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Mathematical formulation of unsmooth surfaces such as the physical earth poses several difficulties. 
To achieve an accurate formulation, each and every point of the surface must be defined, which is 
practically impossible. Therefore, in modelling such surfaces there is a need for an adequate number 
and distribution of reference points as well as an appropriate interpolation method. Working on 
computerised three-dimensional (3D) models, users can dynamically make various analyses on the 
surface, one of which is the volume calculation. The accuracy of the volume calculation depends on the 
appropriateness of the interpolation method used in creating 3D models. The present study, which aims 
to investigate the accuracy of the calculated volumes of objects with irregular structures, uses an 
artificial object with irregular form whose volume can be indirectly calculated. Using different 
interpolation methods on this artificial object through photogrammetrically measured reference points, 
3D surface models were formed and volumes were calculated. A comparison between the measured 
and calculated volume figures revealed that the Inverse Distance Weighting (INDW), Nearest Neighbour 
(NENE) and Triangulation with Linear (TLIN) interpolation methods yielded more accurate results than 
the other methods. In order to investigate the volumetric accuracy, the same procedure was applied to 
a regular geometrically-shaped conical frustum and a pyramidal frustum with different numbers of 
faces, whose reference points on the surface were reproduced in accordance with mathematical rules. 
The volume of the pyramidal frustum which was obtained using different interpolation methods was 
then compared to that of the pyramidal frustum which was mathematically calculated and that of the 
conical frustum which was taken as the reference surface. The comparison demonstrated that the Data 
Metrics (DMET), INDW and Minimum Curvature (MCRV) interpolation methods yielded better results in 
terms of volumetric accuracy. 
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INTRODUCTION 
 
Mathematical formulation of a surface which either exists 
in reality or is theoretically produced is referred to as 
surface modelling. This technology is used in various 
fields of science such as earth sciences, mathematics, 
statistics, biology and construction. Determining the 
shape and modelling the surface of any particular 
physical landform is among the tasks of several branches 
of earth sciences such as geology, geomorphology, 
geodesy and geophysics. The irregular geometric form of 
the physical earth prevents a formulation of a surface 
through mathematical functions (Torge, 1975; Heiskanen 
and Moritz, 2006; Huggett, 2002). The only method of 
modelling the surface is then to locate in the space an 
adequate number and distribution of earth points. 
Digitally reproducing surfaces defined with their 3D 

coordinates in the space and making various analyses on 
these surfaces through the modelling of location-
dependent information is known as Digital Terrain 
Modelling (DTM) (Li et al., 2000; Peckham and Jordan, 
2007). 

DTM was first used as a concept in the late 1950s 
(Miller and Laflamme, 1958). Although at the outset it had  
a limited scope of application such as certain calculations 
and constructions regarding motorways, in parallel to 
developments in software and hardware technologies it is 
widely used in the present day for the purposes of 3D 
imaging, slope calculation, aspect calculation, traverse 
extraction, visibility analysis and volume calculations in 
various professional fields such as cartography, medi-
cine, architecture,  archaeology,  hydrology,  construction,  



 
 
 
 
agriculture, morphology, environment and mining (Li et 
al., 2000; El-Sheimy et al., 2005). 

When forming a DTM, surfaces are modelled through 
sample points. Also named reference points, the sample 
points display different spatial distributions depending on 
the methods used to obtain and select the data. In order 
to obtain a high level of accuracy from the DTM, the 
sensitivity of the measurement method used to obtain the 
data, an adequate number and distribution of reference 
points and the selection of an appropriate interpolation 
method are of utmost importance. Several interpolation 
methods exist and thus in the selection of an interpolation 
method it is essential to pay attention to the intended 
purpose and accuracy (Skumar et al., 2001; Fencik et al., 
2005; Carrara et al., 1997; Desmet, 1997). 

As an important engineering application, volume calcu-
lation is used in various fields such as reserve estimation 
of mine sites and determination of the excavation and 
earth fill for sites such as roads, airports and tunnels. 
Three-dimensional modelling of the surface is a prere-
quisite of volume calculation. DTM particularly allows the 
calculation of the volumes of terrain models with irregular 
geometric shapes. Upon the construction of the 3D figure, 
by taking a particular enclosed area as a reference it is 
possible to make a dynamic and digital calculation of the 
volume of an enclosed shape which will be limited by a 
vertical distance to that surface. The accuracy of the 3D 
model improves the accuracy of the volume calculation 
(Yanalak and Baykal, 2003; Chen and Lin, 1992; Easa, 
1992; Press et al., 1992; Kalmar et al., 1995; Yılmaz, 
2007; Yakar, 2009). 

The present study investigates the calculation of 
landform models constructed using different interpolation 
methods and volumetric accuracy. To this end, an artifi-
cial object surface allowing an indirect volume calculation 
was formed, then by determining the reference points on 
the surface using Photomodeler 5.0 software and based 
on the principles of photogrammetry, 3D models were 
formed according to different interpolation methods using 
Surfer 8.0 software and the volumes were calculated and 
compared. In addition, the volume of a conical frustum 
whose dimensions were previously known was used for 
volumetric accuracy. Transforming the surface of the 
conical frustum into a different number of smooth 
surfaces, multi-sided pyramidal frusta were obtained. In 
an upward direction from the base, several reference 
points at certain intervals were taken on the diagonal face 
of the pyramidal frustum, depending on which the  
volumes calculated on the basis of models constructed 
according to different interpolation methods were then 
compared to the volume of the conical frustum.  
 
 
INTERPOLATION METHODS 
 
A precise definition of any physical surface requires 
knowledge or measurement of the spatial information for 
every point of the surface. For such a procedure, which is  
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practically impossible, a certain number of point sets are 
selected and then used to model the surface. The 
reference points used to represent the surface are 
obtained through various data collection methods. 
However, it is often impossible to collect data for all the 
needed points. In such cases, different interpolations are 
used with algorithms which yield the closest results to the 
reference points.  

The number and distribution of reference points as well 
as the structure of the surface affect the degree of 
accuracy of the interpolation method. Hence while model-
ing a surface the intended accuracy and the objective are 
of crucial importance in selecting the interpolation method 
to be used (Mitas and Mitasova, 1999). The following 
paragraphs discuss some interpolation methods which 
are commonly used in geomorphologic and geodesic 
studies. 
 
 
The Inverse Distance Weighting Method (INDW)  
 
The INDW method is based on a quite simple algorithm. 
Therefore, it is extensively used in applications thanks to 
its technical appropriateness for programming. The INDW 
method is particularly used in defining continuously 
changing data on the same area. 

The INDW method is a weighted average interpolator, 
which can be either exact or smoothing. With inverse 
distance to a power, data are weighted during interpo-
lation such that the influence of one point relative to 
another declines with distance from the grid node (Yang 
et al., 2004). Force parameters indicate how the weight 
effect decreases as the distance increases from a grid 
corner. For a relatively smaller force the weights are more 
evenly distributed between reference points. While calcu-
lating a particular grid corner, the weight exerted on a 
reference point is proportional to the inverse of the 
distance to the specified force from the grid corner (Smith 
et al., 2007). The equation used for inverse distance to a 
power is 
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ijd  is the distance between the grid node j and the  
neighbouring point i, 
ββββ  is the weighting power (the power parameter), and 

δδδδ  is the smoothing parameter (Yılmaz, 2007). 
 
 
The Kriging Method (KRIG) 
 
The KRIG interpolation method is a gridding method 
which has been extensively used in many fields such as 
mining, climatology and agriculture and has proved to be 
accurate in its fields of use. The method is named after D. 
G. Krige, a South African mining engineer who was the 
first to develop the technique. Making use of irregular 
reference points, the visual representation and contour 
lines of the surface are constructed. The KRIG inter-
polation method uses the distance or navigation between 
the reference points as a function that helps surface 
characterisation. Thus, in order to determine the output 
values for each location, it assigns a mathematical func-
tion to a certain number of points or all the points located 
within a certain area of effect. What uniquely distin-
guishes this method from other interpolation methods is 
that it is a variogram model. The KRIG interpolation 
method uses weighting which allows the closely located 
points to have a greater influence (Chaplot et al., 2006; 
Zimmerman et al., 1999; Inal et al., 2002). The semi-
variogram provides a measure of spatial correlation by 
describing how spatial data are related to distance and 
direction and is defined as follows 
 

     

                                                                                     (3) 
 (3) 
where; h is called the lag, µ is constant mean for the 
data, ε is random errors, ZP is the variable of interest 
(Olgun and Erdogan, 2009). 
 
 
The Minimum Curvature Method (MCRV) 
 
The MCRV interpolation method is extensively used in 
earth sciences. A surface interpolated with minimum 
curvature could be compared to a linear, elastic and thin 
plane which passes through the reference points with a 
minimum amount of bending. Minimum curvature gene-
rates the smoothest possible surface while attempting to 
fit data as closely as possible (Nikolova and Vassilev, 
2006). In order to characterize this surface, first, from the 
measurements used to formulate the grid data, the plane 
equation is taken as the trend and the residual values are 
calculated. 
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The calculated residual values are taken as the measure-  

 
 
 
 
ment values to be used in the interpolation, which are 
then completed through the minimum curvature algorithm 
at each grid corner (Smith and Wessel, 1990). The 
following equation is used in the interpolation process 
with the minimum curvature algorithm: 
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For the boundary values, the following equations apply: 
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where 
 

2∇∇∇∇  is the Laplacian operator, 
 n is the boundary normal, 

iT  is the internal tension, and 

bT  is the boundary tension. 
 
Although this method is more appropriate for areas with 
data values with lesser curvature, the data cannot 
thoroughly represent the surface as it is not an exact 
interpolator. 
 
 
The Modified Shepard Method (MSHP) 
 
The simplest form of inverse distance weighted 
interpolation is sometimes called "Shepard's method" 
(Shepard, 1968). The equation used is as follows: 
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where 
 
n is the number of scatter points in the set, 

if  are the prescribed function values at the scatter 
points, and 

iw  are the weight functions assigned to each scatter 
point. 
 
The effect of the weight function is that the surface inter-
polates   each   scatter   point   and   is   influenced  most  



 
 
 
 
strongly between scatter points by the points closest to 
the point being interpolated. Although the weight function 
shown above is the classical form of the weight function 
in inverse distance weighted interpolation, the following 
equation is used: 
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where 

ih  is the distance from the interpolation point to scatter 
point i, 
R is the distance from the interpolation point to the most 
distant scatter point and 
n is the total number of scatter points. 

 
This equation has been found to give superior results to 
the classical equation (Franke and Nielson, 1980). The 
weight function is a function of Euclidean distance and is 
radially symmetric about each scatter point. As a result, 
the interpolating surface is somewhat symmetric about 
each point and tends toward the mean value of the 
scatter points between the scatter points. Shepard's 
method has been used extensively because of its 
simplicity. 
 
 
The Natural Neighbour Method (NANE) 
 
The NANE interpolation method, which is based on the 
average mean, is similar to the INDW interpolation 
method. While investigating the points to be interpolated 
it uses the distance-dependent weights of reference 
points to the grid corner. With this method, the data on 
the reference points with irregular distribution are classi-
fied and the interpolation process is completed using the 
Triangular Irregular Network (TIN) functions without any 
need for custom-defined parameters. In the natural 
neighbour interpolation, first through the Delaunay train-
gulation, a triangulation is performed where each 
reference point constitutes the vertex of a triangle. 
Subsequently, the convex spaces are defined so that 
there is a minimum number of triangle sides for each 
point and the weight of each neighbouring point is 
assigned to these areas determined through the 
“Thiessen/Voronoi Technique” (Skumar et al., 2001;              
Yılmaz, 2007). The basic equation used in NANE interpo-
lation is identical to the one used in inverse distance 
power interpolation, 
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where 

),( yxG  is the natural neighbour estimation at (x,y), 
n is the number of nearest neighbours used for 
interpolation, 

),( ii yxf  is the observed value at ),( ii yx , and 

iw  is the weight associated with ),( ii yxf . 
 
 
The Nearest Neighbour Method (NENE) 
 
The NENE method assigns the value of the nearest point 
to each grid node. This method is useful when data are 
already evenly spaced. Alternatively, in cases where the 
data are nearly on a grid with only a few missing values, 
this method is effective for filling in the holes in the data. 
The NENE method predicts the attributes of unsampled 
points based on those of the nearest reference point and 
is best for qualitative data, where other interpolation 
methods are not applicable (Burrough and McDonnell, 
1998). Sometimes with nearly complete grids of data 
there are areas of missing data that one desires to 
exclude from the grid file. In this case, the search ellipse 
can be set to a value so the areas with no data are 
assigned the blanking value in the grid value. By setting 
the search ellipse radii to values less than the distance 
between data values in file, the blanking value is 
assigned at all grid nodes where data values do not exist 
(Yılmaz, 2007; Surfer 8 Software). 
 
 
The Polynomial Regression Method (PREG) 
 
Polynomial regression provides interpolation by approxi-
mating the source data points using a global polynomial 
expression. Polynomial regression is not really an 
interpolator because it does not attempt to predict 
unknown Z values (Brutman, 1997). There are several 
options that define the type of trend surface: 
 
Simple planar surface: CyBxAyxZ ++=),(            (12) 

Bi-linear surface: DxyCyBxAyxZ +++=),(          (13) 
Quadratic surface: 
 
 22),( EyExyDxCyBxAyxZ +++++=              (14) 
 
Cubic surface: 

322322),( JyIxyyHxGxFyExyDxCyBxAyxZ +++++++++=

                                                                                     (15)  
 
The Radial Basis Function Method (RBAF) 
 
The RBAF interpolation method is the name given to a 
large family of exact interpolators. In many ways the 
methods applied are similar to those used in geosta-
tistical interpolation, but without the benefit  of  prior  ana- 
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lysis of variograms. On the other hand they do not make 
any assumptions regarding the input data points and 
provide excellent interpolators for a wide range of data 
(Smith et al., 2007). 

For terrain modelling and earth sciences generally the 
so-called multi-quadric function has been found to be 
particularly effective, as have thin plate splines. The 
simplest variant of this method without smoothing can be 
viewed as a weighted linear function of the distance from 
grid point to data point, plus a “bias” factor, m. The model 
is in the form 
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or the equivalent model, using the untransformed data 
values and data weights 
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where 

PZ  is the estimated value for the surface at grid point P, 
)( irφφφφ  is the radial basis function selected, with ir  being 

the radial distance from point P to the ith data point, and 
iw , iλλλλ , and the bias value m are estimated from the data 

points (Smith et al., 2007). 
 
 
The Triangulation with Linear Interpolation Method 
(TLIN) 
  
The TLIN interpolation method uses the optimal Delaunay 
triangulation. The algorithm creates triangles by drawing 
lines between data points. This method uses the 
reference points as the vertices of non-overlapping 
triangles that cover the interpolation areas. The most 
common triangulation algorithms are optimal, greedy, and 
Delaunay triangulation. The optimal triangulation is 
defined as having a minimum sum of edge lengths. The 
Delaunay triangles define the nearest natural neighbours 
in the sense that the reference points at the vertices are 
closer to their mutual  circumcenter  than  any  reference 
point. It is well known that the Delaunay triangulation is a 
unique solution for triangulation because it does not 
depend on the starting point, while other methods depend 
on the starting point of the triangulation (Yanalak and 
Baykal, 2003; Lawson, 1977; Macedonio and Pareschi, 
1991). The most common interpolation method on tri-
angles is linear interpolation. A plane is defined in a 
rectangular coordinate system as 
 

yaxaaZ 011000 ++=                                                (18) 

 
 
 
 
The constants a00, a10, and a01 are calculated using the 
three corner points of the triangle. The interpolated height 
Z0 is calculated by substituting (x0,y0) for (x,y)                        
in the equation. 
 
 
The Moving Average Method (MOAV) 
 
This method of interpolation involves simple averaging 
using a moving window such as an ellipse or circle. For 
each interpolated grid point a circle of specified radius is 
placed with its centre at the grid point. The output grid 
node value is set equal to the arithmetic average of the 
identified neighbouring data. If there are fewer than the 
specified minimum numbers of data within the neighbour-
hood, the grid node is blanked (Yang et al., 2004; Smith 
et al, 2007). 
 
 
The Data Metrics Method (DMET) 
 
The collection of data metric interpolation methods 
creates grids of information about the data on a node-by-
node basis. The DMET interpolation methods are not, in 
general, weighted average interpolators of the Z values 
(Yang et al., 2004). 

Data metrics use the local data set including breaklines 
for a specific grid node for the selected data metric. The 
local data set is defined by the search parameters. These 
search parameters are applied to each grid node to 
determine the local data set. In the following descriptions, 
when computing the value of a grid node (r, c), the local 
data set S(r, c) consists of data within the specified 
search parameters centred at the specific grid node only 
(Yılmaz, 2007). The set of selected data at the current 
grid node (r, c) can be represented by S(r, c). 
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where 
n is the number of data points in the local data set. 
 
 
The Local Polynomial Method (LPOL) 
 
The global  polynomial  interpolation  method  creates  a 
surface from a single polynomial formula. The LPOL 
interpolation creates a surface from many different formu-
lae, each of which is optimised for a neighbourhood. The 
neighborhood shape, maximum and minimum number of 
points and sector configuration can be specified The 
neighbourhood shape, maximum and minimum number 
of points. In addition, as with inverse distance weighting, 
the reference points in a neighbourhood can be weighted 
by their distance from the prediction location. Thus, this 
method produces surfaces that better account for local 
variation. A first-order local polynomial fits a single plane 
through the data points in the search  neighbourhood  but  



 
 
 
 
keeps only the fitted value at the prediction location. A 
second-order local polynomial fits a surface with a bend 
in it to each search neighbourhood; a third-order local 
polynomial fits a surface with two bends to each 
neighbourhood and so on. Local polynomials are more 
flexible than global ones.  
The form of these polynomials (Kidner et al., 1997) is 
 
Order 1: cybxayxF ++=),(                                   (20) 

Order 2: 22),( fyexdxycybxayxF +++++=       (21) 
Order 3:  

332222),( jyixhxyygxfyexdxycybxayxF +++++++++=       (22) 
 
The polynomial coefficients are calculated by using 
known coordinates of the reference points. The coeffi-
cients of the polynomial are calculated by least squares   
estimation (Petri and Kennie, 1987). Although it is more 
flexible than global polynomial interpolation, LPOL inter-
polation is not an exact interpolator like INDW. 
 
 
MATERIALS AND METHODS 
 
Artificial terrain 
 
This study uses a hill-shaped object made of plaster as the testing 
surface. The diameter of the base of the object is 22 cm, its upper 
diameter approximately 10 cm, and its average height 25 cm. As it 
would make contact with water during the calculation of its volume, 
the object was first varnished with shellac to eliminate the effect of 
water on the volume of the object. The object was then submerged 
in a container full of water and the overflowing water was measured 
in a beaker and found to measure 2453 cm3. The surface of the 
object was marked to reflect its characteristics. Then, in order to 
model the surface of the object, photographs were taken with a 
digital camera from different perspectives in a testing area. The 
camera used for photographing was calibrated. By evaluating the 
calibration values, photographs and reference points with 
Photomodeler 5.0 software, the coordinates of 777 points on the 
object’s surface were found (Figure 1). 

For X, Y, and Z directions, the quadratic means of the reference 
points are 0.0651 cm, 0.0740 cm and 0.1200 cm respectively. 
 
 
Three-Dimensional Models 
 
Using the point coordinates determined through photogrammetric 
evaluation, a 3D model of the artificial surface was reconstructed 
with Surfer 8.0 software. Surfer 8.0 software offers  twelve  different  
interpolation methods, whose functions and parameters were 
discussed above (Yang et al., 2004). The parameters of the 
interpolation method used in this study are provided in Table 1. 

The 3D models of the artificial surface reconstructed according to 
these methods are provided in Figure 2. 
 
 
Volume calculations 
 
The volume of the artificial 3D object which was reconstructed 
according to the interpolation methods used was calculated by 
Surfer 8.0 software in this study. Surfer 8.0 software offers users 
three types of volume calculation methods: trapezoidal rule, 
Simpson’s rule  and  Simpson’s  3/8  rule.  The  formulae  for  these  
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methods are, respectively: 
 

[ ]
2

222
2 1210

nn
nnT

Ah
AAAAA

h
V ++++++= −�

           
(23) 

[ ]
2

4224
2 12210

nn
nnnS

Ah
AAAAAA

h
V +++++++= −−�

        
(24) 

[ ]
2

3333
28

3
12210)8/3(

nn
nnnS

Ah
AAAAAA

h
V +++++++= −−�

        
(25) 

 
where 
 A is the cross-section area, and 
h is the distances between cross sections (Burington, 1973; James 
et al., 1985; Yılmaz and Yakar, 2008). 

Table 2 provides the calculated volumes, volumetric differences 
and root mean square errors for the artificial object. Determination 
of volumetric differences was tested by using least- mean- 
difference method. Least difference value was found as 234.880 
cm3. According to least difference values, significance of volumetric 
differences was given in Table 2. 

Figure 3 graphically presents the measured and calculated 
volumetric values for the artificial object. 
 
 
Volumetric accuracy 
 
In order to examine the effect of interpolation methods on the 
volume calculation, the shapes of the conical frustum and pyramidal 
frustum were used. Taken as a reference, the surface of the conical 
frustum was transformed into a multi-sided pyramidal frustum 
(Figure 4). Using the reference points taken on the edges of the 
sides the pyramidal frustum, a 3D model of the pyramidal frustum 
was obtained and its volume was calculated through the above-
mentioned interpolation methods.  
The formula for the volume of the conical frustum is 
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The formula for the volume of the frustum (n-gon) is 

( )tbtbP AAAAhV ++=
3
1

                                             
(27) 

 
where 
R1 is the radius of the bottom base, 
R2 is the radius of the top base, 
Ab is the area of bottom base, 
At is the area of top base, and h is the height from the top base to 
bottom base. 
 
The volume of a conical frustum with R1 = 25 cm, R2 = 8 cm, h = 30 
cm, and real and interpolated calculated volumes of 8, 16, 32, 64 
and 128 sided conical frusta are given in Table 3, and their 
graphical representation in Figure 5. 
3D model examples of 8, 16, 32, 64, and 128 sided conical frusta 
are given in Figure 6. 

Figure 7 presents the approach rates for the interpolated 
calculated volumes of 8, 16, 32, 64, and 128 sided pyramidal frusta 
towards the volume of the conical frustum. 
 
 
Conclusion 
 
Forming a 3D model of the physical earth  and  an  object 
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Figure 1. Photogrammetric evaluation of the artificial surface. 
 
 
 

Table 1. Interpolation methods and parameters. 
 
Method Speed Type Parameters 

INDW Fast Exact, unless smoothing factor 
specifieed 

Power: 2; Smoothing: 0; Anisotropy ratio: 1; 
Anisotropy angle: 0. 

KRIG Slow  Medium Exact if no nugget Variogram Slope: 1; Type: Point;                Drift 
type: Linear. 

MCRV Medium Exact / Smoothing Max. Residual: 0.029;  Max. iteration: 100000;  
Relaxation factor: 1, Anisotropy ratio: 1. 

MSHP Fast Exact, unless smoothing factor 
specifieed 

Quadratic neighbour: 13; Weighting neighbour: 19;  
Smoothing factor: 0. 

NANE Fast Exact Anisotropy ratio: 1; Anisotropy angle: 0. 
NENE Fast Exact Range 1: 20.4; Range 2: 20.4; Angle: 0. 
PREG Fast Smoothing Simple planar surface: CyBxAyxZ ++=),(  
RBAF Slow / Medium Exact if no smoothing value 

specified 
Multiquadratic; R2 parameter: 0.033; Anisotropy 
ratio: 1; Anisotropy angle: 0. 

TLIN Fast Exact Anisotropy ratio: 1; Anisotropy angle: 0. 
MOAV Fast Smoothing Search elipse; Radius 1: 10.2; Radius 2: 10.2. 
DMET Fast Exact Data location statistic: count; Number of sector to 

search: 4. 
LPOL Fast Smoothing CybxayxF ++=),( . 
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Figure 2. Three-dimensional models. 

 
 
 

Table 2. Volumes according to the interpolation methods ( 32453 cmVobject ==== ). 
 

Method Computing volume (cm3) Volume difference (cm3) RMSE (cm3)  Test 
 T S S (3/8) T S S (3/8) T S S(3/8)  

INDW 2453.722 2454.205 2453.623 -0.722 -1.205 -0.623 0.218 0.363 0.188 UNSIGNIFICANT 
KRIG 2318.816 2318.981 2319.086 134.184 134.019 133.914 40.458 40.408 40.377 UNSIGNIFICANT 
MCRV 2134.705 2135.279 2135.359 318.295 317.721 317.641 95.970 95.796 95.772 SIGNIFICANT 
MSHP 2221.968 2221.435 2221.897 231.032 231.565 231.103 69.659 69.819 69.680 UNSIGNIFICANT 
NANE 2421.463 2421.362 2421.512 31.537 31.638 31.488 9.509 9.539 9.494 UNSIGNIFICANT 
NENE 2446.871 2447.047 2447.124 6.129 5.953 5.876 1.848 1.795 1.772 UNSIGNIFICANT 
PREG 2158.965 2159.859 2159.863 294.035 293.141 293.137 88.655 88.385 88.384 SIGNIFICANT 
RBAF 2289.066 2288.831 2289.588 163.934 164.169 163.412 49.428 49.499 49.271 UNSIGNIFICANT 
TLIN 2428.352 2428.238 2428.457 24.648 24.762 24.543 7.432 7.466 7.400 UNSIGNIFICANT 
MOAV 3028.831 3028.872 3028.869 - - - 173.620 173.632 173.631 SIGNIFICANT 
DMET 2702.086 2700.936 2702.553 - - - 75.102 74.756 75.243 SIGNIFICANT 
LPOL 1976.704 1977.260 1977.268 476.296 475.740 475.732 143.609 143.441 143.439 SIGNIFICANT 
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Figure 3. Volumes according to the interpolation methods. 

 
 
 

 
 
Figure 4. Conical frustum and pyramidal frustum. 

 
 
 

Table 3. Real and calculated volumes of the conical frustum and pyramidal frustum. 
 

CONE cm3 METHODS 
PYRAMID 

(8) cm3 
PYRAMID 
(16) cm3 

PYRAMID 
(32) cm3 

PYRAMID 
(64) cm3 

PYRAMID 
(128) cm3 

27 928.759 VOLUMEC 22 182.782 24 010.470 24 480.863 24 599.316 24 628.982 
27 928.759 INDW 26 423.908 25 123.568 24 814.352 24 703.749 24 674.313 
27 928.759 KRIG 24 513.334 24 002.421 23 797.498 24 707.906 24 687.423 
27 928.759 MCRV 21 656.645 26 696.023 25 234.141 24 971.552 25 792.465 
27 928.759 MSHP 24 385.041 24 660.541 24 221.085 23 716.878 23 204.608 
27 928.759 NANE 22 167.785 23 999.908 24 586.034 24 606.805 24 617.702 
27 928.759 NENE 26 022.850 24 982.144 24 775.622 24 667.189 24 644.873 
27 928.759 PREG 24 983.990 24 984.008 24 983.448 24 983.473 24 983.449 
27 928.759 RBAF 24 504.700 23 743.844 24 742.121 24 719.961 24 696.031 
27 928.759 TLIN 22 182.650 24 010.454 24 605.529 24 620.785 24 630.619 
27 928.759 MOAV 40 777.486 40 698.344 40 295.566 40 612.527 40 697.687 
27 928.759 DMET 29 712.509 29 168.615 27 122.756 26 161.935 25 518.724 
27 928.759 LPOL 22 228.903 24 038.044 24 488.430 24 513.046 24 546.414 
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Figure 5. Volumes calculated and those obtained by interpolation methods. 

 
 
 

 
 
Figure 6. Three-dimensional models of the pyramidal frustum. 
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Figure 7. Approach rates in interpolation methods. 

 
 
 
with satisfactory sensitivity requires an adequate number 
of reference points. Information about the reference 
points, those which are inappropriate are eliminated, is 
obtained by any measurement method and applying the 
interpolation process with an appropriate function the 
reference points on the surface are condensed and the 
model which best represents the real object is obtained. 
Users can perform every kind of mathematical and logical 
operation on the model, one of which is the volume 
calculation. Volume calculation is used in various fields of 
science and engineering.  

This study investigated the calculability of land tracts or 
objects with irregular shapes, which do not allow direct 
volumetric calculation, through 3D models and also 
investigated the accuracy of the models. Table 2 presents 
the real and the different interpolated calculated volu-
metric values of an artificial object surface which was 
reconstructed to this end and allows an indirect and 
sensitive volume calculation. Examination of Table 2 
reveals that the three values which approximate most 
closely to the real volume are the ones obtained through 
the INDW, NENE and TLIN methods. The greatest 
difference in volume was found when using the MOAV 
method. An examination of the 3D model presented in 
Figure 2, which was reconstructed through the method in 
question, also shows that the model does not represent 
the real shape. It could be suggested that the reason for 
such a result is that the mathematical function of the 
MOAV method is not appropriate for modelling such 
objects. Furthermore, if we examine Figure 2, we can 
observe that the models obtained using the KRIG, NANE 
and TLIN methods are visually more similar to the 
artificial object. 

In order to investigate volumetric accuracy, the study 
used regular geometric shapes which allow mathematical 
volume calculation. The volumes for the models derived 
from the points located on pyramidal frusta with different 
numbers of sides were compared to the real volume of 
the pyramidal frustum as well as the volume of the 
conical frustum. An examination of Table 3 and Figure 5 
reveals that the number of sides in the PREG method do 
not change the volume of the model, that the DMET, 
INDW and MCRV methods yield results which 
approximate more closely to the volume of the conical 
frustum and the real volume of the pyramidal frustum and 
that while an increase in the number of sides is supposed 
to result in a closer approximation to the real volume, in 
fact it differs greatly from the supposed value. From 
Figure 7, which graphically presents the approach rates 
of the calculated volumes towards the real volumes, it 
can be observed that, in parallel to an increase in the 
number of sides, the volume calculated with the LPOL 
method approaches more closely to the supposed 
volume of the pyramidal frustum as well as to the volume 
of the conical frustum which was taken as the reference. 
Each interpolation method has its own advantages and 
disadvantages and a particular interpolation method does 
not yield sound results from all aspects. Therefore, in 
accordance with the intended purpose of a study, it would 
be necessary to select an interpolation method yielding 
the object or landform models which best suit the original 
surface. If a sensitive calculation of the volume is desired, 
then the INDW method can be selected.  

Further studies will investigate the effects of the quality 
of the data used in modelling and the surface charac-
teristics on the calculated volume as well as the  selection  



 
 
 
 
of an interpolation method which could yield better results 
in terms of volumetric accuracy. 
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