auf bodenphysikalischer 
Grundlage F. Deuticke.  

Terzaghi K, Peck RB (1967). Soil mechanics in engineering practice. 
2nd ed. New York: Wiley p. 73. 

Wakita E (1993).  Settlement  Prediction  Using  Observed  Data and Its 



 
 
 
 
Feedback to Original Design. Proc. of the Intl. Conf. on Soft Soil 

Engineering. Edited by Cheung YK, Yuan JX, Lu PY, Tsui Y, Cao H. 
Guangzhou. China. Nov. Recent Adv. Soft Soil Eng. pp.92-97. 

Yoon GL, Kim BT (2006). Regression Analysis of Compression Index 
for Kwangyang Marine Clay. KSCE. J. Civ. Eng. 10(6):415-418. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kalantary and Kordnaeij          2843 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2844          Sci. Res. Essays 
 
 
 

Appendix 1 
 

 

LL PI 
 

Gs Cc 

33.6 33 13 0.789 2.6 0.28 

26.2 46 24 0.666 2.7 0.126 

30.5 37 18 0.853 2.67 0.26 

19.2 34 15 0.706 2.5 0.196 

32.5 40 20 0.793 2.65 0.186 

30.2 41 22 0.777 2.68 0.219 

39.1 67 43 0.939 2.55 0.36 

55.7 60 32 1.357 2.54 0.5 

34.5 75 47 0.828 2.58 0.27 

36.5 62 34 0.959 2.72 0.375 

36.2 58 33 0.894 2.63 0.32 

22.5 25 5 0.595 2.64 0.183 

12.7 31 10 0.63 2.62 0.236 

22.4 27 8 1 2.67 0.196 

20.8 30 10 0.508 2.69 0.05 

24.5 31 12 0.748 2.61 0.266 

25.7 46 23 0.722 2.63 0.199 

26.6 27 7 0.766 2.66 0.149 

44.4 42 20 1.148 2.7 0.26 

40.3 42 19 1.04 2.73 0.27 

48.1 40 19 1.286 2.72 0.322 

32.7 44 22 0.859 2.64 0.216 

26.7 40 19 0.669 2.67 0.133 

27.7 36 14 0.677 2.63 0.136 

28.6 41 17 0.702 2.58 0.146 

47.6 42 21 1.135 2.63 0.37 

27.4 27 6 0.68 2.66 0.163 

18.7 34 13 0.711 2.66 0.22 

39.1 49 24 0.948 2.6 0.32 

25.9 36 13 0.762 2.7 0.103 

27.6 37 16 0.748 2.61 0.236 

24.4 38 14 0.613 2.53 0.13 

28.6 35 14 0.764 2.62 0.3 

31.1 30 10 0.856 2.68 0.25 

21.6 39 21 0.552 2.6 0.11 

28.8 36 17 0.759 2.64 0.21 

20 36 20 0.562 2.61 0.163 

21.3 27 17 0.547 2.64 0.103 

25.2 42 20 0.645 2.6 0.159 

22.1 34 13 0.66 2.6 0.173 

22.4 58 32 0.685 2.61 0.153 

20 40 19 0.605 2.6 0.196 

17.2 43 21 0.73 2.7 0.206 

19.4 44 21 0.576 2.7 0.11 

31.2 50 29 0.74 2.52 0.259 

23.7 40 21 0.585 2.6 0.22 

 
 
 
 
 

 
 
 
 

Appendix 1. Contd. 
 

 

LL PI 
 

Gs Cc 

37.5 47 24 0.915 2.6 0.29 

29.7 36 14 0.753 2.63 0.2 

25.9 31 11 0.736 2.63 0.21 

24.1 27 8 0.675 2.67 0.126 

21.6 34 12 0.83 2.59 0.28 

25.3 34 13 0.734 2.61 0.2 

27.1 37 14 0.72 2.65 0.176 

31.4 29 7 0.839 2.68 0.15 

30.8 35 13 0.825 2.71 0.2 

30.8 25 5 0.869 2.69 0.2 

22.4 53 28 0.583 2.6 0.169 

19.5 52 28 0.517 2.61 0.14 

27.1 45 22 0.652 2.6 0.18 

28.9 52 28 0.806 2.55 0.28 

39 53 29 0.98 2.63 0.26 

25.3 35 14 0.675 2.7 0.13 

25.2 40 18 0.588 2.6 0.16 

26.7 29 8 0.663 2.67 0.12 

29.7 30 10 0.718 2.66 0.11 

22.6 33 10 0.632 2.64 0.116 

36.5 49 28 0.97 2.62 0.29 

29.4 52 28 0.731 2.62 0.22 

27.1 45 22 0.809 2.72 0.22 

24.7 29 11 0.71 2.63 0.19 

24.4 40 22 0.695 2.7 0.123 

48.7 25 5 1.222 2.59 0.41 

36.9 56 28 0.909 2.57 0.27 

22.6 56 34 0.612 2.68 0.15 

31.9 39 17 0.837 2.68 0.2 

27.2 33 14 0.677 2.66 0.17 

24.7 34 13 0.745 2.67 0.18 

25.3 27 8 0.661 2.66 0.156 

26 37 17 0.723 2.59 0.21 

26.9 42 20 0.716 2.58 0.216 

21.8 38 17 0.563 2.67 0.103 

32 51 32 0.829 2.59 0.31 

40.9 37 10 0.928 2.53 0.31 

23.5 35 15 0.507 2.52 0.11 

57.4 79 45 1.587 2.53 0.628 

31.1 43 22 0.964 2.65 0.365 

32.2 30 10 0.782 2.62 0.159 

38.1 42 20 0.87 2.51 0.256 

29.8 47 27 0.736 2.57 0.25 

27.5 34 15 0.739 2.72 0.146 

22.1 34 14 0.573 2.59 0.123 

31.8 37 16 0.776 2.65 0.166 

 
 
 
 
 



 
 
 
 

Appendix 1. Contd. 
 

 

LL PI 
 

Gs Cc 

27.3 37 18 0.802 2.74 0.179 

27.4 36 14 0.777 2.63 0.229 

27.2 31 11 0.769 2.65 0.176 

28.1 34 12 0.824 2.66 0.269 

22.1 43 21 0.643 2.56 0.203 

24.5 39 19 0.761 2.62 0.183 

29.6 37 15 0.761 2.66 0.173 

11.5 45 22 0.537 2.63 0.13 

17.6 52 28 0.615 2.56 0.21 

18.5 46 23 0.611 2.62 0.173 

19.2 51 25 0.586 2.63 0.186 

13.6 46 22 0.407 2.62 0.113 

35.3 35 13 0.841 2.61 0.256 

32.1 49 29 0.805 2.61 0.233 

32.4 48 28 0.85 2.65 0.249 

32.8 49 28 0.797 2.61 0.309 

30.5 38 17 0.79 2.62 0.249 

30.3 42 20 0.755 2.63 0.193 

31.4 41 22 0.816 2.68 0.266 

34 33 16 0.894 2.62 0.329 

28.5 39 19 0.725 2.64 0.183 

25.6 35 16 0.803 2.62 0.203 

28.3 37 17 0.734 2.64 0.159 

30.8 32 14 0.813 2.63 0.272 

26.7 44 22 0.667 2.67 0.123 

24.8 26 6 0.704 2.7 0.226 

22 24 4 0.558 2.64 0.103 

27.6 37 15 0.873 2.64 0.329 

41.1 39 17 0.993 2.63 0.259 

49.2 60 36 1.008 2.63 0.249 

34.8 51 27 0.854 2.57 0.249 

27.2 36 19 0.678 2.66 0.153 

37.8 44 24 0.965 2.69 0.229 

38.4 62 44 1.014 2.61 0.326 

35.3 41 20 0.909 2.69 0.226 

28 37 17 0.721 2.71 0.163 

29 39 19 0.77 2.68 0.279 

38.7 53 30 0.833 2.61 0.302 

29.8 54 31 0.755 2.57 0.149 

34 58 36 0.867 2.61 0.196 

26.5 36 17 0.676 2.62 0.159 

25.1 43 25 0.708 2.6 0.156 

30.3 46 25 0.775 2.63 0.173 

19.4 38 17 0.529 2.64 0.11 

22.5 36 16 0.599 2.63 0.149 

20.3 30 8 0.546 2.64 0.149 
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Appendix 1. Contd. 
 

 

LL PI 
 

Gs Cc 

21.7 42 22 0.658 2.6 0.22 

19.4 40 19 0.528 2.53 0.149 

22.9 31 12 0.628 2.57 0.143 

25.3 31 11 0.723 2.62 0.169 

28.4 36 16 0.732 2.63 0.176 

23.7 34 15 0.761 2.66 0.189 

29.1 34 13 0.748 2.66 0.213 

39.8 53 27 0.97 2.64 0.252 

28.6 46 22 0.801 2.77 0.153 

24.9 33 14 0.69 2.77 0.13 

27.2 34 13 0.759 2.76 0.163 

20.9 30 13 0.601 2.76 0.11 

21 25 9 0.643 2.74 0.103 

25 36 15 0.697 2.72 0.183 

29.8 43 19 0.828 2.72 0.186 

31.1 30 10 0.874 2.72 0.209 

26.3 60 30 0.733 2.72 0.196 

25.1 37 16 0.738 2.67 0.203 

25.8 39 17 0.73 2.64 0.196 

30.1 39 19 1.012 2.52 0.4 

26.9 43 20 0.732 2.63 0.163 

23.9 30 8 0.605 2.53 0.133 

28.9 26 8 0.824 2.74 0.199 

28.5 39 20 0.653 2.53 0.186 

27 44 24 0.629 2.51 0.166 

29.7 32 11 0.822 2.76 0.213 

24.3 42 24 0.809 2.76 0.199 

28.4 29 9 0.777 2.73 0.14 

24.4 31 15 0.711 2.66 0.159 

25.1 29 11 0.658 2.7 0.149 

26.4 31 14 0.619 2.64 0.14 

26.2 30 15 0.746 2.8 0.183 

22.6 30 10 0.602 2.67 0.13 

27.5 31 7 0.738 2.66 0.173 

28 33 12 0.703 2.68 0.103 

25.7 32 10 0.718 2.71 0.166 

23.2 35 13 0.652 2.68 0.206 

23.1 31 11 0.635 2.66 0.146 

27 32 10 0.644 2.44 0.196 

22.4 27 6 0.643 2.66 0.189 

32.7 57 35 0.904 2.76 0.282 

28.8 56 36 0.793 2.75 0.246 

29.8 31 11 0.831 2.72 0.176 

29 43 22 0.798 2.74 0.209 

27.3 58 35 0.807 2.72 0.229 

18.6 32 13 0.645 2.72 0.14 
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Appendix 1. Contd. 
 

 

LL PI 
 

Gs Cc 

25.6 48 25 0.724 2.64 0.163 

31.2 54 30 0.776 2.63 0.183 

29.8 47 26 0.785 2.64 0.173 

25.2 35 16 0.663 2.65 0.14 

26.4 39 19 0.667 2.55 0.279 

20 27 9 0.63 2.59 0.193 

22.7 29 7 0.637 2.7 0.183 

31.4 33 10 0.768 2.45 0.252 

25.2 34 12 0.675 2.67 0.229 

29.5 33 9 0.784 2.66 0.143 

29.3 29 7 0.795 2.71 0.186 

30.8 28 5 0.751 2.62 0.173 

29.8 54 31 0.755 2.57 0.149 

34 58 36 0.867 2.6 0.196 

26.5 36 17 0.676 2.62 0.159 

30.3 46 25 0.775 2.63 0.173 

23.9 31 12 0.621 2.61 0.156 

26.9 43 20 0.732 2.63 0.163 

23.9 30 8 0.605 2.53 0.133 

28.9 26 8 0.824 2.74 0.199 

33.6 33 13 0.789 2.6 0.279 

26.2 46 24 0.666 2.7 0.126 

11.1 27 5 0.519 2.58 0.126 

20.5 29 8 0.717 2.71 0.146 

24.1 34 12 0.668 2.71 0.106 

31.4 47 29 0.826 2.64 0.179 

36.6 35 15 0.883 2.59 0.246 

32.1 29 7 0.753 2.6 0.213 

28.9 47 26 0.717 2.64 0.246 

34.4 49 28 0.864 2.61 0.223 

19.9 52 31 0.582 2.59 0.166 

20.2 56 36 0.498 2.43 0.169 

23.1 53 35 0.642 2.53 0.169 

16.6 37 21 0.507 2.56 0.226 

23.2 61 37 0.586 2.55 0.159 

22 34 13 0.675 2.54 0.216 

35.4 38 19 0.859 2.56 0.249 

36.2 39 17 0.881 2.63 0.252 

31.9 33 12 0.705 2.67 0.12 

27.6 40 18 0.666 2.67 0.156 

28.9 36 15 0.711 2.66 0.216 

28.1 43 20 0.719 2.67 0.156 

29.8 34 14 0.753 2.66 0.183 

28.3 58 35 0.692 2.57 0.159 

35 57 34 0.88 2.61 0.256 

23.8 39 16 0.828 2.72 0.159 

 
 
 
 
 
 

 
 
 

Appendix 1. Contd. 
 

 

LL PI 
 

Gs Cc 

21.3 36 12 0.502 2.52 0.11 

20.6 26 9 0.551 2.61 0.159 

18.5 36 15 0.567 2.63 0.106 

10.6 24 3 0.368 2.65 0.09 

26.1 31 12 0.778 2.64 0.189 

20.1 49 25 0.638 2.7 0.09 

19.7 45 22 0.661 2.7 0.149 

21.9 51 26 0.694 2.71 0.156 

28.8 44 22 0.75 2.67 0.209 

33.7 36 14 0.844 2.64 0.203 

28.7 40 20 0.755 2.55 0.249 

28.2 40 18 0.757 2.6 0.169 

30.1 29 10 0.75 2.62 0.223 

27.6 34 16 0.738 2.7 0.189 

30.8 37 15 0.784 2.61 0.199 

26.5 29 8 0.637 2.63 0.166 

21.3 41 20 0.699 2.68 0.14 

26.3 24 4 0.695 2.68 0.169 

20.4 32 11 0.699 2.7 0.173 

26.1 30 11 0.752 2.71 0.183 

19.5 28 9 0.73 2.7 0.113 

19 40 19 0.715 2.63 0.219 

18.4 37 17 0.682 2.62 0.213 

18.4 34 15 0.613 2.63 0.153 

49.6 55 28 1.322 2.67 0.409 

40.6 37 16 1.088 2.69 0.259 

39 58 35 1.059 2.7 0.385 

31.2 34 14 0.871 2.73 0.176 

36.1 56 34 0.983 2.7 0.306 

33 37 15 0.88 2.67 0.209 

32.7 62 36 1.054 2.62 0.355 

34.4 62 36 0.806 2.56 0.312 

30.9 40 21 0.926 2.59 0.379 

37.4 55 30 0.921 2.6 0.246 

27.1 59 36 0.693 2.61 0.259 

33.6 46 24 0.847 2.64 0.296 

31.4 41 22 0.804 2.63 0.229 

29 39 20 0.748 2.59 0.233 

25.6 48 25 0.724 2.64 0.163 

31.2 54 30 0.776 2.63 0.183 

25.3 39 21 0.647 2.61 0.259 

23.3 25 6 0.579 2.65 0.093 

25.3 30 9 0.702 2.53 0.189 

25.3 39 21 0.647 2.61 0.259 

29 39 20 0.748 2.59 0.233 

35.3 44 23 0.815 2.54 0.183 

 
 
 
 
 
 



 
 
 

Appendix 1. Contd. 
 

 

LL PI 
 

Gs Cc 

24.6 34 14 0.676 2.63 0.225 

29 40 19 0.8 2.64 0.279 

25.8 34 12 0.692 2.63 0.173 

27.8 33 10 0.707 2.63 0.176 

26.7 38 18 0.684 2.62 0.179 

54.3 30 10 0.943 2.67 0.282 

28.3 34 13 0.778 2.68 0.133 

29.5 32 14 0.744 2.65 0.173 

27.7 35 15 0.73 2.68 0.159 

20.5 42 21 0.601 2.6 0.229 

23.4 45 21 0.697 2.67 0.176 

21.6 42 23 0.664 2.58 0.156 

21.9 44 24 0.686 2.59 0.166 

20.5 47 22 0.742 2.56 0.196 

25.3 55 27 0.719 2.63 0.209 

20 46 25 0.671 2.61 0.176 

70 52 29 1.882 2.68 0.54 

37.8 81 50 0.966 2.67 0.27 

37.1 27 6 0.951 2.69 0.25 

10.2 44 23 0.357 2.62 0.08 

44 47 23 1.137 2.69 0.39 

40.1 46 23 0.996 2.66 0.33 

43 53 31 1.062 2.64 0.4 

27.2 33 8 0.881 2.61 0.266 

37.2 62 34 0.937 2.56 0.345 

27.9 35 15 0.745 2.67 0.153 

34.4 68 46 0.909 2.44 0.226 

24.4 32 14 0.824 2.66 0.276 

37 40 19 0.923 2.63 0.309 

28.2 47 24 0.814 2.717 0.2 

39.6 49 25 0.891 2.611 0.26 

27.1 41 18 0.666 2.633 0.116 

28.5 27 7 0.735 2.67 0.173 

23 53 28 0.608 2.55 0.16 

25.1 39 16 0.672 2.65 0.13 

27.4 33 12 0.727 2.62 0.17 

20.5 34 13 0.565 2.7 0.076 

29.8 43 24 0.789 2.59 0.22 

21.4 38 21 0.583 2.68 0.15 

22.2 50 27 0.614 2.62 0.166 

43.4 44 21 0.994 2.51 0.302 

21.6 39 21 0.552 2.6 0.11 

28.8 36 17 0.759 2.64 0.206 

24.5 39 19 0.644 2.7 0.176 

56.9 36 15 1.442 2.68 0.405 

22.2 42 21 0.568 2.6 0.153 
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Appendix 1. Contd. 
 

 

LL PI 
 

Gs Cc 

31.8 36 16 0.831 2.67 0.206 

29.6 25 6 0.834 2.74 0.229 

31 32 11 0.786 2.64 0.216 

33.3 39 20 0.868 2.62 0.252 

42.2 34 13 1.161 2.69 0.219 

38.2 31 11 0.967 2.68 0.266 

26.1 29 9 0.786 2.67 0.209 

24.7 29 8 0.763 2.67 0.259 

22.4 57 33 0.697 2.64 0.143 

22.2 42 19 0.534 2.49 0.136 

16.4 41 24 0.605 2.61 0.173 

19.4 29 11 0.495 2.61 0.123 

25 29 9 0.691 2.66 0.149 

29.7 29 11 0.778 2.67 0.196 

32.1 39 20 0.823 2.69 0.236 

30.2 40 22 0.787 2.59 0.219 

25.4 30 10 0.644 2.68 0.12 

23.6 38 19 0.592 2.6 0.13 

17.7 32 12 0.74 2.65 0.159 

41.5 31 11 1.195 2.73 0.259 

47.6 36 17 1.237 2.74 0.299 

46.6 43 22 1.127 2.64 0.269 

36.5 33 12 0.934 2.69 0.213 

25.9 33 12 0.8 2.61 0.266 

33.5 50 26 0.827 2.65 0.296 

23.5 37 16 0.596 2.71 0.05 

33.7 36 15 0.835 2.67 0.166 

21.6 32 12 0.665 2.69 0.166 

30.6 41 17 0.727 2.6 0.173 

32.1 44 26 0.761 2.57 0.199 

28.7 43 16 0.82 2.71 0.12 

40.7 40 18 1.045 2.66 0.259 

33.1 50 27 0.771 2.66 0.176 

29.9 48 25 0.756 2.65 0.163 

38.5 68 42 0.884 2.56 0.322 

28 42 24 0.657 2.54 0.209 

39.3 40 17 0.931 2.62 0.209 

39.4 32 8 0.979 2.67 0.266 

28.9 27 6 0.817 2.66 0.176 

28.9 57 35 1.031 2.61 0.306 

28.9 47 25 1.137 2.54 0.402 

20.1 26 8 0.676 2.65 0.113 

23.8 46 25 0.647 2.63 0.123 

28 33 12 0.703 2.68 0.103 

34.5 45 26 0.808 2.5 0.319 

25.2 30 11 0.681 2.63 0.163 
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Appendix 1. Contd. 
 

 

LL PI 
 

Gs Cc 

20 34 13 0.693 2.64 0.183 

19.5 34 12 0.609 2.57 0.189 

31.2 37 16 0.87 2.73 0.209 

23.9 31 12 0.621 2.61 0.156 

34.2 44 25 0.816 2.54 0.239 

21.6 39 21 0.552 2.61 0.11 

28.8 32 11 0.703 2.64 0.206 

25.5 29 9 0.643 2.56 0.126 

45.7 52 31 1.132 2.64 0.379 

42.1 34 10 1.013 2.59 0.355 

39.2 57 34 1.091 2.65 0.302 

35 37 14 0.928 2.71 0.233 

24.6 34 14 0.676 2.63 0.226 

64.1 64 31 1.647 2.57 0.53 

31 33 15 0.786 2.63 0.193 

25.2 56 35 0.569 2.44 0.146 

14.5 44 21 0.476 2.64 0.126 

22.6 28 7 0.598 2.65 0.173 

27.2 29 10 0.77 2.74 0.183 

23 37 16 0.541 2.52 0.106 

20.5 32 11 0.557 2.64 0.106 

22.8 28 7 0.619 2.63 0.153 

46.4 31 10 1.232 2.57 0.465 
 

= natural water content (%), = initial void 
ratio, LL= liquid limit (%),  

PI= plastic index (%), = specific gravity of soil 

particles, = compression index. 

 


