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In this article, we implement relatively analytical techniques such as the homotopy perturbation
method and homotopy analysis method to solve nonlinear partial fractional differential Zakharov-
Kuznetsov equations. The fractional derivatives are described in the Caputo sense. We compare
between the approximate solutions obtained by the homotopy perturbation method and the
approximate solutions obtained by homotopy analysis method. Also we make the figures compare
between the approximate solutions. We compare between the approximate solutions and the exact
solutions for the partial fractional differential equations when o, 3,7 —>1.
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INTRODUCTION

In recent years, fractional differential equations have
gained much attention as they are widely used to
describe various complex phenomena in many fields
such as the fluid flow, signal processing, control theory,
systems identification, biology and other areas. Several
fields of application of fractional differentiation and
fractional integration are already well established, some
others have just started. Many applications of fractional
calculus can be found in turbulence and fluid dynamics,
stochastic dynamical system, plasma physics and
controlled thermonuclear fusion, nonlinear control theory,
image processing, nonlinear biological systems and
astrophysics (Kilbas et al., 2006; Podlubny, 1999; Samko
et al., 1993; El-Sayed, 1996; Herzallah et al., 2010, 2011;

Magin, 2006; West et al., 2003; Jesus and Machado,
2008; Agrawal and Baleanu, 2007; Tarasov, 2008).
Numerical and analytical methods have included the
Adomian decomposition method (ADM) (Daftardar-Gejji
and Bhalekar, 2008; Herzallah and Gepreel, 2012), the
variational iteration method (VIM) (Sweilam et al., 2007),
the homotopy perturbation method (Golbabai and
Sayevand, 2010), and homotopy analysis method
(Gepreel and Mohamed, 2013).

Consider the Zakharov-Kuznetsov zZK (m,n,k)
equation:

u +a@m), +b "), +c ), =0, m,nk 0, (1)
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where a,b,C are arbitrary constants and m,n,k are

integers. This equation governs the behavior of weakly
nonlinear ion-acoustic waves in plasma comprising cold
ions and hot isothermal electrons in the presence of a
uniform magnetic field (Monro and Parkers, 1999). The
Zakharov—-Kuznetsov equation supports stable lump
solitary waves. This makes the Zakharov-Kuznetsov
equation a very attractive model equation for use in the
study of vortices in geophysical flows (Mollig and Batiha,
2012; Hammouch and Mekkaoui, 2013; Golbabai and
Sayevanda, 2012).

Biazar et al. (2009) applied the homotopy perturbation
method to solve the Zakharov-Kuznetsov ZK (m, n, k)
equations. Hesam et al. (2012) studied (1) while applying
the differential transform method to obtain its
approximate solutions.

In this paper, we give a new model of the nonlinear
fractional Zakharov-Kuznetsov ZK (2,2,2) equation in the
following form:

Du+aD/(u*)+bDY(u?)+cD/D (u?)=0, t>0,

)

where Dta,Dxﬂ ,DJ/ denotes the fractional derivative of

order «, 3,y with respectto t,X,Y respectively. We will

implement HPM and HAM to obtain approximate
solutions of the nonlinear fractional Zakharov-Kuznetsov
ZK (2,2,2) equation.

PRELIMINARIES AND NOTATION

Here, we give some basic definitions and properties of
the fractional calculus theory which will be used further in
this work. Podlubny (1999) revealed further details on
this. For the finite derivative in [a, b], we define the
following fractional integral and derivatives.

Definition 1. A real function f (X),X >0, is said to be in

the space Cﬂ , HeR, if there exists a real
number (P > ) such that f (x)=x"f (x), where
f,(x) eC (0,), and itis said to be in the space C ' if

fmeCﬂ,meN.

Definition 2. The Riemann-Liouville fractional integral
operator of order ¢ >0 of a function f e Cﬂ, u=>-1

is defined as

3t (x):%ﬁ(t—u)‘“f W)du, @>0,t50 3°F (x)=f (x). )

Properties of the operator J “ can be found in Podlubny

O<a,p,y<],

(1999); we mention only the following:

For f GC#,/JZ—]., a, >0, and y>-1:

@) J“J7f (x)=J*Pf (x),
() J“I7F (x)=J7J“f (x),

I'(y+1
(C) Jaxy: (7/ ) Xa+yl (4)
IN'a+y+1)
The  Riemann-Liouville  derivative has certain
disadvantages when trying to model real-world
phenomena with fractional differential equations.

Therefore, we shall introduce a modified fractional

differential operator D “ proposed by Caputo in his work
on the theory of viscoelasticity (Podlubny, 1999).

Definition 3. For o >0 the Caputo fractional derivative
of order & on the whole space, denoted by CDf’, is
defined by

DI ()= [ 6D (0. ©

THE HOMOTOPY PERTURBATION METHOD
To illustrate the basic idea of this method (Golbabai and

Sayevand, 2011), we consider the following nonlinear
fractional differential equation:

Du,t)=f X,t)-Lux,t)-Nu(x,t), m-l<a<m, meN, t>0xeR",

(6)
subject to the initial and boundary conditions
u(”(6.0)=Civ B[u,au,aU]:O, i=01..m-1 j=12,...,n,
ox; ot
)

where L is a linear operator, while N is a nonlinear
operator, f is a known analytical function and Dt“

denotes the fractional derivative in the Caputo sense.
The solution U is assumed to be a causal function of

time, that is, vanishing for t <0. Also U (X,t) is the i"
derivative of U, C; =0,1,...,m —1 are the specified initial

conditions and B is a boundary operator.
Applying He (2006) homotopy perturbation technique,
we can construct the following simple homotopy

(A-p)DAu(K t)+p [ DA t)+Lu(x,t)+Nu(k,t)—f (x,t)]=0, pef0.1],
(8)



or

Du(%,t)+p [ Lu(x,t)+Nu(x,t)—f (5,t)]=0, p<[0,1].

9)

The homotopy parameter P always changes from zero
to unity. In the case p =0, Equation (8) or (9) becomes

DSu(x,t) =0, (10)

and when p =1, Equation (8) or (9) turns out to be the

original fractional differential equation. Applying the
homotopy perturbation method, we use the homotopy
parameter P to expand the solution into the following

form

U(X,E) =u, (K, 1)+ p u (K1) +p2 U, (K1) +p° ug (K1) +...

(11)

For nonlinear problems, let us set Nu(X,t) =S (X,t).
Substituting Equation (11) into (8) or (9) and equating the
terms with identical powers of P, we can obtain a series
of equations of the form

p°: D u(x,t)=0,
P’ DU (X,1) = —Lug(X,1) =S, Uy (K1) +f (X,1)],
P2 1D, (%) = ~Lu, (R0~ 8, Uy (%), uy (R 1),

p3 : DtaUS(X_,'[) = —LUZ(X_,'[)—S2(UO(X_,'[),Ul(X_,'[),UZ(X_,'[)),
(12)

where the functions S,,S,,S,,...
equations

satisfy the following

S (Ug (1) +P Uy (K,8) + P, (K1) +...) =S Ug (K, 1)) + P S, Uy (X, 1), Uy (X, 1))
+ P28, Uy (K, 1),U, (K, 1)Uy (K, 1)) ... .
13)

Applying the operator It“ on both sides of Equation (12)

and considering the initial and boundary conditions, the
terms of the series solution can be given by

_ iict!
uO(X’t):z ; ) )
~ il
u,(X,t) ==37 [ Lu,(X,0)] -3 S, U, (X)) 1+ 3.7[fF (X,1)],

U, (€)= =3 [ LU, L (T01-37T S, Mo (5,0, Uy (7)ol 4 (KD, ] =23,

(14)
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On setting p =1,we get an accurate approximation
solution in the following form

u(x.1) :iui (1), 15)

THE HOMOTOPY ANALYSIS METHOD (HAM)

To describe the basic ideas of the HAM, we consider the
following differential equation

N[Dfu(x,y,t)]=0, (16)

where N is a nonlinear operator for this problem, while
Dt‘” stand for the fractional derivative, X,y and t

denotes independent variables and U(X,Yy,t) is an

unknown function.
By means of the HAM, one first construct zero-order
deformation equation

(1-q) £(e(x,y,t;9) —uy(x,y,t)) =qhH (N [#(x,y.t;q)],
(17)

where ¢ €[0, 1] is the embedding parameter, h #Qis
an auxiliary parameter, H (t) # 0 is an auxiliary function,
lis an auxiliary linear operator and U,(X,Yy,t) is an
initial guess. Obviously, when =0 and g =1, it holds

P(x,y,t;0) =uy(x,y,t), p(x,y,.t;)=u(x,y,t). (18)

Liao (1992, 1995) expanded ¢(X,y,t;q)in Taylor

series with respect to the embedding parameter q, as
follows:

F(x,y . 1a) =up(x, Y t)+ Y u, (x,y,t)g",  (19)

m=1

where

1 "g(x,y )|
m! oq™

u,(x,y,t)= (20)

q=0

Assume that the auxiliary linear operator, the initial
guess, the auxiliary parameter h and the auxiliary

function H (t) are selected such that the series (19) is
convergent at =1, then we have from (19)

u(x,y,t)=uo(x,y,t)+ium(x,y,t)- (21)

m=1
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Let us define the vector
u, () ={u,(x,y,t)u (x,y,t)u,(x,y,t),...u, (x,y,t)}
(22)

Differentiating (17) m times with respect to q, then setting
g =0 and dividing then by m!, we have the mth-order
deformation equations

g(um(X’ylt)_Zmum—l(X1y’t) )= h H (t)mm (Jm—l)l

(23)
Where
B} 1 "IN[g(x,y,t;9)]

R = , 24

m(um,l) (m _1)| aqm—l oo ( )
and

0 m <1,

_ ' 25

Zn {1 m>1. .

Applying the Riemann-Liouville integral operator J“ on
both side of (23), we have

0y (0¥ 10 = 24t 0 8) = 2 30010+ H (03 R, @)
(26)

APPLICATIONS

Here, we use the homotopy perturbation and homotopy
analysis methods to calculate the approximate solution of
the fractional Zakharov-Kuznetsov equation. To calculate
fractional derivative to hyperbolic function sinh will we
use the fractional derivative of the exponential function
which defined in Miller and Sugden (2009) as the follows

D€™)=0%", >0 D/€™)=(Coye™, o<0

so that

1

D“[ sinh(b x) ]:Df[%(ebx —e™ )]:E[b”e‘“ ()" b ™], b>0.

Example 1

Consider the fractional Zakharov-Kuznetsov equation in
the following form

Dfij+Df(u2)+§Dfﬁ(u2)+éDnyzy(u2)=O, t>0 0<apy<i (27)

subject to the following initial conditions
4 .
u(x,y,O):gﬂsmh x+vy), (28)

where A is an arbitrary constant.

By the homotopy perturbation technique, we construct a
homotopy function H (/ , p) which satisfies

HU P)=(-PIDY ~DVel+ pIOV +D/V ) DYV )+ D/ )]0
(29)

According to the homotopy perturbation method, we can

first use the embedding parameter p as a small

parameter, and assume that the solution of Equation (29)
can be written as a power series in p as follows:

V (X, Y1) =V, y 1)+ p VX, y )+ pV,(x,y )+ plg(x,y t) +...
(30)

Substituting Equation (30) into (29) and arranging the
coefficients of powers of p, after some calculation we
obtain

p°: DV, =0, V(x,y,O):gisinhz(x +y),
1 1
p': Dt"\/l+DXﬁNOZ)+§Dfﬂ(\/02)+§Dny27N02):0,

P*1 DV, + D/ (&) + DI (&) +D/DY (&) =0,

p*: DV, +D/ (), V) +é DY@V, V) +é DD} (Y, +V,})=0.
(31)

After some calculation, we have
4 - 2
Vo(x,y.t)=§ﬂsmh (x+y), (32)

At
9T(a+])

Vl(X VY ,t) = { [ Zzﬂ +25ﬂ*3 +22ﬂ+4773] [e4(><+y) +(_1)ﬂ e4(x+y)]

_[ 2ﬂ+2 +23[i—1+2/}+2}/—1] [eZ(X+y) +(_1)[f e—2(x+y)] },
(33)
2 Bt
212D
—2*¥(8416° H16)(16+ 27 + 2% + 2% 1.2 1 3P\ aosh(dx +4y)
1259 (84160 +16')(8+2 +32 )oosh(6x +6y) |,
(34)

V,(,y,t)= [ 25%(gr 2 +ayorr2? 427 127 12 12 )osh(2x +2y)




T (2ar+])

220) | ()20 4 g [ @%09) 4 (1) a0)
o {ale® ) + (A Ny [0 + (e ]

V,(x,y,t)=

+a [e 6(x+y) +(71)/Je—6(x +y)] ‘e, [eS(x +Y) +(71)/Je—8(x +y)]}’
(35)

and so on, where

(8+4” +47)(8+16” +16")
I(a+1)
. 27 (8416”7 +167)(16+ 23/ 4 2127 4 pt+2r 4 pF+4r | 32F)
I'2a+1)
. (8+47 +47)(64+2%F 42320 4. 2%2r | pP+4r 4 30F) ]
I'(2a +1) !

_2\/
o =827 @8+4 +4)[ 2

(36)

6/ (8+16” +167)(8+ 36" +36")
I'2a+1)
4(8+4° +47) . (8+47 +47)(64+2%F + 252 4. %% 1. 2P+ 1. 327
I’(a+1) I'2a+1)
N 2%7(8+16" +167) (16+2%7 4 24 4. 24 4 2P+ 1 327) ]
I2a+1) !

0, =27 (8+16” +16")

(37)
3 4%%(8416/ +16')(8+36" +36/
(a+1) TQa+1)
F(16+27 42 12V 1 20 1 8x3 13 x +32° +108") [ (ar+1)
(38)

)[ 8+4 +4)r(2a+1)

8+16" +16") 4x3’(8+36 +367)]
Ca+)  IQRa+) )
(39)

3128 ’ Vi y Zﬁ(
0, =877 (8+16" +16')(8+64 +64)[

On setting p =1, we get an accurate approximation

solution by the homotopy perturbation method which
takes the following form:

as
M+
_[ 25#2 +?&1 +26+2y—1] [ez(x+y) +(_:Dﬁ e{(x+y)] }
27t 2p 4 B 2B 2 y
m [25* (8+4 +4)(A+ 2P+ 27 1 2% 1 22 1+ 3P ) oosh(2X +2y)
—2*%(8+16° +16")(16+ 27 +- 2% + 2 1 2% + ") oosh(dx +4y)

125 F(8416/ +16 )8+ +32 ) cash(x +6y) |

{[zw FIB3 PP [N (Y g 4]

u(x,y,t):g Asin?(x +y)

AT 2ar o - ks xs
81r(r?fa+])]){a{[ez N (AN o[ 4 (DYl ]

+wd[eG(X+y)+(_l)lie45(><+y)]+a)4[88(><+y)+(_1)ﬁeﬂ3(><+y)]} +o.
(40)
Equation (40) represented the approximate solution for

the fractional Zakharov -Kuznetsov Equation (27) which
was obtained by HPM.
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By means of the homotopy analysis method, we choose
the linear operator

o“p(x,y,t;q) |

[P0y ta)l=—"—-%

(41)

with property /[c] =0, where c is a constant. We define
a nonlinear operator as

Ty ), FFXY ) 17y ba)  1TTF Ky ta)
a“ & 8 & 8 ayr
(42)

N[gx,y.to)=

We consider auxiliary function H (t) =1. So, the zeroth-
order deformation equation

(1=q) /L g(x,y,1;9) =y (x, y,t) J=ahN [#(x, y ,t;q)]. (43)

For g =0 and q =1, we can write

(X, y,t;0)=u,(x,y 1), o(x,y,t;)=u(x,y,t). (44)

Thus, we obtain the m™ -order deformation equations
m-1 m-L
T AT A ZORN L1 (TN ) SITTN %Ei’qun%m
n=0 n=0

%D;’Diygmm )] m
(45)

By using the Equation (45), and after some calculation
we obtain

U (X, y 1) = h A%t* {[22ﬂ+26ﬁ—3+22ﬂ+4,v—3] [ (1) g40)]
ST 9 ()
_[ 2ﬁ+2 +235—1+2ﬂ+27—1] [eZ(x+y) +(_l)/7 e_z(x +y)] }’
(46)
2h22.3t2a ]
U0y 1= +Dul(x,y,t)+27r(2a+1)[25*”(8+4ﬂ+4/)

(64+227 + 2228 L 2% 4 2P 1 30P Y cosh(2x +2y)
—24% (8416 +167)(16+2°7 + 247 + 247 . 277 1 307 ) cosh(4x +4y )
125 Y (84167 +16')(8+32” +32 ) cash(Bx +6y) ||

(47)

h314t S (Za +1) 2 ~
I q[e%Y) +(-1)e %
81T (3x+]) { 1 ) ]

+a, [e 4(x+y) + (_1)ﬁe —Ax+y )] +a [e 6(x+y) + (_1)ﬁe —B(x+y )]

[ +(_1)/fe-8(><+y)]}’

U3(X,y,t)=(h +1)U2(X,y,t)+

(48)
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Figure 1. The h-curves of the four-order approximation to Abs (U(X,Y,t)), Re U(X,y,t)) and Im(U(X,Y,t)) respectively at

a=p=y=05 1=000y =x =05, t =0.1.

where ,,®,,w;,®, take the same form (36)...(39)

respectively.
In this case, the approximate solution by using the
homotopy analysis method of Equation (27) is given by

h A%t
9I(a+))
_[ 2/j+2 +2’iﬂ—1+2/j+2y—1] [eZ(x+y) +(_1)/j efz(x+y)] }
2h2 iStZR
2T 2a+)
(64+2%7 4. 222F 1. %2 4 9P 1. 39P) cosh(2x +2y)
—24Y(8+16° +16')(16+2°7 +2"% + 247 1.2 130" ) cosh(dx +4y)
+25V P (84167 +16')(8+32° +32")cosh(B +6y) |

h314t3"1"(2a+1) 2(x+y) Ba-2(x+y)
- = 7 e +(—=b)e
81T (3e+]) & A

{[Zzﬁ 42063 +22/f*4,v—3] [64(><+v) +(—l)ﬁ g +Y)]

u(x,y,t) =g/1 sinh?(x +y)+

+(h+Duy(x,y.0)+ [22% @+ 4a)

+(h+Du,(x,y,t)+

+a@, [e4(>< +y) + (_1)/3e4(x +y)] +a, [e 6(x+y) + (_1)/3e43(>< +v)]

+a, [eB(X +y) +(_l)ﬁe%(X+y)]}
...,
(49)

Equation (49) represented the approximate solution for
the fractional Zakharov-Kuznetsov Equation (27) which
was obtained by HAM.

Remarks 1

1) The homotopy analysis method determines the interval
of convergence from the h-curve (Figure 1). As pointed
by Liao (1992, 1995), the valid region of h is a horizontal
line segment. Therefore, it is straightforward to choose an
appropriate range for h which ensure the convergence of
the solution series. We stretch the h-curve of

u(0.5,0.5,0.1) in Figure 1, which shows that the

solution series is convergence when —-1.5<h <-0.5.

2) In special case, when ¢, 3,7 —1 in Equations (32) to
(35), we get

vo(x,y,t)=‘§1 Asinh?(x +Y),
Vl(x,y,t)=% A% sinh®(x +y)cosh(x +y)t —3—32 2 sinh(x +y )cosh®(x +y)t,
Vz(x,y,t):% A%(1200cosh®(x +y)—2080cosh?(x +Yy )+968cosh?(x +y)—79) t2,

Vi(x,y,t)=

42'226 sinh(x +y )cosh(x +y) | 23800cosh®(x +y)

—42900c0sh* (x +Yy ) +22665c0sh?(x +Y) —3142] A3,
(50)

is the same solutions obtained by Biazar et al. (2009).

Table 1 leads to the absolute error between the
approximate solutions (40) obtained by HPM and the
approximate solutions (49) obtained by HAM. The
absolute error is very small so that the approximate
solutions has the same behavior.

Approximate solutions obtained by HPM tends to the
approximate obtained by HAM when h — —1.

The comparison between the approximate solution of
Equation (27) by using the HPM and approximate
solution by using HAM are shown in Figure 2.

Example 2

Consider the fractional Zakharov-Kuznetsov equation in
the following form

1 1
Dfu 7Df(u2)+§Dfﬁ(u2)+§Dny2V(u2):0, t>0, O<a fy<l,
(51)

subject to the following initial conditions (Hesam et al.,
2012):
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Table 1. Determine the absolute error between the real part of approximate solutions (40) which obtained by the HPM and
the real part of approximate solutions (49) which obtained by the HAM when y =g =f=y=0.1, h=-1.1 and

A=0.001.
X t Re U,y Re Uau |uHPM - uHAM|
0.1 0.5476301844E-4 0.5476378484E-4 0.76640E-9
0.1 0.5 0.5488796450E-4 0.5488887554E-4 0.91104E-9
0.9 0.5493885905E-4 0.5493982991E-4 0.97086E-9
0.1 0.5407093554E-3 0.5407096643E-3 0.3089E-9
0.5 0.5 0.5407569911E-3 0.5407573617E-3 0.3706E-9
0.9 0.5407763977E-3 0.5407767940E-3 0.3963E-9
0.1 0.1837593296E-2 0.1837591245E-2 0.2051E-8
0.9 0.5 0.1836921718E-2 0.1836919675E-2 0.2043E-8
0.9 0.1836648586E-2 0.1836646577E-2 0.2009E-8

Figure 2. (a) Represents the real part of approximate solution (40) by HPM and (b) represents the real part of approximate solution
(49 byHAMat a=f=y=y =05 1=0.00], h=-3 -1<x <land0<t<1.

u(x,y,O):%/l sinhz[%(x ) (52)

where A is an arbitrary constant.
By the homotopy perturbation technique, we construct
a homotopy which satisfies

HY p)=(-P)IDY ~DV 1+ PIDN ~D/V 2DV +2D/DFV )=
(53)

According to the homotopy perturbation method, we can

first use the embedding parameter p as a small
parameter, and assume that the solution of Equation (53)
can be written as a power series in p as follows:

V (Y, =2V, Y, D+pVi(x, Y D) +PV, %,y 1) +pV(x, v t) +.
(54)

Substituting Equation (54) into (53) and arranging the
coefficients of powers of p, after some calculation we
obtain
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p’: DV, =0, V (x,y,0)= 7/1 smh[ x+y)l

p':DN,-D/{ S )+§Df/’(\/O )+§Dny2’(\/O )=0,
1 1
p?: Dsz—Df(Z\/onHng’”(?\/on)+§Dny2’(2\/oV1)=0,

p*:DV,-D/(V Y, +V12)+%Df"(2\/0\/2+V12)+%Dny2y(2\/DVZ+V12) =0.

(55)
After some calculation, we have
4 T A 56
Vo(x,y,t):gismh [E(X +y)I, (56)
Vl(X,y,t)= —ﬂzta {[_2ﬂ+23ﬂ—3+2ﬂ+2;/—3] [ez(x+y)+(_1)ﬂ e—2(x+y)]
9I'(e+)
+3e0 4 3(-1’e 01},
(57)
V,y )= 2A [ 2573/ (-8+4" +4)(-8+9” +9")cosh(3x +3y)
2T I Rac+1)
— 24P (-8+ 4 +4)(-12- 2% 1+ 277 187 cosh(2x +2y )
—%(—48—23*/’+2‘“2’“+8/‘)cosh(x +y) ],
(58)
4:30
V3(x,y,t):4_’; ;r(l?:ézfj;l){ﬂ[eAM) e N 4 p,[€%) + (e ]

+p, [eZ(Xﬂ/) Jr(_:|_)/fef?(><+y)] P [e(X+y) +(_1)/fef(><+y)]}’

(59)
and so on, where
33/f 3/f+2r
420 42531 2P 1T )
p :(_22+ﬂ+2—3+6ﬁ+2—3+2/}+4y) [ 8 8
I'2a+1)
(_2/}+23/373+2ﬂ+2y73)2 ]
M (a+1)
(60)
—6+89B (_ Vi 7Y(— B 7
p, - 27737 (-8+4 +42)( 8+9”7 +97) [6 r(2a+1)
I'2a+1) T'(a+1)
— (=12 -2%F 4 2772 _8x3# 4372 1 87 4+ 27 (ar +1) ],
(61)
_ 29 (g +4V)[ (D+27x2? 27525

+
(a+l) F(2a+l) 2
—2Ix 2 4P (B4l + 4 ) + 2% Y (8+4 +4)(-8+Y +9’)],

(62)
_37-288-9x2"7 +9x 2" 47 4P 11677 64" + 241 (94277 -8
m=Ty 8T(2a +])
LB (=20 425V 2 )]

*(a+1)
(63)

On setting p =1, we get an accurate approximation

solution by the homotopy perturbation method which
takes the following form:

uex,y,t) :il A sinhz[é(x +y)]

91~(a+1){[ 2ﬁ 23/33 21?+2V 3] [e2(><+y)+( 1)/3 72(><+y)]

+3e0) +3(_1)/fe—(x+y>]}
213t2a
21T(2a+1)

{ 253 (8447 +4')(-8+9° +9") cosh(3x +3y)
— 24P (B+4 +4) (1227 + 2% 1.8 cosh(2x +2y)
—1—3;3(—48—23”5+2”*2’“ +8")oosh(x +y) }

AT+

e4(X+Y)+ _1ﬁe-4(><+Y) + e3(><+y)+ - ﬂe-3(><+y)
AT Lol + (e g [+ )]

e (e N4, [ +(_l)/7e%><+)')]}+._.
(64)

Equation (64) represented the approximate solution for
the fractional Zakharov -Kuznetsov Equation (51 obtained
by HPM.

By means of the homotopy analysis method, we
choose the linear operator

o"p(x.y.t:a) (65)

[P0y ta)l=—"—-%

with property /[c]=0, where c is a constant. We define
a nonlinear operator as

8"¢(x ytq) IPyta) 104Kyt 18T Fkyta)
o 8 a 8 &y
(66)

N[dx.y.to)l=

We consider auxiliary function H (t) =1. So, the zeroth-
order deformation equation

(1-9) 4 4(x,y.t;0)—Us(x,y,t) I=ahN [4(x, y ,t;q)]. (67)
For q =0 and q =1, we can write
#x,y.50)=uy(x,y,t), 4,y tD)=u(x,yt). (68)
Thus, we obtain the mth-order deformation equations

m-1 m-1
um (X ! y 't) :Znunkl(x ! y 't) +‘Jta[h ( Iqaum—l _Dxﬂzunuwlm —'—81Dx3ﬂzunum—lm
n=0 n=0

500 S )], et
(69)
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Table 2. Determine the absolute error between the real part of approximate solutions (64) obtained by the HPM and the
real part of approximate solutions (73) obtained by the HAMwhen y = = f=y=0.1, h =-1.1 and 1=0.001.

X t Re U oy Re Uy |uHPM ~ Upaw
0.1 0.1297232493E-4 0.1297193845E-4 0.38648E-9

0.1 0.5 0.1290155925E-4 0.1290110921E-4 0.45004E-9
0.9 0.1287274434E-4 0.1287226875E-4 0.47559E-9

0.1 0.1232468684E-3 0.1232464860E-3 0.3824E-9

0.5 0.5 0.1231776456E-3 0.1231771992E-3 0.4464E-9
0.9 0.1231494580E-3 0.1231489857E-3 0.4723E-9

0.1 0.3617327474E-3 0.3617324328E-3 0.3146E-9

0.9 0.5 0.3616767081E-3 0.3616763399E-3 0.3682E-9
0.9 0.3616538879E-3 0.3616534979E-3 0.3900E-9

By using the Equation (69), and after some calculation
we obtain

h A°t*
9+

Ul(X,y,t): {[_2ﬁ+23ﬁ*3 +2ﬂ+2;/—3] [ez(x+y)+(_l)ﬁ e,g(x+y)] (70)

+3e0) +3(_1)ﬂe4x+y>]}’

2h? P
21T 2c+))
2B+ (12~ + 27 + 8 ) ash(2X +2y)

[2575 (8+4 +2Y-8+9+9)cash(3c +3y)

Uy(x,y, ) =(+Du(x,y 1)+

—%(—48—2” +2°%7 18%)cosh(x +y) |, (71)
_ h2't* 2a+) A1) | [ VBadxy)
us(x,y,t)—(h+nuz(x,y,t)m{q[e e N
pﬁ[eS(Hy) +(_])/fef3(><+y)] + Q[EZ(XW) +(_])ﬁeﬁ2(><+y>] +0, [e(X+y) +(_])ﬁe%><+y>]}’
(72)

where p,, 0,, 05,0, take the same form (60)...(63)

respectively. In this case, the approximate solution by
using HAM of Equation (51) is given by
h 2%t“
9T (a+1)
1360 +3(-1 e I}
2h2 Aatm
21T (2 +1)
— 2P (B4l &) (12-27 + 277 8 ) cosh(2X +2y)

UG,y t) :g A sinhz[% x+y)l+ {2 2y 2o [eren gy o)

+(h+Du,(x,y,t)+ [ 2573 (8+4” +4')(-8+9" +9)cosh(3x +3y)

—13’6(—48—2“+zﬂ+2f/+8/f)cosh(x ]
h*A*t* T2 +1) .
++Du,(x, Y 1) +——— 1 a[e ) + (- e "]+
Dy 04 e {ale o + (e
0, [es(xw) +(71)ﬁeﬂ?(xw)]+p3 [eZ(X+v) Jr(fl)/fefz(xw)]er4 [e(X+v) +(,1)/fef(><+v)]}

+.o... (73)

Equation (73) represented the approximate solution for
the fractional Zakharov-Kuznetsov Equation (51)
obtained by HAM.

Remarks 2

1) The homotopy analysis method determines the interval
of convergence from the h-curve (Figure 5). As pointed
by Liao (1992), the valid region of h is a horizontal line
segment. Therefore, it is straightforward to choose an
appropriate range for h which ensures the convergence
of the solution series. We stretch the h-curve of

u(0.1,0.1,0.2) in Figure 5, which shows that the
solution series is convergence when —1.5<h <-0.5.

2) In special case, when «, 5,7 —1, the approximate
solution (64) takes the following form

U (XY 1) :g ﬂsirhz[% (x +y)]—§ At sinhx +y)+f:13 At amh(x +Y)'€13/14t3 Sinh(x +y) +..
(74)

Using Taylor series expansion near t =0, we get
4 T A
uex(x,y,t):g/ismh [E(X +y - At)] (75)

This solution (75) is exactly the same solution obtained in
(Hesam et al., 2012).

Table 2 leads to the absolute error between the
approximate solutions (64) obtained by HPM and the
approximate solutions (73) obtained by HAM. The
absolute error is very small so that the approximate
solutions have the same behavior.

The comparison between the approximate solution of
Equation (51) by using the HPM and approximate
solution by using HAM are shown in Figure 3, 4, 6, 7, 8.
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Figure 3. (a) Represents the imaginary part of approximate solution (40) by HPM and (b) represents the imaginary part of approximate
solution (49) by HAMat ¢ ==y =y =05 1=0.001, h=-3, -1<x <l and o<t <1.

Figure 4. (a) Represents approximate solution (40) by HPM and (b) represents approximate solution (49) by HAM at
a=f=y=1 A=0.001, y =009, h=-2 01<x<0.9and02<t<04.

Conclusion

In this paper, we used the two different methods such as

homotopy perturbation method and homotopy analysis
method to obtain analytic approximate solutions for the
fractional Zakharov-Kuznetsov equations which are very
important in mathematical physics especially in nonlinear
dynamics and plasma physics. We compared between
the approximate solutions obtained by using the
homotopy perturbation method and the approximate

solutions obtained by using the homotopy analysis
method. The homotopy analysis method investigates the
influence of h on the convergence of the approximate
solution. Note that the solution series contains the
auxiliary parameter h which provides us with a simple
way to adjust and control the convergence of the solution
series. Also we compared between the approximate
solutions obtained by these methods and the exact
solutions when ¢, 5,7 —1. These methods are effective

and allows us to solve nonlinear partial fractional
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Figure 5. The h-curves of the four-order approximation to Abs (U(X,Y,t)), Re(U(X,Y,t)) and Im(U(X,Y,t)) respectively at
a=B=y=05 1=000Ly =x =01 t=02.

Figure 6. (a) Represents the real part of approximate solution (64) by HPM and (b) represents the real part of approximate
solution (73) by HAM at ¢ = f=»=0.9, y =0.1, 1=0.1, -1<x <l and 0<t <1,

(b)

Figure 7. (a) Represents the imaginary part of approximate solution (64) by HPM and (b) represents the imaginary part of
approximate solution (73) by HAM at ¢ = 8=»=0.9, y =01, 1=0., h=-2, -1<x <l and g<t <1.
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Figure 8. (a) Represents approximate solution (64) by HPM, (b) represents approximate solution (73) by HAM and (c) represents
the exact solution (75) at ¢ ==y =1, A=0.1,y =09, h=-25 —-1<x <l and 0<t <1.

differential equations.
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