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In this article, we implement relatively analytical techniques such as the homotopy perturbation 
method and homotopy analysis method to solve nonlinear partial fractional differential Zakharov-
Kuznetsov equations. The fractional derivatives are described in the Caputo sense. We compare 
between the approximate solutions obtained by the homotopy perturbation method and the 
approximate solutions obtained by homotopy analysis method. Also we make the figures compare 
between the approximate solutions. We compare between the approximate solutions and the exact 
solutions for the partial fractional differential equations when , , 1    . 
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INTRODUCTION 
 
In recent years, fractional differential equations have 
gained much attention as they are widely used to 
describe various complex phenomena in many fields 
such as the fluid flow, signal processing, control theory, 
systems identification, biology and other areas. Several 
fields of application of fractional differentiation and 
fractional integration are already well established, some 
others have just started. Many applications of fractional 
calculus can be found in turbulence and fluid dynamics, 
stochastic dynamical system, plasma physics and 
controlled thermonuclear fusion, nonlinear control theory, 
image processing, nonlinear biological systems and 
astrophysics (Kilbas et al., 2006; Podlubny, 1999; Samko 
et al., 1993; El-Sayed, 1996; Herzallah et al., 2010, 2011; 

Magin, 2006; West et al., 2003; Jesus and Machado, 
2008; Agrawal and Baleanu, 2007; Tarasov, 2008). 
Numerical and analytical methods have included the 
Adomian decomposition method (ADM) (Daftardar-Gejji 
and Bhalekar, 2008; Herzallah and Gepreel, 2012), the 
variational iteration method (VIM) (Sweilam et al., 2007), 
the homotopy perturbation method (Golbabai and 
Sayevand, 2010), and homotopy analysis method 
(Gepreel and Mohamed, 2013). 

Consider the Zakharov-Kuznetsov ZK ( , ,m n k ) 

equation: 
 

( ) ( ) ( ) 0, , , 0,m n k
t x xxx yyxu a u b u c u m n k        (1) 
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where , ,a b c  are arbitrary constants and , ,m n k  are 

integers. This equation governs the behavior of weakly 
nonlinear ion-acoustic waves in plasma comprising cold 
ions and hot isothermal electrons in the presence of a 
uniform magnetic field (Monro and Parkers, 1999). The 
Zakharov–Kuznetsov equation supports stable lump 
solitary waves. This makes the Zakharov–Kuznetsov 
equation a very attractive model equation for use in the 
study of vortices in geophysical flows (Molliq and Batiha, 
2012; Hammouch and Mekkaoui, 2013; Golbabai and 
Sayevanda, 2012). 

Biazar et al. (2009) applied the homotopy perturbation 
method to solve the Zakharov-Kuznetsov ZK (m, n, k) 
equations. Hesam et al. (2012) studied (1) while applying 
the differential transform method to obtain its 
approximate solutions. 

In this paper, we give a new model of the nonlinear 
fractional Zakharov-Kuznetsov ZK (2,2,2) equation in the 
following form: 
 

2 3 2 2 2( ) ( ) ( ) 0, 0, 0 , , 1,t x x x yD u a D u b D u c D D u t             

                                                                                 (2) 
 

where , ,t x yD D D  denotes the fractional derivative of 

order , ,    with respect to , ,t x y respectively. We will 

implement HPM and HAM to obtain approximate 
solutions of the nonlinear fractional Zakharov-Kuznetsov 
ZK (2,2,2) equation. 
 
 
PRELIMINARIES AND NOTATION 
 
Here, we give some basic definitions and properties of 
the fractional calculus theory which will be used further in 
this work. Podlubny (1999) revealed further details on 
this. For the finite derivative in [a, b], we define the 
following fractional integral and derivatives. 
 
Definition 1. A real function ( ), 0,f x x   is said to be in 

the space , ,C R    if there exists a real 

number ( )P  such that 1( ) ( ),Pf x x f x  where 

1( ) (0, ),f x C   and it is said to be in the space mC   if 

,mf C m N  . 

 
Definition 2. The Riemann–Liouville fractional integral 

operator of order 0   of a function , 1,f C      

is defined as 
 

1 0

0

1
( ) ( ) ( ) , 0, 0, ( ) ( ).

( )

t

tJ f x t u f u du t J f x f x  


    
     (3) 

 

Properties of the operator J  can be  found  in  Podlubny 

 
 
 
 
(1999); we mention only the following: 
 

For , 1, , 0,f C         and 1:    

 

(a) ( ) ( ),J J f x J f x     

(b) ( ) ( ),J J f x J J f x     

(c) 
( 1)

.
( 1)

J x x   
 

 

  

                              (4) 

 
The Riemann–Liouville derivative has certain 
disadvantages when trying to model real-world 
phenomena with fractional differential equations. 
Therefore, we shall introduce a modified fractional 

differential operator D   proposed by Caputo in his work 
on the theory of viscoelasticity (Podlubny, 1999). 
 
Definition 3. For 0   the Caputo fractional derivative 

of order   on the whole space, denoted by ,C D 
  is 

defined by 
 

 11
( ) ( ) ( ) ( ).

( )

x
C n nD f x x D f d

n
   


 




 
       (5) 

 
 
THE HOMOTOPY PERTURBATION METHOD 
 
To illustrate the basic idea of this method (Golbabai and 
Sayevand, 2011), we consider the following nonlinear 
fractional differential equation: 
 

( , ) ( , ) ( , ) ( , ), 1 , , 0, ,n
tD u x t f x t Lu x t Nu x t m m m N t x R         

                                                                                    (6) 
 
subject to the initial and boundary conditions 
 

( ) (0,0) , , , 0, 0,1,..., 1, 1, 2,..., ,i
i

j

u u
u c B u i m j n

x t

  
        

 

                                                                                  (7) 
 
where L is a linear operator, while N is a nonlinear 

operator, f  is a known analytical function and tD   

denotes the fractional derivative in the Caputo sense. 
The solution u  is assumed to be a causal function of 

time, that is, vanishing for 0.t   Also ( ) ( , )iu x t  is the ith 

derivative of u , 0,1,..., 1ic m   are the specified initial 

conditions and B is a boundary operator. 
Applying He (2006) homotopy perturbation technique, 

we can construct the following simple homotopy 
 

(1 ) ( , ) [ ( , ) ( , ) ( , ) ( , )] 0, [0,1],t tp D u x t p D u x t Lu x t Nu x t f x t p       
                                                                                   (8) 



 
 
 
 
or 
 

( , ) [ ( , ) ( , ) ( , ) ] 0, [0 ,1].tD u x t p Lu x t Nu x t f x t p     
                                                                                    (9) 
 
The homotopy parameter p  always changes from zero 

to unity. In the case 0,p   Equation (8) or (9) becomes 

 

( , ) 0,tD u x t                                                          (10) 

 
and when 1,p   Equation (8) or (9) turns out to be the 

original fractional differential equation. Applying the 
homotopy perturbation method, we use the homotopy 
parameter p  to expand the solution into the following 

form 
 

2 3
0 1 2 3( , ) ( , ) ( , ) ( , ) ( , ) ...u x t u x t p u x t p u x t p u x t    

                                                                                 (11) 
 
For nonlinear problems, let us set ( , ) ( , ).Nu x t S x t  

Substituting Equation (11) into (8) or (9) and equating the 
terms with identical powers of p , we can obtain a series 

of equations of the form 
 

0 : ( , ) 0,tp D u x t   
1

1 0 0 0: ( , ) ( , ) ( ( , )) ( , ) ],tp D u x t Lu x t S u x t f x t    
 

2
2 1 1 0 1: ( , ) ( , ) ( ( , ), ( , )),tp D u x t Lu x t S u x t u x t     

3
3 2 2 0 1 2: ( , ) ( , ) ( ( , ), ( , ), ( , )),tp D u x t Lu x t S u x t u x t u x t   

                                                                                 (12) 

    

where the functions 0 1 2, , ,...S S S  satisfy the following 

equations 
 

2
0 1 2 0 0 1 0 1

2
2 0 1 2

( ( , ) ( , ) ( , ) ...) ( ( , )) ( ( , ), ( , ))

( ( , ), ( , ), ( , )) ... .

S u x t p u x t p u x t S u x t pS u x t u x t

p S u x t u x t u x t

    

 
                                                                                (13) 
 

Applying the operator tI   on both sides of Equation (12) 

and considering the initial and boundary conditions, the 
terms of the series solution can be given by 
 

1

0
0

( , ) ,
!

in
i

i

c t
u x t

i





  

1 0 0 0( , ) [ ( , )] [ ( ( , )) ] [ ( , ) ],t t tu x t J Lu x t J S u x t J f x t     
 

1 1 0 1 1( , ) [ ( , )] [ ( ( , ), ( , ),..., ( , ))], 2,3,...j t j t j ju x t J Lu x t J S u x t u x t u x t j 
     

                                                                                  (14) 
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On setting 1,p  we get an accurate approximation 

solution in the following form 
 

0

( , ) ( , ).i
i

u x t u x t




                                              (15) 

 
 

THE HOMOTOPY ANALYSIS METHOD (HAM) 
 
To describe the basic ideas of the HAM, we consider the 
following differential equation  
 

[ ( , , )] 0,tN D u x y t                                            (16) 
 

where N is a nonlinear operator for this problem, while 

tD   stand for the fractional derivative, ,x y and t  

denotes independent variables and ( , , )u x y t  is an 

unknown function. 
By means of the HAM, one first construct zero-order 

deformation equation 
 

0(1 ) ( ( , , ; ) ( , , )) ( ) [ ( , , ; )],q x y t q u x y t qhH t N x y t q   

                                                                               (17) 
 

where [0, 1]q   is the embedding parameter, 0h  is 

an auxiliary parameter, ( ) 0H t   is an auxiliary function, 

 is an auxiliary linear operator and 0 ( , , )u x y t  is an 

initial guess. Obviously, when 0q   and 1,q   it holds 
 

0( , , ;0) ( , , ), ( , , ;1) ( , , ).x y t u x y t x y t u x y t       (18) 
 

Liao (1992, 1995) expanded ( , , ; )x y t q in Taylor 

series with respect to the embedding parameter q, as 
follows: 
 

0
1

( , , ; ) ( , , ) ( , , ) ,m
m

m

x y t q u x y t u x y t q




         (19) 

 
where 
 

0

1 ( , , ; )
( , , ) .

!

m

m m

q

x y t q
u x y t

m q









                    (20) 

 
Assume that the auxiliary linear operator, the initial 
guess, the auxiliary parameter h and the auxiliary 
function ( )H t are selected such that the series (19) is 

convergent at 1,q   then we have from (19) 

 

0
1

( , , ) ( , , ) ( , , ).m
m

u x y t u x y t u x y t




                 (21) 
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Let us define the vector 
 

0 1 2( ) { ( , , ), ( , , ), ( , , ),..., ( , , )}.n nu t u x y t u x y t u x y t u x y t


               

                                                                                  (22) 
 
Differentiating (17) m times with respect to q, then setting 

0q   and dividing then by !,m  we have the mth-order 

deformation equations 
 

1 1( ( , , ) ( , , ) ) ( ) ( ),m m m m mu x y t u x y t h H t u    




                                                                                 (23) 
 
Where 
 

1

1 1

0

1 [ ( , , ; )]
( ) ,

( 1)!

m

m m m

q

N x y t q
u

m q



 



 

 


       (24) 

 
and 
 

0 1,

1 1.m

m

m



  

                                                   (25) 

 

Applying the Riemann-Liouville integral operator J   on 
both side of (23), we have 
 

1

1 1 1
0

( , , ) ( , , ) (0 ) ( ) ( ).
!

in
i

m m m m m m m
i

t
u x y t u x y t u h H t J u

i
 




  


        

                                                                                 (26) 
 
 
APPLICATIONS 
 
Here, we use the homotopy perturbation and homotopy 
analysis methods to calculate the approximate solution of 
the fractional Zakharov-Kuznetsov equation. To calculate 
fractional derivative to hyperbolic function sinh will we 
use the fractional derivative of the exponential function 
which defined in Miller and Sugden (2009) as the follows 
 

( ) , 0, ( ) ( 1) ( ) , 0,x x x x
x xD e e D e e                  

 
so that 
 

1 1
[ sinh( ) ] [ ( )] [ ( 1) ], 0.

2 2
bx bx bx bx

x xD b x D e e b e b e b            

 
 
Example 1 
 
Consider the fractional Zakharov-Kuznetsov equation in 
the following form 
 

3 21 12 2 2( ) ( ) ( ) 0, 0, 0 , , 1,
8 8

t x x x yD u D u D u D D u t                 (27) 

 
 
 
 
subject to the following initial conditions 
 

24
( , ,0) sinh ( ),

3
u x y x y                             (28) 

 
where   is an arbitrary constant. 
 
By the homotopy perturbation technique, we construct a 
homotopy function ( , )H V p  which satisfies 

 
2 3 2 2 2

0

1 1
( , ) (1 )[ ] [ ( ) ( ) ( )] 0.

8 8t t t x x x yHV p p D V D V p D V D V D V D D V                

                                                                                  (29) 
 
According to the homotopy perturbation method, we can 
first use the embedding parameter p as a small 
parameter, and assume that the solution of Equation (29) 
can be written as a power series in p as follows: 
 

2 3
0 1 2 3( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ...V x y t V x y t p V x y t p V x y t p V x y t    

                                                                                 (30) 
 
Substituting Equation (30) into (29) and arranging the 
coefficients of powers of p, after some calculation we 
obtain 
 

0 2
0

4
: 0, ( , ,0) sinh ( ),

3tp D V V x y x y     

1 2 3 2 2 2
1 0 0 0

1 1
: ( ) ( ) ( ) 0,

8 8t x x x yp D V D V D V D D V         

2 3 2
2 0 1 0 1 0 1

1 1
: (2 ) (2 ) (2 ) 0,

8 8t x x x yp D V D V V D V V D D V V       

 
3 2 3 2 2 2

3 0 2 1 0 2 1 0 2 1

1 1
: (2 ) (2 ) (2 ) 0.

8 8t x x x yp D V D VV V D VV V D D VV V            

                                                                                    (31)  
 
After some calculation, we have 
 

2
0

4
( , , ) sinh ( ),

3
V x y t x y                                (32) 

 
2

2 6 3 2 4 3 4( ) 4( )
1

2 3 1 2 1 2( ) 2( )

( , , ) [ 2 2 2 ][ ( 1) ]
9 ( 1)

[ 2 2 2 ][ ( 1) ] ,

{

}

x y x y

x y x y

t
V x y t e e

e e


    

    




     

      


    

 

    

 

                                                                                 (33) 
 

3 2
5 2 3 3 2 3 2 4

2

4 3 3 1 2 1 2 4

2
( , , ) 2 (8 4 4 )(64 2 2 2 2 32 )cosh(2 2 )

27 (2 1)

2 (8 16 16 )(16 2 2 2 2 32 )cosh(4 4 )

[t
V x y t x y

x y


        

        




     

     

        
 

        

 

5 32 3 (8 16 16 )(8 32 32 )cosh(6 6 ) ,]x y              

                                                                                   (34) 



 
 
 
 

4 3
2( ) 2( ) 4( ) 4( )

3 1 2

6( ) 6( ) 8( ) 8( )
3 4

(2 1)
( , , ) [ ( 1) ] [ ( 1) ]

81 (3 1)

[ ( 1) ] [ ( 1) ] ,

{

}

x y x y x y x y

x y x y x y x y

t
V x y t e e e e

e e e e


 

 

   


 

     

     

  
     

 

     

                                                                                     (35) 
 
and so on, where 
 

2
1 2

3 1 2 1 2 4

3 3 2 3 2 4

( 2) (8 4 4 )(8 16 16 )
8 (8 4 4 )

( 1)

2 (8 16 16 )(16 2 2 2 2 32 )

(2 1)

(8 4 4 ) (64 2 2 2 2 32 )

(2 1)

[

],

    
  

        

       








 

   

   

    
   

 

      


 

      


 

 

                                                                                 (36) 
 

7 4
2

2 3 3 2 3 2 4

2

2 3 1 2 1 2 4

6 (8 16 16 )(8 36 36 )
2 (8 16 16 )

(2 1)

4(8 4 4 ) (8 4 4 )(64 2 2 2 2 32 )

( 1) (2 1)

2 (8 16 16 )(16 2 2 2 2 32 )

(2 1)

[

],

    
  

         

        




 



 

   

    

   
  

 

        
 

   

      


 

 

                                                                                     (37) 
 

3 2

3 2

3 1 2 1 2 4 2 2

3 4 (8 16 16 )(8 36 36 )
(8 4 4 ) (2 1)

( 1) (2 1)

(16 2 2 2 2 8 3 3 4 32 108 ) ( 1) ,

[

]

     
 

          

 
 



 

    

    
    

   

            

 

                                                                                 (38) 
 

3 2
4 2

2 (8 16 16 ) 4 3 (8 36 36 )
8 (8 16 16 )(8 64 64 )

( 1) (2 1)
[ ].

     
    

 
      

     
   

  

                                                                                 (39) 
 

On setting 1p  , we get an accurate approximation 

solution by the homotopy perturbation method which 
takes the following form: 
 

2
2 2 6 3 2 4 3 4( ) 4( )

2 3 1 2 1 2( ) 2( )

3 2
5 2 3 3 2 3 2 4

4
( , , ) sinh ( ) [ 2 2 2 ][ ( 1) ]

3 9 ( 1)

[ 2 2 2 ][ ( 1) ]

2
2 (8 4 4 )(64 2 2 2 2 32 )cosh(2 2 )

27 (2 1)

2

{

}

[

x y x y

x y x y

t
u x y t x y e e

e e

t
x y


    

    


        







     

      

     



      
 

    

        
 

 4 3 3 1 2 1 2 4

5 3

4 3
2( ) 2( ) 4( ) 4( )

1 2

(8 16 16 )(16 2 2 2 2 32 )cosh(4 4 )

2 3 (8 16 16 )(8 32 32 )cosh(6 6 )

(2 1)
[ ( 1) ] [ ( 1) ]

81 (3 1)

]

{ x y x y x y x y

x y

x y

t
e e e e

        

     


    



    

 

     

       

     

 
     

 

6( ) 6( ) 8( ) 8( )
3 4[ ( 1) ] [ ( 1) ] ... .}x y x y x y x ye e e e             

                                                                                   (40) 
 
Equation (40) represented the approximate solution for 
the fractional Zakharov -Kuznetsov Equation (27) which 
was obtained by HPM. 
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By means of the homotopy analysis method, we choose 
the linear operator 
 

( , , ; )
[ ( , , ; )] ,

x y t q
x y t q

t





 



                          (41) 

 

with property [ ] 0,c   where c is a constant. We define 

a nonlinear operator as 
 

2 3 2 2 2

3 2

( , , ; ) ( , , ; ) 1 ( , , ; ) 1 ( , , ; )
[ ( , , ; )] .

8 8

x y t q x y t q x y t q x y t q
N x y t q

t x x x y

    

    

        
   

    
                                                                                 (42) 
 

We consider auxiliary function ( ) 1.H t   So, the zeroth-

order deformation equation 
 

0(1 ) [ ( , , ; ) ( , , ) ] [ ( , , ; )].q x y t q u x y t qhN x y t q     (43) 

 

For 0q   and 1,q   we can write 
 

0( , , ;0) ( , , ), ( , , ;1) ( , , ).x y t u x y t x y t u x y t      (44) 

 
Thus, we obtain the mth -order deformation equations 
 

1 1
3

1 1 1 1
0 0

1
2

1
0

1
( , , ) ( , , )

8

1
1.

8

[ (

)],

m m

m m m t t m x n m n x n m n
n n

m

x y n m n
n

u x y t u x y t J h Du D uu D uu

D D uu m

   

 


 

   
 






   

 

 


  

                                                                                    (45)  
 
By using the Equation (45), and after some calculation 
we obtain 
 

2
2 6 3 2 4 3 4( ) 4( )

1

2 3 1 2 1 2( ) 2( )

( , , ) [ 2 2 2 ] [ ( 1) ]
9 ( 1)

[ 2 2 2 ] [ ( 1) ] ,

{

}

x y x y

x y x y

h t
u x y t e e

e e


    

    




     

      

    
 

    

                                                                                     (46) 
 

2 3 2
5 2

2 1

3 3 2 3 2 4

4 3 3 1 2 1 2 4

5 3

2
( , , ) ( 1) ( , , ) 2 (8 4 4 )

27 (2 1)

(64 2 2 2 2 32 )cosh(2 2 )

2 (8 16 16 )(16 2 2 2 2 32 )cosh(4 4 )

2 3 (8 16 16 )(8 32 32 )cosh(6 6

[h t
u x y t h u x y t

x y

x y

x


  

     

        

     




 

   

     

 

    
 

     

        

      ) ,]y

                                                                                     (47) 
 

3 4 3
2( ) 2( )

3 2 1

4( ) 4( ) 6( ) 6( )
2 3

8( ) 8( )
4

(2 1)
( , , ) ( 1) ( , , ) [ ( 1) ]

81 (3 1)

[ ( 1) ] [ ( 1) ]

[ ( 1) ]

{

},

x y x y

x y x y x y x y

x y x y

h t
u x y t h u x y t e e

e e e e

e e




 



  


 



  

     

  

 
    

 

     

  
                                                                                    (48) 
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Figure 1. The h-curves of the four-order approximation to Abs ( ( , , )),u x y t  Re ( ( , , ))u x y t  and Im ( ( , , ))u x y t  respectively at 

0.5, 0.001, 0.5, 0.1 .y x t           

 
 
 

where 1 2 3 4, , ,     take the same form (36)…(39) 

respectively. 
In this case, the approximate solution by using the 

homotopy analysis method of Equation (27) is given by 
 

2
2 2 6 3 2 4 3 4( ) 4( )

2 3 1 2 1 2( ) 2( )

2 3 2
5 2

1

3 3 2 3 2 4

4
( , , ) sinh ( ) [ 2 2 2 ][ ( 1) ]

3 9 ( 1)

[ 2 2 2 ][ ( 1) ]

2
( 1) ( , , ) 2 (8 4 4 )

27 (2 1)

(64 2 2 2 2

{

}

[

x y x y

x y x y

h t
u x y t x y e e

e e

h t
h u x y t


    

    


  

    







     

      

 

   

      
 

    

    
 

    
4 3 3 1 2 1 2 4

5 3

3 4 3
2( ) 2( )

2 1

32 )cosh(2 2 )

2 (8 16 16 )(16 2 2 2 2 32 )cosh(4 4 )

2 3 (8 16 16 )(8 32 32 )cosh(6 6 )

(2 1)
( 1) ( , , ) [ ( 1) ]

81 (3 1)

]

{ x y x y

x y

x y

x y

h t
h u x y t e e



        

     


  



     

 

  



        

     

 
    

 

  

 
4( ) 4( ) 6( ) 6( )

2 3

8( ) 8( )
4

[ ( 1) ] [ ( 1) ]

[ ( 1) ]

. . . .

}

x y x y x y x y

x y x y

e e e e

e e

 



 



     

  

     

  


                                                                                  (49)  
 
Equation (49) represented the approximate solution for 
the fractional Zakharov-Kuznetsov Equation (27) which 
was obtained by HAM. 
 
 
Remarks 1 
 
1) The homotopy analysis method determines the interval 
of convergence from the h-curve (Figure 1). As pointed 
by Liao (1992, 1995), the valid region of h is a horizontal 
line segment. Therefore, it is straightforward to choose an 
appropriate range for h which ensure the convergence of 
the solution series. We stretch the h-curve of 

(0.5,0.5,0.1)u    in   Figure   1,   which   shows   that  the 

solution series is convergence when 1.5 0.5 .h     
 

2) In special case, when , , 1     in Equations (32) to 

(35), we get 
 

2
0

2 3 2 3
1

3 6 4 2 2
2

3

4
( , , ) sinh ( ),

3
224 32

( , , ) sinh ( )cosh( ) sinh( )cosh ( ) ,
9 3

64
( , , ) ( 1200cosh ( ) 2080cosh ( ) 968cosh ( ) 79) ,

27
4096

( , , ) sinh( )cosh( ) 23800cos
243

[

V x y t x y

V x y t x y x y t x y x y t

V x y t x y x y x y t

V x y t x y x y



 



 


     

      


   6

4 2 4 3

h ( )

42900cosh ( ) 22665cosh ( ) 3142 ,]

x y

x y x y t



    

                                                                                  (50) 
 
is the same solutions obtained by Biazar et al. (2009). 

Table 1 leads to the absolute error between the 
approximate solutions (40) obtained by HPM and the 
approximate solutions (49) obtained by HAM. The 
absolute error is very small so that the approximate 
solutions has the same behavior. 

Approximate solutions obtained by HPM tends to the 
approximate obtained by HAM when 1.h   

The comparison between the approximate solution of 
Equation (27) by using the HPM and approximate 
solution by using HAM are shown in Figure 2. 
 
 
Example 2 
 
Consider the fractional Zakharov-Kuznetsov equation in 
the following form 
 

3 21 12 2 2( ) ( ) ( ) 0, 0, 0 , , 1,
8 8

t x x x yD u D u D u D D u t             

                                                                               (51) 
 
subject to the following initial conditions (Hesam et al., 
2012): 



Gepreel et al.         477 
 
 
 

Table 1. Determine the absolute error between the real part of approximate solutions (40) which obtained by the HPM and 
the real part of approximate solutions (49) which obtained by the HAM when 0.1, 1.1y h         and 

0.001  . 
 

x t HPMRe U  HAMRe U  HPM HAMu  u  

0.1 

0.1 0.5476301844E-4 0.5476378484E-4  0.76640E-9  

0.5 0.5488796450E-4  0.5488887554E-4  0.91104E-9  

0.9 0.5493885905E-4  0.5493982991E-4  0.97086E-9  

     

0.5 

0.1 0.5407093554E-3  0.5407096643E-3  0.3089E-9  

0.5 0.5407569911E-3  0.5407573617E-3  0.3706E-9  

0.9 0.5407763977E-3  0.5407767940E-3  0.3963E-9  

     

0.9 

0.1 0.1837593296E-2  0.1837591245E-2  0.2051E-8  

0.5 0.1836921718E-2  0.1836919675E-2  0.2043E-8  

0.9 0.1836648586E-2  0.1836646577E-2  0.2009E-8  
 
 
 

 
                          (a)                                                      (b)  
 
Figure 2. (a) Represents the real part of approximate solution (40) by HPM and (b) represents the real part of approximate solution 
(49) by HAM at 0.5, 0.001, 3,y h           1 1x    and 0 1 .t   

 
 
 

24 1
( , , 0) sinh [ ( )],

3 2
u x y x y                                           (52) 

 

where   is an arbitrary constant. 
By the homotopy perturbation technique, we construct 

a homotopy which satisfies 
 

2 3 2 2 2
0

1 1
( , ) (1 )[ ] [ ( ) ( ) ( )] 0.

8 8t t t x x x yH V p p D V D V p D V D V D V D D V               

                                                                                  (53) 
 
According to the homotopy perturbation method,  we  can 

first use the embedding parameter p as a small 
parameter, and assume that the solution of Equation (53) 
can be written as a power series in p as follows: 
 

2 3
0 1 2 3( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ...V x y t V x y t pV x y t pV x y t pV x y t    

                                                                                 (54) 
 
Substituting Equation (54) into (53) and arranging the 
coefficients of powers of p, after some calculation we 
obtain 
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0 2
0

4 1
: 0, ( , , 0) sinh [ ( )],

3 2tp D V V x y x y     

1 2 3 2 2 2
1 0 0 0

1 1
: ( ) ( ) ( ) 0,

8 8t x x x yp D V D V D V D D V         

2 3 2
2 0 1 0 1 0 1

1 1
: (2 ) (2 ) (2 ) 0,

8 8t x x x yp D V D V V D V V D D V V         

3 2 3 2 2 2
3 0 2 1 0 2 1 0 2 1

1 1
: (2 ) (2 ) (2 ) 0.

8 8t x x x yp D V D V V V D V V V D D V V V          
       (55)  

 
After some calculation, we have 
 

2
0

4 1
( , , ) sinh [ ( )],

3 2
V x y t x y                                    (56) 

 
2

3 3 2 3 2( ) 2( )
1

( ) ( )

( , , ) [ 2 2 2 ] [ ( 1) ]
9 ( 1)

3 3( 1) ] ,

{

}

x y x y

x y x y

t
V x y t e e

e e


    






     

  


     

 

  
                                                                                   (57) 
 

3 2
5

2

4 3 2

3 2

2
( , , ) 2 3 ( 8 4 4 )( 8 9 9 )cosh(3 3 )

27 (2 1)

2 ( 8 4 4 )( 12 2 2 8 )cosh(2 2 )

3
( 48 2 2 8 )cosh( )

16

[

],

t
V x y t x y

x y

x y


     

      

   




 

   

 

       
 

        

     

                                                                                    (58) 
 

4 3
4( ) 4( ) 3( ) 3( )

3 1 2

2( ) 2( ) ( ) ( )
3 4

(2 1)
( , , ) [ ( 1) ] [ ( 1) ]

81 (3 1)

[ ( 1) ] [ ( 1) ] ,

{

}

x y x y x y x y

x y x y x y x y

t
V x y t e e e e

e e e e


 

 

   


 

     

     

  
     

 

     

                                                                                   (59) 
 
and so on, where 
 

3 2
3 3 2 3

2 3 6 3 2 4
1

3 3 2 3 2

2

3 3
4( 2 2 2 )( 3 )

8 8( 2 2 2 )
(2 1)

( 2 2 2 )

( 1)
,

[

]

  
    

   

   







  

     

  

     
   

 

  


 
                                                                                     (60) 
 

6

2 2

3 2 2 2

2 3 ( 8 4 4 )( 8 9 9 )
6 (2 1)

(2 1) ( 1)

( 12 2 2 8 3 3 8 27 ) ( 1)

[

],

     

       

 
 



 

  

     
  

   

          

 

                                                                                 (61) 
 

3 2 5 3
3 2

5 2 2 2 6

9 4 9
2 ( 8 4 4 ) ( 27 2 27 2

( 1) (2 1) 2

27 2 4 ( 8 4 4 ) 2 3 ( 8 4 4 )( 8 9 9 ) ,

[

]

    

          


 

     

      

        
   

             

                                                                                 (62) 
 

4 1 3 3 2 1 1 2 3

4

3 3 3 2

2

3 288 9 2 9 2 4 4 16 64 2 (9 2 8 )

4 8 (2 1)

6( 1) ( 2 2 2 )

( 1)

[

].

          

    






       

    

           
 

 

   


 

 

                                                                                 (63) 

 
 
 
 
On setting 1p  , we get an accurate approximation 

solution by the homotopy perturbation method which 
takes the following form: 
 

2

2
3 3 2 3 2( ) 2( )

( ) ( )

3 2
5

4 3 2

4 1
( , , ) sinh [ ( )]

3 2

[ 2 2 2 ][ ( 1) ]
9 ( 1)

3 3( 1) ]

2
2 3 ( 8 4 4 )( 8 9 9 )cosh(3 3 )

27 (2 1)

2 ( 8 4 4 )( 12 2 2 8 )cosh(

{

{

}

x y x y

x y x y

u x y t x y

t
e e

e e

t
x y


    




     

      









     

  

 

   

 

     
 

  

       
 

       

3 2

2 2 )

3
( 48 2 2 8 )cosh( )

16
}

x y

x y    



     

 

4 3
4( ) 4( ) 3( ) 3( )

1 2

2( ) 2( ) ( ) ( )
3 4

(2 1)
[ ( 1) ] [ ( 1) ]

81 (3 1)

[ ( 1) ] [ ( 1) ] ...

{

}

x y x y x y x y

x y x y x y x y

t
e e e e

e e e e


 

 

   


 

     

     

 
     

 

      

  

                                                                                (64)  
 
Equation (64) represented the approximate solution for 
the fractional Zakharov -Kuznetsov Equation (51 obtained 
by HPM.  

By means of the homotopy analysis method, we 
choose the linear operator 
 

( , , ; )
[ ( , , ; )] ,

x y t q
x y t q

t





 



                           (65) 

 

with property [ ] 0,c   where c is a constant. We define 

a nonlinear operator as 
 

2 3 2 2 2

3 2

( , , ; ) ( , , ; ) 1 ( , , ; ) 1 ( , , ; )
[ ( , , ; )] .

8 8

x y t q x y t q x y t q x y t q
N x y t q

t x x x y

    

    

       
   

    
                                                                                 (66) 
 

We consider auxiliary function ( ) 1.H t   So, the zeroth-

order deformation equation 
 

0(1 ) [ ( , , ; ) ( , , ) ] [ ( , , ; )].q x y t q u x y t qhN x y t q      (67) 

 

For 0q   and 1,q   we can write 
 

0( , , ;0) ( , , ), ( , , ;1) ( , , ).x y t u x y t x y t u x y t       (68) 

 
Thus, we obtain the mth-order deformation equations  
 

1 1
3

1 1 1 1
0 0

1
2

1
0

1
( , , ) ( , , )

8

1
1.

8

[ (

)],

m m

m m m t t m x n m n x n m n
n n

m

x y n m n
n

u x y t u x y t J h D u D u u D u u

D D u u m

   

 


 

   
 






   

 

 


                                                                                   (69) 
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Table 2. Determine the absolute error between the real part of approximate solutions (64) obtained by the HPM and the 
real part of approximate solutions (73) obtained by the HAM when 0.1, 1.1y h         and 0.001  . 

 

x t  HPMRe U  
HAMRe U  

HPM HAMu  u  

0.1 

0.1 0.1297232493E-4 0.1297193845E-4  0.38648E-9  

0.5 0.1290155925E-4  0.1290110921E-4  0.45004E-9  

0.9 0.1287274434E-4  0.1287226875E-4  0.47559E-9  

0.5 

0.1 0.1232468684E-3  0.1232464860E-3  0.3824E-9  

0.5 0.1231776456E-3  0.1231771992E-3  0.4464E-9  

0.9 0.1231494580E-3  0.1231489857E-3  0.4723E-9  

0.9 

0.1 0.3617327474E-3  0.3617324328E-3  0.3146E-9  

0.5 0.3616767081E-3  0.3616763399E-3  0.3682E-9  

0.9 0.3616538879E-3  0.3616534979E-3  0.3900E-9  
 
 
 
By using the Equation (69), and after some calculation 
we obtain 
 

2
3 3 2 3 2( ) 2( )

1

( ) ( )

( , , ) [ 2 2 2 ][ ( 1) ]
9 ( 1)

3 3( 1) ] ,

{

}

x y x y

x y x y

h t
u x y t e e

e e


    






     

  

     
 

  

 (70) 

 
2 3 2

5
2 1

4 3 2

2
( , , ) ( 1) ( , , ) 2 3 ( 8 4 4 )( 8 9 9 )cosh(3 3 )

27 (2 1)

2 ( 8 4 4 )( 12 2 2 8 )cosh(2 2 )

[h t
u x y t h u x y t x y

x y


     

      




 

   

         
 

        
 

3 23
( 48 2 2 8 )cosh( )

16
],x y                   (71)  

 
3 4 3

4( ) 4( )
3 2 1

3( ) 3( ) 2( ) 2( ) ( ) ( )
2 3 4

(2 1)
( , , ) ( 1) ( , , ) [ ( 1) ]

81 (3 1)

[ ( 1) ] [ ( 1) ] [ ( 1) ] ,

{

}

x y x y

x y x y x y x y x y x y

h t
u x y t h u x y t e e

e e e e e e




  

  


  

  

        

 
     

 

       

 

                                                                                   (72) 

   
 

where 1 2 3 4, , ,     take the same form (60)…(63) 

respectively. In this case, the approximate solution by 
using HAM of Equation (51) is given by 
 

2
2 3 3 2 3 2( ) 2( )

( ) ( )

2 3 2
5

1

4

4 1
( , , ) sinh [ ( )] [ 2 2 2 ] [ ( 1) ]

3 2 9 ( 1)

3 3( 1) ]

2
( 1) ( , , ) 2 3 ( 8 4 4 )( 8 9 9 )cosh(3 3 )

27 (2 1)

2 ( 8 4 4 )( 12 2

[

{

}

x y x y

x y x y

h t
u x y t x y e e

e e

h t
h u x y t x y


    




     

  







     

  

 

 

       
 

  

         
 

      3 2

3 2

3 4 3
4( ) 4( )

2 1

3( ) 3( ) 2( ) 2( ) ( ) ( )
2 3 4

2 8 )cosh(2 2 )

3
( 48 2 2 8 )cosh( )

16

(2 1)
( 1) ( , , ) [ ( 1) ]

81 (3 1)

[ ( 1) ] [ ( 1) ] [ ( 1) ]

]

{

}

x y x y

x y x y x y x y x y x y

x y

x y

h t
h u x y t e e

e e e e e e

   

   




  

  


  

 

 

  

        

  

     

 
     

 

       

  

. . . .                                                 (73) 

Equation (73) represented the approximate solution for 
the fractional Zakharov-Kuznetsov Equation (51) 
obtained by HAM. 
 
 
Remarks 2 
 
1) The homotopy analysis method determines the interval 
of convergence from the h-curve (Figure 5). As pointed 
by Liao (1992), the valid region of h is a horizontal line 
segment. Therefore, it is straightforward to choose an 
appropriate range for h which ensures the convergence 
of the solution series. We stretch the h-curve of 

(0.1,0.1,0.2)u  in Figure 5, which shows that the 

solution series is convergence when 1.5 0.5 .h     
 

2) In special case, when , , 1    , the approximate 

solution (64) takes the following form 
 

2 2 3 2 4 34 1 2 1 1
( , , ) sinh [ ( )] sinh( ) cosh( ) sinh( ) ... .

3 2 3 3 9appu x y t x y t x y t x y t x y           

                                                                                     (74)  
 

Using Taylor series expansion near 0,t   we get 
 

24 1
( , , ) sinh [ ( )].

3 2exu x y t x y t                 (75) 

 
This solution (75) is exactly the same solution obtained in  
(Hesam et al., 2012). 

Table 2 leads to the absolute error between the 
approximate solutions (64) obtained by HPM and the 
approximate solutions (73) obtained by HAM. The 
absolute error is very small so that the approximate 
solutions have the same behavior. 

The comparison between the approximate solution of 
Equation (51) by using the HPM and approximate 
solution by using HAM are shown in Figure 3, 4, 6, 7, 8. 
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                                (a)                                                     (b)  

 
Figure 3. (a) Represents the imaginary part of approximate solution (40) by HPM and (b) represents the imaginary part of approximate 
solution (49) by HAM at 0.5, 0.001, 3,y h           1 1x    and 0 1 .t   

 
 
  

 
                           (a)                                                              (b)  
 
Figure 4. (a) Represents approximate solution (40) by HPM and (b) represents approximate solution (49) by HAM at 

1, 0.001, 0.9, 2,y h           0.1 0.9x   and 0.2 0.4 .t   

 
 
 
Conclusion 
 
In this paper, we used the two different methods such as 
homotopy perturbation method and homotopy analysis 
method to obtain analytic approximate solutions for the 
fractional Zakharov-Kuznetsov equations which are very 
important in mathematical physics especially in nonlinear 
dynamics and plasma physics. We compared between 
the approximate solutions obtained by using the 
homotopy  perturbation   method   and   the   approximate 

solutions obtained by using the homotopy analysis 
method. The homotopy analysis method investigates the 
influence of h on the convergence of the approximate 
solution. Note that the solution series contains the 
auxiliary parameter h which provides us with a simple 
way to adjust and control the convergence of the solution 
series. Also we compared between the approximate 
solutions obtained by these methods and the exact 
solutions when , , 1.     These methods are effective 

and  allows   us   to   solve   nonlinear    partial   fractional
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Figure 5. The h-curves of the four-order approximation to Abs ( ( , , )),u x y t  Re ( ( , , ))u x y t  and Im ( ( , , ))u x y t  respectively at 

0.5, 0.001, 0.1, 0.2 .y x t           
 
 
 

  
                              (a)                                                         (b)  
 
Figure 6. (a) Represents the real part of approximate solution (64) by HPM and (b) represents the real part of approximate 
solution (73) by HAM at 0.9, 0.1, 0.1,y         1 1x    and 0 1 .t   

 
 
 

 
                             (a)                                                           (b)  
 
Figure 7. (a) Represents the imaginary part of approximate solution (64) by HPM and (b) represents the imaginary part of 
approximate solution (73) by HAM at 0.9, 0.1, 0.1, 2,y h           1 1x    and 0 1 .t   
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                    (a)                                            (b)                                        (c)  
 
Figure 8. (a) Represents approximate solution (64) by HPM, (b) represents approximate solution (73) by HAM and (c) represents 
the exact solution (75) at 1, 0.1, 0.9, 2.5,y h           1 1x    and 0 1 .t   

 
 
 
differential equations. 
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