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In this study, influence of the concrete-reinforcement bond on behaviour of the reinforced concrete tie 
is considered. The qualitative analysis of elongation and cracking of the tie is given. An original 
algorithm is suggested for modelling of the elongation of the tie under pure tension. The local 
behaviour of the concrete-reinforcement bond is approximated by a linear model whose parameters 
were estimated by minimizing relative error between experimental and calculated results. The global 
behaviour of the concrete and reinforcement for the analysis is assumed to be linear elastic. Performed 
assessment of the linear approximation showed that the accuracy of the suggested theoretical model 
depends on the geometry of the tie and length of the interval of the elongation in which the analysis is 
performed. 
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INTRODUCTION 
 
It is well known that cracking and deformability of 
reinforced concrete (RC) depends not only on properties 
of reinforcement and concrete, but also on 
concrete-reinforcement bond. Thus, the bond between 
the concrete and reinforcement is a very important factor 
contributing to the behaviour of RC structures. The 
contribution may be dominant in evaluation of servicea-
bility of RC members, especially in bending and tension. 

Various working hypothesis are adopted to take into 
account the influence of the bond in analysis of the RC 
structures. These hypotheses should correspond to the 
actual behaviour of the bond undoubtedly. Therefore, 
understanding of the influence of the bond on behaviour 
of RC members is an important issue in investigation of 
RC structures. 

The influence of the bond on the behaviour of RC 
elements can be examined in various ways. Popular 
numerical   methods,   analytical  approaches  and  mixed 
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semi-analytical methods are extensively applied. Nume-
rical methods involve finite element (FEM) (Khalfallah 
and Hamimed, 2005; Khalfallah and Ouchenane, 2007; 
Lettow et al., 2004; Yu and Ruiz, 2006; Xiao et al., 2009; 
Zhao, 2011; Youai, 2000) and discrete element methods 
(Hentz et al., 2004; Wittel et al., 2006; Kim and Yun 
Mook, 2011). Large amount of data and time consuming 
post-processing are main disadvantages from the view 
point of design. Analytical methods involve ordinary 
differential equations (ODEs) and its exact solutions in 
explicit forms (Holmyanskii, 1981, 1997; Creazza and 
Russo, 1999, 2001; Russo and Pauletta, 2006; CEB Task 
Group 2.5, 2000). 

Non-linear ODEs describing the bond may not have 
exact explicit solution. In this case, the non-linear ODEs 
and its numerical solutions belong to semi-analytical 
methods (Holmyanskii 1981, 1997; Russo and Pauletta, 
2006). Kaklauskas et al. 2012, and Gribniak et al. 2010 
and 2012 have proposed several analytical algorithms for 
evaluating tension stiffening of the flexural members. 
Their approaches are based on the experimental results 
and take into account concrete creep and shrinkage. 
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There are several theoretical models, represented by 
ODEs, for RC elements, which take into account 
concrete-reinforcement interaction. As a rule, these 
ODEs are second order. ODEs of the one type are 
derived with respect to the slip of the reinforcement in 
concrete (displacement driven approach) (Holmyanskii, 
1981, 1997; Creazza and Russo, 1999, 2001; Russo and 
Pauletta, 2006; CEB Task Group 2.5, 2000). The solution 
of this ODE is displacement of the reinforcement with 
respect to the concrete. 

ODEs of another type, which can be used to investigate 
the influence of the concrete-reinforcement interaction, 
are derived with respect to the shear forces acting in the 
interface of different layers of a structure (Rzhanicyn, 
1986). This method can be called force driven approach. 
Actually, these ODEs were derived for layered 
structures - build-up bars; however, they can be applied 
to investigate the influence of the concrete-reinforcement 
interaction as well. It should be noted that displacement 
driven approach has advantage over force driven 
approach. The former approach allows us to make very 
general non-linear ODE that involves an arbitrary law of 
concrete-reinforcement interaction. Such ODE was made 
by Russo and Pauletta (2006) and Rzhanicyn (1986). It 
should be emphasised that the exact analytical solution 
of the non-linear ODE for exponential law of bond is 
given by Russo and Pauletta (2006). 

The present study is devoted to investigate the 
possibility of applying the assumptions of the linear 
elastic behaviour of concrete, reinforcement and bond on 
behaviour of the elongation of a centrically reinforced 
concrete tie, which is under pure tension. Also, the 
influence of the bond on deformation behaviour of the tie 
as well as cracking of the tie was considered. The 
analysis was conducted analytically. A second order 
linear ODE with constant coefficient is used as the basis 
of the analytical methodology (Rzhanicyn, 1986). 

The present article is organised as follows: An 
analytical formulation and theoretical consideration of the 
problemis first presented, followed by a description of the 
RC tie under investigation. Thereafter results of analytical 
study and discussion on these results are presented, and 
finally, conclusions are drawn. 
 
 

ANALYTICAL FORMULATION OF THE PROBLEM 
 

Assumption of the model 
 

Cracking and behaviour of the elongation of the tie 
subjected to pure static tension is investigated. A 
geometry and loading of the RC tie under investigation is 
schematically shown in Figure 1a. The RC tie under 
consideration is subjected by centrally applied external 
tensile force Ns

0
. Contribution of shrinkage strains εsh of 

the concrete will be also taken into account. Geometry of 
the RC tie is characterised by the initial length l0 and the 
square-shaped   cross-section. The  cross-section  of  the 
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Figure 1. (a) Schematic view of RC tie and its cross-section, (b) 
distribution of total shear force T(x), (c) distribution of shear force 
per unit length τ(x). 

 
 
 

RC tie presents composition of the centrally located 
reinforcing bar with diameter ø and the concrete cover 
with thickness δ. Thus, the dimension of the cross-
section is 2δ+ ø. 

In the present article, the model of the build-up bars 
according to Rzhanicyn (1986) is adopted to investigate 
influence of the concrete-reinforcement interaction. This 
model is valid when following assumptions hold: 
 
1. Concrete and reinforcement are isotropic and 
homogeneous materials in all their volume; 
2. Concrete and reinforcement obey Hooke’s law;  
3. Relationship between stress and slip of the bond is 
linear; 
4. Bond between reinforcement and concrete is 
distributed uniformly along the surface of the 
reinforcement; 
5. Plane section hypothesis is valid separately for 
concrete and reinforcement cross-sections, respectively. 
 
It is well known that, in general, concrete deforms 
nonlinearly. However, stress-strains relationship of the 
tensile concrete is closer to the linear elastic law than 
stress-strains relationship of the compressive concrete. 
Therefore, the 2nd assumption of linear elastic behaviour 
of the tensile concrete may serves as an initial approach 
to investigate the behaviour of the deformation of the RC 
tie under tensile forces. Mild steel  reinforcement  can  be 



 
 
 
 
considered as linear elastic material up to yield point; 
therefore, 2

nd
 assumption is valid for reinforcement if its 

stresses do not exceed yield stresses. 
The third assumption also is not exact, since stress-slip 

relationship of the bond is apparently non-linear. 
However, up to the certain level of the stresses of the 
bond the stress-slip relationship may be assumed as 
linear elastic. In addition, the assumptions of the linearity 
of the stress-strain for the concrete and reinforcement, 
and linearity of the stress-slip for the bond allow us obtain 
an exact and explicit solutions of the stress-strain state of 
both cross-section and bond of the RC tie under 
consideration. The linear elastic solutions may be used 
as a first approach to investigate the influence of the 
interaction of the bond on behaviour of the RC tie under 
tension. Even though the assumptions about linearity of 
the bond are not exact, however this assumption is 
suitable for qualitative analysis of the RC tie. 

The fifth assumption of uniform distributed bond 
between reinforcement and concrete is acceptable if 
reinforcing bar is long enough. 

 
 
Governing equations 

 
In the present article, the build-up bars model according 
to Rzhanicyn (1986) is adopted to investigate an 
influence of the concrete-reinforcement interaction. 
According to this model, the differential equation of the 
total shear force T(x) acting in the bond is as follows: 
 

 
  

2

2

1
Δ

d T x
γT x

ξ dx
                                                    (1) 

 
where ξ is the stiffness or slip modulus of the bond 
between concrete and reinforcement. It should be noted 
that the stiffness ξ, in Equation 1, is tangent of an angle 
between x-axis and the line of the linear force-slip 
dependence of the bond. In addition, the stiffness ξ, in 
Equation 1, is related to the total perimeter of the 
cross-section of the reinforcing bars. Difference of the 
deformation Δ in Equation 1, is given in Equation 3; while 
compliance γ, comprising properties of the concrete and 
the reinforcement, is as follows: 
 

 
1 1

s s c c

γ
E A E A

                                                             (2)   

 
where Es, Ec, As, and Ac are elastic moduli and areas of 
the cross sections of the reinforcing bars and concrete, 
respectively. 

In Equation 1, the conditional difference of the 
deformation Δ is as follows: 
 

   
0 0
s c

sh
s s c c

N N
Δ ε

E A E A
                                                 (3) 
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where Ns
0
 and Nc

0
 are external axial forces, shε  is 

shrinkage strain of the concrete. In Equation 3, the 
external tensile forces Ns

0
 and Nc

0
 are assumed to be 

positive and the compressive forces Ns
0
 and Nc

0
 are 

assumed to be negative, the shrinkage strain εsh of the 
concrete is assumed to be positive. In addition, it is 
assumed, that forces Ns

0
 and Nc

0
 are applied to the 

centroids of the cross sections of the reinforcement and 
concrete, respectively. As can be seen from Equation 3, 
the term Δ takes into account shrinkage strain of the 
concrete. 

The general solution of Equation 1 given by Polyanin 
and Zaitsev (2002) can be represented as follows: 
 

       1 2sinh cosh ΔT x C λx C λx γ                              (4) 

 

where λ ξγ , C1 and C2 are integration constants 

depending on boundary conditions. 
Assuming that the origin of the coordinate system 

XOYZ is in the middle of the block of the RC tie (Figure 
1a), then the boundary conditions are following: 
 
(a) the total shear force T(x) equals zero at the ends of 
the RC tie block, that is, at points −1 ∕ 2∙l and 1 ∕ 2∙l 
(Figure 1b): 
 

     1/ 2 1/ 2 0T l T l                                                 (5) 

 
(b) owing to symmetry of the RC tie, the shear force per 
unit length τ(x) equals zero at the middle of the block: 
 

 





 

0

0

( ) 0
x

x

T x
τ x

x
                                                (6) 

 
Regarding Equations 5 and 6, we get integration 
constants C1 and C2: 
 

1 0C , 2

Δ
C η

γ
                                                          (7) 

 
where 
 

 


1
2

1

cosh
η

λl
                                                            (8) 

 
Finally, the total shear force T(x) is as follows: 
 

    cosh 1
Δ

T x η λx
γ

                                                (9) 

 
The normal stresses in the reinforcement bar σs and in 
the concrete σc are as follows: 
 

     0
s s sσ x N T x A                                               (10) 
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     0
c c cσ x N T x A                                               (11) 

 

Negative sign of stresses corresponds to the 
compression while positive sign corresponds to the 
tension. 
 
 

Theoretical analysis of the cracking of a reinforced 
tie 
 

Let us consider cracking of a RC tie under a tensile force 
Ns

0
 and shrinkage strains εsh of the concrete. We assume 

that Nc
0
 = 0. At the beginning of the loading when Ns

0
 = 0, 

the RC tie is deformed only due to shrinkage of the 
concrete. If the rigidity of the reinforcement is not too big 
with respect to the stiffness of the concrete cross-section, 
then no cracks appear in the RC tie due to shrinkage of 
the concrete. Equations 9 and 11 show that if Nc

0
 = 0, 

then the stresses of the concrete σc are maximum in the 
middle of the uncracked block of the tie. Since the plane 
section hypothesis is valid, the maximum normal stresses 
σc appear in the whole cross-section of the concrete 
located in the middle of the uncracked block of the tie. 

Increase of external force Ns
0
 yields increase of the 

stresses of the concrete σc. By assuming simple tensile 
stress fracture criterion, initiation of the cracking is 
defined upon condition: 
 

c ctmσ f                                                                    (12) 

 

where fctm is tensile strength of the concrete. 
It is obvious that condition (Equation 12) corresponds 

to the crack opening through the entire cross-section of 
the RC tie. One crack appearing in the middle of the 
RC tie divides it into two new smaller blocks. These two 
new blocks are equal in length since maximum stresses 
σc appear in the middle of the uncracked block. If the 
tensile force Ns

0
 increases further, it causes maximal 

stresses σc of the concrete in the middle of two new 
blocks. After cracking of two blocks, we have four blocks 
and three cracks: one old and two new. Further 
increasing of the tensile force Ns

0
 splits all four blocks into 

8 blocks and forms new four cracks. Now we have 7 
cracks in total. The further increase of Ns

0
 causes new 

cracks. The sequential cracking procedure could be 
continued until the yield limit of the reinforcement is 
reached. For clarity, the sequential cracking of the RC tie 
and corresponding stages of the cracking are shown in 
Figure 2. 

Now, let us turn our attention to the cracking process of 
the RC tie or the blocks. Let an event when the new 
cracks appear in the RC tie be called the cracking stage 
and denoted by k. Introduced index k is used further for 
description of the sequential cracking. When RC tie is 
uncracked, then k = 0. The virgin stage is characterised 
by k = 0. When the new crack appears first time, k = 1, 
when the new cracks appear second time, k = 2. Opening 
of the further cracks increases k by 1. 

 
 
 
 

 k=0

k=1

k=2

k=3

 
 

Figure 2. Schematic view of cracking of the RC tie at different 
stages, k. 
 
 
 

If only one new crack appears in the each block of the 
RC tie, then the relationships between the cracking stage 
k and number of cracks ncrc,k as well as number of blocks 
nblc,k are as follows: 
 

 , 2 1k
crc kn                                                             (13) 

 

, 2k
blc kn                                                                 (14) 

 
A number of new cracks ncrc,new k at k

th
 cracking stage is 

as follows: 

 
 1

, , 2k
crc new kn                                                           (15) 

 
As can be seen from Equations 13 to 15, the numbers of 
cracks, new cracks and blocks are power-law functions. 

Let us consider ratio between number of the new 
cracks and total number of the cracks, that is 
ncrc,new,k ∕ ncrc,k at k cracking stage: 
 

 



   
 

1
, ,

,

2 1
( ) 0.5

22 1 2 1

k
crc new k

k k
crc k

n
R k

n
                       (16) 

 
It is evident that the last member in Equation 16 tends to 
zero as k tends to infinity. Therefore, R(k) in Equation 16 
tends to 0.5 as k tends to infinity. This tendency is clearly 
illustrated by the graph depicted in Figure 3. 

As can be seen from Figure 3, the ratio R(k) tends to 
limit 0.5 very quickly. At fourth stage R(k) = 0.53(3), at 
seventh stage R(k) = 0.504. Consequently, the number of 
new cracks, at big enough number k, can be calculated 
as follows: 
 

, , ,0.5crc new k crc kn n                                                      (17) 

 
 
Calculation of the cracking load and elongation of the 
reinforcement 

 
Let us calculate the value of the external tensile forces 
N

0
s,crc that causes opening of one crack through the 

whole cross-section of the concrete in the middle of the 
certain block of the RC tie. As already mentioned, it is 
assumed that Nc

0
 = 0  and  the  crack  opens  though  the 
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Figure 3. The dependence of the ratio (ncrc,new,k ∕ ncrc,k) on the 
cracking stage, k. 
 
 
 

whole cross-section of the concrete when σc = fctm. The 
stresses of the concrete σc are maximal when x = 0 in 
XOYZ frame of reference, that is, in the middle of the 
block. On the basis of the made assumptions, 
Equation 12 is as follows: 
 

 
0c ctm x

A f T x


                                                       (18) 

 
By putting Equation 3 into Equation 9 and taking into 
account Equation 18, we get the cracking tensile force 
N

0
s,crc: 

 

 
  

 

0
,

1

ctm c
shs crc s s

f A γ
εN E A

η
                                   (19) 

 
Having stresses of the reinforcement, Equation 10, the 
elongation of the reinforcement of the one (i

th
) uncracked 

block under the load N
0
s,crc can be calculated on the basis 

of the following relationship: 
 

   
1 2 1 2

,

1 2 1 2

1
l l

s i s s
sl l

Δl ε x dx σ x dx
E

 

                                   (20) 

 
After integration of Equation 20, we get the elongation 
Δls,i 

 

 0
,

1
s i s

s s

Δl N l ω
E A

                                                   (21) 

 

where  1
2

2 sinh
Δ η

ω l λl
γ λ

 
  

 
. 

The total elongation of the cracked RC tie equal to the 
sum of all Δls,i (ΣΔls,i). However, the elongation Δls,i by 
Equation 21 takes into account shrinkage of the concrete. 
Therefore, at the initial of the loading, when applied force 
is small enough, Δls,i < 0 if εsh > 0, that is, if the concrete 
shrinks. Consequently ΣΔls,i < 0 as well. It does not meet 
experimental data that equal zero at the beginning of the 
loading. The calculated  elongation  Δls,i  will  seem  more 
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natural if it also equals zero at the beginning of the 
loading. For this sake, the initial elongation Δls,0 of the 
reinforcement caused only by shrinkage of the concrete 
should be subtracted from the total elongation ΣΔls,i of the 
RC tie. 

The initial elongation Δls,0 can be calculated according 
to Equation 21 by taking conditions Ns

0
 = 0 and l = l0, 

where l0 is an initial length of the uncracked RC tie. 
Taking into account these conditions and Equations 3 
and 8, the elongation Δls,0 is as follows: 
 

 1
,0 0 02

1 2
tanhsh

s
s s

ε
Δl l λl

E A γ λ

  
  

 
                               (22) 

 
If the RC tie is divided into nblc,k blocks, the total 
elongation of the reinforcement of the whole RC tie is as 
follows: 

 
,

,0,
1

blc kn

s ss i
i

Δl ΔlΔl


 
  

 
 

                                                 (23) 

 
For clarity, the algorithm for calculation of the elongation 
of the reinforcement of the RC tie is given as follows: 
 
I. k:=0; nblc,k := 1; l:= l0, Ns,old

0
 := 0. 

 
II. wile σs ≤ fy: 
 
1. Evaluation of N

0
s,crc by (23). 

2. For p := 1 to np do: 
a. Ns

0
 := Ns,old

0
 + p ∕ np (N

0
s,crc − Ns,old

0
). 

b. nblc,k := 2
(k−1)

. 
c. evaluation of Δls by (23).  
3. k := k + 1 
4. l := l0 ∕ 2

k
. 

5. nblc,k := 2
k
. 

6. Evaluation of Δls by (23). 
7. Ns,old

0
:= Ns

0
. 

 
At the beginning (item I), it is assumed that the RC tie is 
uncracked. As can be seen from item II, the elongation 
Δls is calculated while stresses of the reinforcement do 
not exceed yield stresses fy. In while loop (item II), the 
elongation of the reinforcement is calculated (np + 1) 
times: before appearing of the new cracks np times at 
different Ns

0
 (item 2.) and one time after appearing of the 

new cracks (item 6). It should be noted, that the 
elongations Δls is calculated at the same cracking force 
N

0
s,crc (item 1a) before new cracking (item 1c) and after it 

(item 6). 

 
 
DESCRIPTION OF THE TESTING SAMPLE 

 
The properties of the concrete and reinforcement as well 
as   geometrical   parameters   of    the    RC    tie    under
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Table 1. Main material parameters for modelling. 
 

Parameter Parameter symbol Numeric value 

Concrete 

Modulus of elasticity Ec 28 GPa 

Mean compressive strength  fcm 35 MPa 

Mean tensile strength fctm 3.0 MPa 

   

Reinforcing steel 

Modulus of elasticity Es 210 GPa 

Yield stresses fY 630 MPa 

Diameter of reinforcement bar (mm)  16 
 
 

 
Table 2. Parameters of the RC ties under investigation. 
 

Type of the RC tie 
Initial length l0 (m)  

of the RC tie 

Cover’s thickness, 
δ (mm) 

Multiplier β 
Stiffness of bond ξ 

(GN ∕ m) 
Shrinkage strains of the concrete, εsh (10

−3
) 

(1) 0.96 48, (3) Varies: β  [1, 10
3
] Varies:  ξ  [0.99, 990] 0 

      

(2) 0.96 
Varies: δ  {16, 32, 48} 

or δ  {1, 2, 3} 
Varies: β  [1, 10

3
] Varies: ξ  [0.99, 990] 0 

      

(3) 0.96 48, (3) 10
3
 990 0 

(4) Varies: l0  {0.96, 1.8, 2.4} 48, (3) 10
3
 990 0 

(5) Varies l0  [0.96, 2.5] 48, (3) 10
3
 990 0 

(6) 0.96 48, (3) 
Varies: 

β  {10, 10
2
, 10

3
} 

Varies: ξ  [9.9, 99.0, 990] 0 

(7) 0.96 48, (3) 10
3
 990 Varies: sh  {0, 0.1, 0.2, 0.3} 

 
 
 
investigation were chosen in such a way that the 
results of analytical analysis could be compared 
with experimental results published in Elfgren and 
Noghabai (2001a, b). 

To investigate an influence of the bond on the 
behaviour of the deformation of the RC tie under 
tensile force the following parameters were varied: 
thickness   of  concrete  cover  δ,  stiffness  of  the 

bond ξ, initial length of the RC tie l0, and 
shrinkage strain of the concrete εsh. The 
properties of used materials are given in Table 1. 
The types of the RC ties under examination and 
its parameters are given in Table 2.  

Let us consider stiffness ξ of the bond in more 
detail. There are proposed a lot of stress-slip 
relationships for the bond.  In  the  present  article, 

 the bond properties were adopted on the basis of 
the stress-slip relationship of the bond according 
to Model Code (MC, 1990) as follows: 

 

    ,max 1

α

bnd bndτ τ s ss  when   10 s s              (24) 

 
where s and s1 are slip and slip  corresponding  to
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Figure 4. Stress-slip relationship for concrete-reinforcement bond. 
 
 
 

the maximum stresses. The units of s and s1 are mm. In 
Equation 24, τbnd,max is the maximal bond stresses. In the 
present article, the values of α, s1, and τbnd,max, in 
Equation 24, are adopted according to requirements of 
MC (1990) for unconfined concrete and good bond 
conditions: α = 0.4, s1 = 0.6, and τbnd,max = 2√fck, where fck 
is characteristic strength of the concrete; fck = fcm - 8 MPa, 
where fcm is mean strength of concrete. It should be 
emphasized that characteristic values of the concrete 
compressive strength fck points out to characteristic value 
of the τbnd,max. However in MC (1990), this issue is not 
considered in detail. 

It is assumed that the stress-slip relation of the bond is 
linear. Then stress of the bond τbnd can be expressed as 
follows: τbnd(s) = Γbnd∙s, where Γbnd can be treated as slip 
modulus of the concrete-reinforcement bond per unit 
length. The unit of Γbnd is [Pa / m]. According to the linear 
law, the shear force per unit length τ(s) = ξ∙s. The 
relationship between the bond stresses τbnd and the shear 
force per unit length τ is as follows: τ = P∙τbnd, where P is 
a perimeter of the bond zone. Then, taking into account 
relationships τbnd(s) = Γbnd∙s, τ(s) = ξ∙s, and τ = P∙τbnd, we 
get ξ∙s = P∙Γbnd∙s, which yield ξ = P∙Γbnd. Term Γbnd can be 
also considered as an initial tangent or secant modulus 
derived from a stress-slip  relationship  of  the  bond.  Slip 
derivative of τbnd(s), Equation 24, equals infinity at point 
s = 0. Secant modulus of the stress-slip relationship, 
Equation 24, at s1 is τbnd,max ∕ s1. For more clarity, the 
stress-slip relationship for concrete-reinforcement bond, 
by Equation 24, and secant modulus are shown in Figure 
4. 

Theoretically, the stiffness ξ can vary between 
P∙τbnd,max ∕ s1 and infinity. To investigate the influence of 
the stiffness ξ on the elongation of the reinforcement, we 
assume that ξ may vary within interval [(P∙τbnd,max ∕ s1), ∞]. 
For given parameters of the concrete and reinforcement 
(Table 1) the bond properties are following:  
 

Maximal stresses of the bond τbnd,max = 2 √fcm = 2 √35 = 
11.83 MPa. 

Slip modulus per unit length Γbnd = τbnd,max ∕ s1 = 
11.83∙10

6
 ∕ 0.6∙10

−3
 = 19.72 GPa. 

Perimeter of the bond zone of reinforcement 
cross-section P = 5.027 cm

2
. 

 

Since the stiffness ξ is unknown, it would be more 
convenient to introduce a multiplier β that shows how 
many times the stiffness ξ is greater or lover than its 
basic value P∙Γbnd . Finally, for adopted cross-section, the 
stiffness of the bond is as follows: ξ = P∙β ∙Γbnd ,  where  β 
is a multiplier. The properties of the bond, the parameters 
β and ξ, for adopted cross-sections are given in Table 2. 
 
 

MODELLING RESULTS 
 

Assessment of accuracy of the theoretical modelling 
 

The stiffness ξ of the bond for certain RC prism under 
pure tension is assessed hereafter on the basis of the 
experimental results that were presented in Elfgren and 
Noghabai (2001a, b). Due to non-linear stress-slip 
relation of the bond, the stiffness ξ is unknown and may 
vary within interval [(P∙τbnd,max ∕ s1), ∞]. Let us estimate the 
stiffness ξ by minimizing the maximal relative difference: 
 

   

 




0 0
, ,

0
,

Δ Δ
max

Δ

s exp s s clc s
m

s exp s

N l N l
d

N l
,  Δ 0,sl a         (25) 

 

where N
0
s,exp and N

0
s,clc are experimental and calculated 

axial forces of the reinforcement. In other words, we are 
seeking such a value of the stiffness ξ, with which the 
relative difference is minimum in certain interval [0, a]. 
The value of the term a may be chosen in accordance 
with the experimental data. The properties of the 
materials for RC tie under review are given in Table 1, 
the RC ties’ types are (1) and (2) (Table 2). 

As already mentioned, it is convenient to use the 
multiplier β to characterise how many times the stiffness ξ 
is greater than basic value P∙Γbnd. Therefore, the influence 
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Figure 5. The dependence of the calculated relative difference dm 
on multiplier β at different intervals [0, a], type of the RC tie is (1). 
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Figure 6. The dependence of the calculated relative difference dm 
on multiplier β at different cover thickness δ, when 

Δls  [0, 2.0] mm, type of the tie is (2). 
 
 
 

of the stiffness ξ on the relative difference dm is presented 
by multiplier β which is a multiplier in the relation 
ξ = β∙P∙Γbnd. This influence for different intervals [0, a], 

a  {0.25, 0.5, 1.0, 2.0} mm, as δ = 3Ø (RC tie’s type is 

(1)), and different cover thicknesses δ  {1Ø, 2Ø, 3Ø}, as 

Δls  [0, 2.0] mm (RC tie’s type is (2)) is depicted 
in Figures 5 and 6. As can be seen from these figures, dm 
decreases with increasing β. In general, we cannot claim 
that limits of dm exist as β tends to infinity. However, it is 
possible to claim that variation of dm is not significant at a 
certain value of β. 

Let β* be a value at which the variation of dm is not 
significant in the interval [β*, ∞] conditionally. Then, as 
can be seen from Figure 5, the variation of dm, in the 
interval   [β*, ∞],   is   bigger   for   narrow  interval  of  Δls, 

 
 
 
 

Δls  [0, a], or in other words, for small values of a 
(except interval [0, 1.0]). And vice versa, variation of dm is 
smaller for bigger value of a. Since the slip modulus Γbnd 
→ ∞ as s → 0, then β* → ∞ as a → 0.  

As can be seen from Figure 6, the variation of dm in 
certain interval [β*, ∞], is smaller for thinner covers than 
for thicker. For instance, from Figure 6, it can be seen 

that variation of dm is not significant in interval β  [β*, ∞] 
when β* = 20 for cover 1Ø, and when β* = 150 for cover 
2Ø. Our analysis showed that variation of dm is not 
significant when β* = 1000 for cover 3Ø. From Figure 6, it 
can also be seen that β* is less for thick covers than for 
thin. Since ξ = β*∙P∙Γbnd then, on the basis of the 
performed analysis, it is possible to claim that for given 
RC tie the stiffness ξ decreases with decreasing the 
thickness of the cover and the width of the interval 

Δls  [0, a]. 
Performed assessment showed that stiffness ξ of the 

bond depends not only on the properties of the 
reinforcement but also on the thickness of the cover and 
the width of the interval of the elongation Δls in which the 
elongation of the reinforcement is considered. 

 
 
Analysis of influence of various factors on elongation 
of the RC tie  

 
An analysis of influence of various factors on the cracking 
and elongation of the RC tie is considered using the 
methodology given earlier. These factors are: the initial 
length l0, the shrinkage strains of the concrete, and the 
stiffness of the bond or value of the multiplier β. Types of 
the RC ties under investigation are shown in Table 2, 
materials properties of these ties are given in Table 1. 

Let us, at the beginning, consider experimental and 
calculated Ns

0
−(Δls ∕ l0) curves, based on performed 

analysis of the stiffness ξ (Figure 7). The type of the 
RC tie is (3) (Table 2). It should be noted that the 
experimental N

0
s,exp−(Δls ∕ l0) curve shown in Figure 7 is 

drawn schematically by smoothing the experimental data 
given by Elfgren and Noghabai (2001a, b) and the curve 
shows only characteristics feature of behaviour of the RC 
tie. In Figure 7, void circular points A, F, G to J, and 
shaded diamond-like points A* and B* denote crack 
formation phases of the calculated ant experimental 
Ns

0
−(Δls ∕ l0) curves, respectively. Symbol k denotes the 

cracking stages. It should be noted that in the present 
article, the term cracking stage denotes an event at which 
the new cracks form at a load N

0
s,crc, while the term crack 

formation phase denotes the process which may involve 
several cracking stages; which is followed by stable 
deformation phase. The crack formation phase may 
consist of one cracking stage as well. For example, in 
Figure 7, the part of the curve between points A and F is 
the first crack formation phase involving 5 cracking stage, 
while the part between points G and H is the second 
crack formation  phase  involving  the  only  6th  cracking 
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Figure 7. The dependences of the tensile force Ns
0 on relative 

elongation (Δls ∕ l0): (a) linear scale, (b) logarithmic scale, type of the 
RC tie is (3). 
 
 
 

stage. 
As can be seen from Figure 7, there are several 

differences between experimental and theoretical 
Ns

0
−(Δls ∕ l0) curves. Firstly, there are three theoretical 

crack formation phases: the first between points A and F, 
the second between G and H, and the last between I and 
J; and only one experimental crack formation phases 
between points A* and B*. Between points A and F there 
are five theoretical cracking stages and one theoretical 
cracking stage in remain crack formation phases. 
According to Equation 13, 31 cracks formed between 
points   A  and  F.  Even  though  there  are  five  cracking 
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stages in the first theoretical crack formation phase and 
one cracking stage in remain theoretical crack formation 
phases, 6

th
 and 7

th
, the length of the each crack formation 

phase, that is the length of Δls at the cracking phases, is 
similar. It occurs due to lots of new cracks, ncrc,new,k, 

formed in 6
th
 and 7

th
 cracking stages, 32 and 64, 

respectively, according to Equation 15. 
It should be noted that the number of cracks ncrc,k = 31 

in the first crack formation phase is unreal comparing to 
the number of the cracks calculated by the formula 
ncrc,k = l0 ∕ ceil(sr,max), where sr,max is the maximum crack 
space according to EN 1992 11, here ceil(•) is ceiling 
functions. According to EN 1992 11, for given 3

th
 type of 

the tie, sr,max = 50.277 cm, then ncrc,k = 1. Therefore, 
theoretical number 31 of the cracks is not real in the 
sense of EN 1992 11 herewith numbers of the new 
cracks ncrc,new,k and the blocks nblc,k are not real in the 
same sense. Consequently, the cracks and blocks 
considered earlier are not real; they may be called 
fictitious cracks and blocks. Corresponding numbers of 
the cracks and blocks may be called as a total number of 
the fictitious cracks ncrc,k, number of the new fictitious 
cracks ncrc,new,k and number of the fictitious blocks nblc,k at 
k

th
 cracking stage. On the other hand, quite good 

agreement of the calculated cracking phases with the 
experimental allows us to claim that the calculated 
cracking phases can be considered as real. Moreover, 
the proposed model is suitable to predict a stepped 
shape of the load-elongation  curve of the RC tie. The 
number of the cracking stages k, at the fist cracking 
phase, reduces significantly with decreasing of the 
stiffness of the bond ξ or multiplier β. The cracking 
parameters k, ncrc,k, nblc,k and sr,max for RC tie of type (6) 
calculated by the proposed method and EN 1992 1 1 at 
the first cracking phase are given in Table 3. 

As can be seen from Table 3, ncrc,k, according to 
proposed method, tends to ncrc,k according to EN 1992 
11. The values of the cracking parameters can be 
considered as real when β = 10. It should be noted that k, 
ncrc,k, nblc,k and sr,max are the same as 5 ≤ β ≤ 10. On the 
other hand, Figure 7 shows that the Ns

0
–Δls curves, at 

different stiffness of the bond, are also close to each 
other and have a typical stepped shape. 

The given comparison shows that the presented 
method is suitable to model not only elongation of the 
reinforcement but also cracking space and width of the 
cracks. However, this issue should be examined more 
carefully by taking into account several parameters, 
namely elongation of the reinforcement, number of the 
cracks and its width. 

It should be noted that the theoretical dependences of 
Ns

0
 on (Δls ∕ l0) are piecewise-linear. The points at which 

the curve Ns
0
–(Δls ∕ l0) breaks are located at the beginning 

and ending of the crack formation phases. 
Theoretically, elongation of the RC tie may be 

described as follows: At the beginning of a loading, the 
external fore Ns

0
, applied to the reinforcement,  increases
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Table 3. Cracking parameters calculated according to the proposed method and EN 1992 11 at the first cracking phase, type of the RC tie is 
(6). 
 

Multiplier, β Number of cracking stage, k Number of cracks, ncrc,k Number of blocks, nblc,k 
Crack space 

sr,max (cm) 

According to the proposed method 

10 2 3 4 24 

100 3 7 8 12 

1000 5 31 32 3 

     

According to EN 1992 1 1 

– – 1 2 50.77 

 
 
 
gradually from zero to a load of the first crack N

0
s,crc. 

Since plane section hypothesis is valid and cracking 
condition is σc = fctm, cracks open through the whole 
cross-section of the concrete at N

0
s,crc. The new cracks 

divide the concrete into several smaller blocks, which are 
connected with reinforcement only, and reduce the 
stiffness of the whole RC RC tie. Since the cracks appear 
suddenly, at N

0
s,crc, the stiffness decreases suddenly as 

well. At this stage, the behaviour of the elongation of a 
RC tie depends on the loading. If displacements are 
controlled then, the elongation Δls remains the same 
immediately before cracking and at the cracking, and, 
due to decreasing stiffness of the RC tie, the tensile force 
Ns

0
 decreases as well. In the cracking stage, a jump of 

the tensile force Ns
0
 appears in Ns

0
−(Δls ∕ l0) diagram. This 

case is typical for experimental Ns
0
−(Δls ∕ l0) curves when 

displacement controlling machines are used for the test. 
Other hypothetical case may occur when force are 
controlled. In this case, the tensile force Ns

0
 remains the 

same before cracking and after it. We have a jump of the 
relative elongation (Δls ∕ l0) of the reinforcement in 
Ns

0
−(Δls ∕ l0) diagram at N

0
s,crc due to the suddenly 

decreased stiffness of the RC tie. The former Ns
0
−(Δls ∕ l0) 

diagram is not as convenient as the last one which is also 
used in codes (for instance, MC, 1990). 

When Ns
0
 reach N

0
s,crc, and first crack occurs, intensive 

cracking process, so-called the cracking formation phase, 
begins. If the bond is stiff enough, or a RC tie is long 
enough, many cracking stages may occur in the first 
cracking formation phase, in example 5 (Figure 7). 
However, if the stiffness ξ is small, or a RC tie is short, 
then only few cracking stages occur even if in the first 
crack formation phase. In our theoretical curve (Figure 7), 
the increment of Ns

0
 between different cracking stages k, 

k  {1, 2, 3, 4, 5}, is very small. The cracking stages are 
clearly indicated by logarithmic scale in Figure 7b. 
Practically, Ns

0
 remains unchanged at the cracking 

stages 1 to 5. Thus, the increment ΔNs
0
 ≈ 0, between 

points A and F. 
In general, the relative elongation (Δls ∕ l0) of the 

reinforcement depends on initial length l0. This is 
illustrated in Figure 9. The cracking stages, denoted by k, 

are shown in this picture for the beam whose l0 = 0.96 m 
as well. At the beginning of the loading, the ratio (Δls ∕ l0) 
does not depend on l0. However, after the first crack for-
mation phase, the ratio (Δls ∕ l0) is different at different l0. It 
should be noted that five cracking stage occur in the First 
crack formation phase for all three Ns

0
−Δls curves shown 

in Figure 9. 
Let us consider relative increments of elongations Δls of 

reinforcement at each cracking stage k, 

k  {1, 2, 3, 4, 5, 6, 7} for the beams whose 

l0  {0.96, 1.8, 2.5}. It should be noted that cracking 
stages under investigation are depicted in Figure 7 for the 
beam whose l0 = 0.96 m. Let the elongation of the 
reinforcement at the beginning and end of the first 
cracking stage be Δls(A) and Δls(B). Then relative 
increments for the first cracking stage is 
Δ(Δls(1) ∕ l0) = (Δls(B) − Δls(A)) ∕ l0. The relative increments 
for other cracking stages are defined similarly. These 

differences Δ(Δls(k) ∕ l0), k  {1, 2, 3, 4, 5, 6, 7}, for 

considered RC tie, l0  {0.96, 1.8, 2.5}, are shown in 
Figure 10. 

As can be seen from Figure 10, the difference 
Δ(Δls(k) ∕ l0) increases with increasing cracking stage k, 
and decreases with increasing the initial length l0 for 
considered RC ties The dependence of (Δls ∕ l0) on initial 
length l0 in general is piecewise-linear. This dependence, 
when the load Ns

0
 = 100 kN and type of the bar is (5), is 

shown in Figure 11. As can be seen from this Figure 11, 
(Δls ∕ l0) decreases linearly with increasing l0. However, at 
certain value of l0, the ratio (Δls ∕ l0) changes steeply. It 
occurs since addition cracking stage appears at the load 
Ns

0
 = 100 kN. That is, when l0 < 1.78 m, then k = 7, when 

l0 > 1.79 m, then k = 8. Appeared new cracks caused 
jump of the relative elongation. The last example shows 
that Δls dependence on l0 may also have discontinuities 
like the dependence on Ns

0
−Δls. 

The stiffness of a RC tie under tension increases with 
increasing the stiffness ξ of the bond. In other words, the 
slope of Ns

0
–Δls curve increases with increasing ξ. This is 

illustrated in Figure 8. As can be seen from this picture, 
N

0
s,clc tends to N

0
s,exp as ξ, or β, increases. It should be 

noted that according to Equation 19, the  cracking  tensile 
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Figure 8. The Ns
0–Δls curves at different values of β, type of the 

RC tie is (6). 
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Figure 9. The dependences of the tensile force Ns
0 on relative 

elongation Δls ∕ l0 at different initial lengths l0 of the tie, type of the 
RC tie is (4). 
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Figure 10. The relative increments Δ(Δls ∕ l0) of cracking stages at 
different initial length of the RC ties l0, type of the tie is (4). 
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Figure 11. The dependence of the relative elongation Δls ∕ l0 on 
the initial length l0 of the tie at load Ns

0 = 100 kN, type of the 
RC tie is (5). 
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Figure 12. The Ns
0–Δls curves at different shrinkage strains εsh of 

the concrete, type of the RC tie is (7). 

 
 
 
force N

0
s,crc depends on the stiffness ξ. However, as can 

be seen from Figure 8, the load, for considered RC tie, at 
the first crack does not depend on the stiffness ξ, or β. 
The shrinkage of the concrete was not taken into account 
for already investigated RC ties, even though, as is 
known, ordinary concrete always shrinks. It also affects 
accuracy of the calculated Ns

0
–Δls relationship. The 

dependence of Ns
0
 on the elongation Δls at different 

shrinkage strains εsh of the concrete are shown in Figure 
12, type of the RC tie is (7). As can be seen from this 
picture, N

0
s,clc and N

0
s,crc decrease with increasing the 

shrinkage strain εsh. Also, for considered RC tie, a slope 
of the Ns

0
–Δls curves remains the same for different 

values of the shrinkage strains, while this slope is 
different at different stiffness of the bond (Figure 8). 

 
 
Conclusions 
 

A possibility of the analytical modelling of the elongation 
of   the   reinforced-concrete   tie    using    linear    elastic 
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stress-slip relationship of the bond was investigated 
analytically by comparing calculated and experimental 
data of the ties with three different thickness of the cover. 
It was shown that the linear approximation of the 
stress−slip relationship of the bond obtained by 
minimizing the maximal relative difference with respect to 
experimental results could be applied for description of 
deformation behaviour of the cracked RC tie in pure 
tension. However, the number of the cracks is too big in 
comparison with EN 1992 11. Therefore, the number of 
the cracks calculated using obtained values of the 
stiffness by minimizing the relative ratio of the elongation 
of the tie in a certain interval is not real and could be 
treated only as fictitious. 

Performed analysis showed, however, that the 
accuracy of the suggested approach depends on the 
approximation technique of the ascending path of the 
stress-slip relationship of the bond. Application of the 
relatively small slip range leads to artificial increase of the 
bond stiffness, therefore scaling factor of bond stiffness 
should be taken into account. Moreover this factor 
depends on the thickness of the cover of the 
reinforcement. 

Cracking tensile force, applied to the reinforcement, 
decreases with increasing shrinkage strains of the 
concrete. 

Slope of the force-elongation diagram increases with 
increasing the stiffness of the bond or its slip modulus. 

Generally, application of the suggested linear model 
simplifies the calculation of the elongation of the cracked 
reinforced concrete tie, however, underestimates values 
of the longitudinal stiffness. 
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