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To reveal the dynamical mechanism of anti-synchronization in complex networks with time delays, a 
general complex dynamical network with delayed nodes is introduced. Based on the Lyapunov stability 
theory, this paper presents the feedback controllers for anti-synchronization of complex delayed 
dynamical networks. Several sufficient conditions are drawn for the stability of the error dynamics and 
the design of the feedback controllers. Numerical simulations are performed to verify and illustrate the 
analytical results. 
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INTRODUCTION 
 
Over the past ten years, complex networks have 
attracted increasing interest in both theory and 
applications (Strogatz, 2001; Watts and Strogatz, 1998; 
Barabasi and Albert, 1999; Newman, 2003). A complex 
network is a large set of interconnected nodes, where the 
nodes and connections can be any element, such as 
World Wide Web, food web, neural networks etc (Wang 
and Chen, 2003). 

Recently, synchronization of complex dynamical 
networks has been a focus in various fields of social, 
biological and engineering science (Li et al., 2006; Fan et 
al., 2005; Zhang et al., 2006; Liang et al., 2008). Wang 
and Chen (2002a, b) presented a uniform model and 
investigated its synchronization criteria in small-world and 
scale-free networks. Wu (2006) investigated the 
synchronization of random directed networks. Slotine et 
al. (2004) further discussed the synchronization of 
nonlinearly coupled continuous and hybrid oscillators 
networks by using the contraction analysis approach. 
Zhou et al. (2006) studied the adaptive synchronization of 
an uncertain complex dynamical network. Sorrentino et 
al. (2007) investigated the controllability of complex 
networks with pinning controllers.  Xiao  et  al.  (2010) 
 
 
 
PACS: 05.45.Xt, 05.45.Gg. 

proposed a simple adaptive feedback controller to 
synchronize the dynamical network with unknown 
generally time-delayed coupling functions. However, 
most of the above studies have neglected the effects of 
coupling delays, while time delays commonly exist in the 
real world. This paper will further investigate the feedback 
anti-synchronization of complex dynamical networks with 
delayed nodes. Based on Lyapunov stability theory, we 
design the feedback controllers to anti-synchronize 
complex dynamical networks. 
 
 

THE COMPLEX DYNAMICAL NETWORK MODEL 
 

We consider a general complex network consisting of N 
delayed dynamical nodes. Each node of the network is 
an n-dimensional non-autonomous dynamical system 
with time delay, which is described by 
 

1

( ) ( ) ( ( ), ) ( )
N

i i i ij j i
j

x t Ax t f x t t c Bx t uτ
=

= + + − +∑& ,      (1) 

 

where 1,2,...,i N= , 
1 2( ) ( ( ), ( ),..., ( ))

T n
i i i inx t x t x t x t R= ∈  

are the state variables of node i , n n
A R

×∈  is a 

constant matrix and 0τ >  is the constant time delay. The  
 



 

 
 
 

matrix ( )
n n

ij n nB b R
×

×= ∈  is the inner connecting matrix 

of each node, where 0B >  is a positive definite matrix, 

and the matrix ( )
N N

ij N NC c R
×

×= ∈  is the diffusely 

coupled matrix of the network. That is, 
 

1,

N

ii ij
j j i

c c
= ≠

= − ∑ ,                                  (2) 

 

where ij jic c=  is the coupling element, if there is a 

connection from nodes i  to j ( j i≠ ) , then 

0 ij jic c= > , else 0 ij jic c= = . Moreover, n
iu R∈  are 

the controllers designed for the network (1). 
 
 

Remark 1 
 

Duan et al. (2008) and Li et al. (2009) discussed the 
synchronization for a class of complex dynamical 
networks without delays. In this paper, we have extended 
their model to the delay situation, which have more 
practicability in the real world. 
 
 

ANTI-SYNCHRONIZATION OF COMPLEX DELAYED 
DYNAMICAL NETWORKS 
 

Let ( )s t  be a solution of the isolate node of the network 

(1), which is assumed to exist and is unique, then ( )s t is 

a synchronous solution of the controlled complex 
dynamical network (1) because it is a diffusive coupling 
network, satisfying 
  

( ) ( ) ( ( ), )s t As t f s t t= +& ,                           (3) 

 

where ( )s t  can be an equilibrium point, a nontrivial 

periodic orbit, or even a chaotic attractor. Before starting 
the main results, the following Definition and Assumption 
are given. 
 
 

Definition 1  
 

For complex dynamical networks (1), it is said that they 

are anti-synchronization, if lim ( ) 0i
t

e t
→∞

= , where 

( ) ( ) ( )i ie t x t s t= + . That is lim ( ) ( ) 0i
t

x t s t
→∞

+ = , 

1,2,...,i N= . 
 
 

Assumption 1  
 

For the vector function ( ( ), )if x t t ,  suppose  that  the  
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uniform Lipschitz condition holds, that is, for any 
 

1 2( ) ( ( ), ( ),..., ( ))
T

i i i inx t x t x t x t= and 

1 2( ) ( ( ), ( ),..., ( ))
T

ns t s t s t s t= , then, there exists a positive 

constant 0L > , such that:  
 

( ( ), ) ( ( ), ) ( ) ( )i if x t t f s t t L x t s t− ≤ − ,             (4) 

 

where 1,2,...,i N= . 

 
By Equations (1) and (3), we can get the error dynamical 
system  
 

1

( ) ( ) ( ( ), ) ( ( ), ) ( )
N

i i i ij j i
j

e t Ae t f x t t f s t t c Be t uτ
=

= + + + − +∑&

.                                                (5) 
 
Then the anti-synchronization problem of the dynamical 
network (1) is equivalent to the problem of global 
stabilization of the error dynamical system (5). In order to 
make dynamical network (5) controllable, the feedback 

controllers iu  will be appropriately chosen.  

 
 
Theorem 1  
 
Based on Definition 1, the delayed complex dynamical 
network (1) is globally anti-synchronized under the 
following controllers 
  

( ( ), ) ( ( ), ) ( )i i ii iu f x t t f s t t c eξ= − − + − +  , 1,2,..,i N=  ,    

                                                (6) 
 

and  
 

25

4
ii iiA I c I c Bξ− − −  is negative definite matrix. 

 
 

Proof  
 

Construct the Lyapunov function candidate as follows: 
 

2 2

1 1 1

1 1
( ) ( ) ( ) ( ) ( )

2 4

N N N
t tT T T

i i ii i i ii i it t
i i i

V t e e c e B e d c e B e d
τ τ

θ θ θ θ θ θ
− −

= = =

= − −∑ ∑ ∑∫ ∫

                                                (7) 
  

Then the time derivative of ( )V t  along the solution of 

the error system (5) is given as follows: 
 

2 2

1 1 1

( ) ( ) ( )
N N N

T T T
i i ii i i ii i i

i i i

V t e e c e B e c e t B e tτ τ
= = =

= − + − −∑ ∑ ∑& & .  
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2 2

1 1

1 1
( ) ( )

4 4

N N
T T

ii i i ii i i
i i

c e B e c e t B e tτ τ
= =

− + − −∑ ∑          (8) 

 
From Equation (5), it can be obtained that: 
 

1 1 1 1

( ) ( ( ) ( ( ), ) ( ( ), )) ( )
N N N N

T T T
i i i ij i j i i

i i j i

V t e Ae t f x t t f s t t c e Be t e uτ
= = = =

= + + + − +∑ ∑∑ ∑&

 

2 2

1 1

( ) ( )
N N

T T
ii i i ii i i

i i

c e B e c e t B e tτ τ
= =

− + − −∑ ∑  

2 2

1 1

1 1
( ) ( )

4 4

N N
T T

ii i i ii i i
i i

c e B e c e t B e tτ τ
= =

− + − −∑ ∑ .        (9)  

 
Now, Substituting Equation (6) into Equation (9), it follows 
that  

 

2

1 1 1 1 1

( ) ( ) ( ) ( )
N N N N N

T T T T
i i ij i j ii i i ii i i

i i j i i

V t e Ae t c e Be t c e e c e B eτ ξ
= = = = =

= + − + − + −∑ ∑∑ ∑ ∑&

 

2 2 2

1 1 1

1 1
( ) ( ) ( ) ( )

4 4

N N N
T T T

ii i i ii i i ii i i
i i i

c e t B e t c e B e c e t B e tτ τ τ τ
= = =

+ − − − + − −∑ ∑ ∑ .  

                                                (10) 

  

Hence we have 
 

2

1 1 1 1

5
( ) ( ) ( ) ( )

4

N N N N
T T T
i ii ii i ij i j ii i i

i i j i

V t e A I c I c B e t c e Be t c e eξ τ
= = = =

= − − − + − +∑ ∑∑ ∑&

 

2 2

1 1 1

1
( ) ( ) ( ) ( )

4

N N N
T T T

ii i i ii i i ii i i
i i i

c e t B e t c e e c e t B e tτ τ τ τ
= = =

+ − − + + − −∑ ∑ ∑      

                                               (11) 
  

By Equation (2), we can get  
 

2

1 1 1 1 1,

5
( ) ( ) ( ) ( )

4

N N N N N
T T T
i ii ii i ij i j ij i i

i i j i j j i

V t e A I c I c B e t c e Be t c e eξ τ
= = = = = ≠

= − − − + − −∑ ∑∑ ∑ ∑&  

2 2

1 1, 1 1

1
( ) ( ) ( ) ( )

4

N N N N
T T T

ji i i ii i i ii i i
i j j i i i

c e t B e t c e e c e t B e tτ τ τ τ
= = ≠ = =

− − − + + − −∑ ∑ ∑ ∑ .     

                                               (12)  

 
From Section 2, apparently we have  
 

2 2

1 1, 1 1,

( ) ( ) ( ) ( )
N N N N

T T
ji i i ij j j

i j j i i j j i

c e t B e t c e t B e tτ τ τ τ
= = ≠ = = ≠

− − = − −∑ ∑ ∑ ∑ .  

                                               (13) 

 
Therefore, it yields  

 
2

1 1 1 1 1,

5
( ) ( ) ( ) ( )

4

N N N N N
T T T
i ii ii i ij i j ij i i

i i j i j j i

V t e A I c I c B e t c e Be t c e eξ τ
= = = = = ≠

= − − − + − −∑ ∑∑ ∑ ∑&
 

 

 
 
 

2 2

1 1, 1 1

1
( ) ( ) ( ) ( )

4

N N N N
T T T

ij j j ii i i ii i i
i j j i i i

c e t B e t c e e c e t B e tτ τ τ τ
= = ≠ = =

− − − + + − −∑ ∑ ∑ ∑  

2

1

5
( ) ( )

4

N
T
i ii ii i

i

e A I c I c B e tξ
=

≤ − − −∑  

2

1 1 1

1
( ) ( ) ( )

4

N N N
T T T

ii i i ii i i ii i i
i i i

c e Be t c e e c e t B e tτ τ τ
= = =

+ − + + − −∑ ∑ ∑

 
2

2

1 1, 1 1,

3
( ) ( ) ( )

2 4

N N N N
T T

ij i j ij j j
i j j i i j j i

B
c e e t c e t B e tτ τ τ

= = ≠ = = ≠

− − − − − −∑ ∑ ∑ ∑

. 
 

Now it is readily seen that  
 

2

2

1 1, 1 1,

3
( ) ( ) ( ) 0

2 4

N N N N
T T

ij i j ij j j
i j j i i j j i

B
c e e t c e t B e tτ τ τ

= = ≠ = = ≠

− − − − − − ≤∑ ∑ ∑ ∑

                                               (14) 
 

Similarly, we obtain 
 

2
2

1 1 1 1

1
( ) ( ) ( ) ( ) 0

4 2

N N N N
T T T T

ii i i ii i i ii i i ii i i
i i i i

B
c e Be t c e e c e t B e t c e e tτ τ τ τ

= = = =

− + + − − ≤ + − ≤∑ ∑ ∑ ∑

 
 

Thus we have  
 

2

1

5
( ) ( ) ( ) 0

4

N
T
i ii ii i

i

V t e A I c I c B e tξ
=

≤ − − − ≤∑& .        (15)  

 

It is obvious that ( ) 0V t =&  if and only if ( ) 0ie t =  for all 

1,2,...,i N= . The orbits of the network (5) are globally 

asymptotically stable at ( ) 0ie t = . That is, anti-

synchronization of complex dynamical network (1) is 
achieved under the feedback controllers (6). 
 
  
Remark 2  
 
It is obvious that there exists a sufficiently large positive 

constant ξ  such that the matrix 
25

4
ii iiA I c I c Bξ− − −  

is negative definite, so the feedback controllers (6) hold. 
 
 
Theorem 2  
 
Suppose Assumption 1 holds, the delayed complex 
dynamical network (1) is globally anti-synchronized under 
the following controllers 
  

( ( ), ) ( ( ), ) ( )i ii iu f s t t f s t t c eξ= − − − + − +  , 1,2,..,i N= ,   

                                               (16) 
 



 

 
 
 
and  
 

25
( )

4
ii iiA L c I c Bξ+ − − −  is negative definite matrix. 

 
 

Proof  
 
Construct the Lyapunov function candidate as follows: 
 

2 2

1 1 1

1 1
( ) ( ) ( ) ( ) ( )

2 4

N N N
t tT T T

i i ii i i ii i it t
i i i

V t e e c e B e d c e B e d
τ τ

θ θ θ θ θ θ
− −

= = =

= − −∑ ∑ ∑∫ ∫ .  

                                               (17) 
 

Then the time derivative of ( )V t along the solution of the 

error system (5) is given as follows 
 

2 2

1 1 1

( ) ( ) ( )
N N N

T T T
i i ii i i ii i i

i i i

V t e e c e B e c e t B e tτ τ
= = =

= − + − −∑ ∑ ∑& &   

 
2 2

1 1

1 1
( ) ( )

4 4

N N
T T

ii i i ii i i
i i

c e B e c e t B e tτ τ
= =

− + − −∑ ∑ .      (18) 

 

From Equation (5), it can be obtained that  
  

1 1 1 1

( ) ( ( ) ( ( ), ) ( ( ), )) ( )
N N N N

T T T
i i i ij i j i i

i i j i

V t e Ae t f x t t f s t t c e Be t e uτ
= = = =

= + + + − +∑ ∑∑ ∑&

2 2

1 1

( ) ( )
N N

T T
ii i i ii i i

i i

c e B e c e t B e tτ τ
= =

− + − −∑ ∑  

2 2

1 1

1 1
( ) ( )

4 4

N N
T T

ii i i ii i i
i i

c e B e c e t B e tτ τ
= =

− + − −∑ ∑ .       (19) 

 

Now, Substituting Equation (16) into Equation(19), it 
follows that 
  

1 1 1 1

( ) ( ) ( ) ( ( ( ), ) ( ( ), ))
N N N N

T T T
i i ij i j i i

i i j i

V t e Ae t c e Be t e f x t t f s t tτ
= = = =

= + − + − −∑ ∑∑ ∑&

2 2

1 1 1

( ) ( ) ( )
N N N

T T T
ii i i ii i i ii i i

i i i

c e e c e B e c e t B e tξ τ τ
= = =

+ − + − + − −∑ ∑ ∑   

 
2 2

1 1

1 1
( ) ( )

4 4

N N
T T

ii i i ii i i
i i

c e B e c e t B e tτ τ
= =

− + − −∑ ∑ .       (20)

  
Hence we have 
 

2

1 1 1

5
( ) ( ) ( ) ( )

4

N N N
T T
i ii ii i ij i j

i i j

V t e A LI I c I c B e t c e Be tξ τ
= = =

= + − − − + −∑ ∑∑&

2 2

1 1 1 1

1
( ) ( ) ( ) ( )

4

N N N N
T T T T

ii i i ii i i ii i i ii i i
i i i i

c e e c e t B e t c e e c e t B e tτ τ τ τ
= = = =

+ + − − + + − −∑ ∑ ∑ ∑                                                     

                                               (21)  
 
The rest of proof is similar to Theorem  1  and  omitted  
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here, therefore, this theorem has been proofed. 
 
 
Remark 3  
 

In fact, as long as / if x∂ ∂ ( 1,2,.., )i N=  is bounded, 

Assumption 1 holds always (Li et al., 2009). And a variety 
of nonlinear chaotic systems satisfy Assumption 1, such 
as Lorenz systems, Qi systems (Qi et al., 2005), Chen 
systems and so on. 
 
 
NUMERICAL SIMULATIONS 
 
In this section, to verify and demonstrate the 
effectiveness of the proposed methods, we consider two 
numerical examples, that is, the Chen chaotic system 
and the Qi chaotic system. It is well known that the Chen 
chaotic system is described by 
 

1 1

2 2 1 3

1 23 3

0x x

x A x x x

x xx x

     
     

= + −     
    
    

&

&

&

,                        (22) 

 
where  
 

35 35 0

7 28 0

0 0 3

A

− 
 

= − 
 − 

 ,                           (23) 

 
while the Qi chaotic system is  
 

1 1 2 3

2 2 1 3

1 23 3

x x x x

x A x x x

x xx x

     
     

= + −     
    
    

&

&

&

,                        (24) 

 
where  
 

35 35 0

80 1 0

0 0 8/ 3

A

− 
 

= − 
 − 

 .                         (25) 

  
Then, we will investigate these two chaotic systems in 
detail to validate the effectiveness of Theorems 1 and 2. 
 
 
Example 1  
 
To verify the effectiveness of Theorem 1 with the Chen 
system. Now, we consider a weighted linearly coupled 
complex dynamical network (26)  with  coupling  delay  
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Figure 1. Anti-synchronization errors 1( )ie t , 2 ( )ie t , 3( )ie t  of the network (26). 

 
 
 
consisting of 8 identical Chen chaotic systems. Then, the 
network system is defined as 
  

1 1

2 2 1 3
1

1 23 3

0

( )

i i N

i i i i ij j i
j

i ii i

x x

x A x x x c Bx t u

x xx x

τ
=

     
     

= + − + − +     
    
    

∑

&

&

&

 ,  (26) 

 
Where 
 

2 2 0 0 0 0 0 0

2 3 1 0 0 0 0 0

0 1 3 2 0 0 0 0

0 0 2 4 2 0 0 0

0 0 0 2 5 3 0 0

0 0 0 0 3 6 3 0

0 0 0 0 0 3 4 1

0 0 0 0 0 0 1 1

C

− 
 

− 
 −
 

− =  −
 

− 
 −
 
 − 

,

1 1 0

1 2 0

0 0 4

B

 
 

=  
 
 

 

1,2,..,8i = .                                     (27)  

 
According to Theorem 1 in Section 3, the following 
feedback controllers are chosen 
  

( ( ), ) ( ( ), ) ( )i i ii iu f x t t f s t t c eξ= − − + − +  , 1,2,..,8i =  .  

                                                (28) 
 
By Equations (26) and (28),  we  can  get  the  error  

dynamical system 
  

1

( ) ( ) ( ) ( )
N

i i ij j ii i
j

e t Ae t c Be t c eτ ξ
=

= + − + − +∑& .        (29) 

 

Assume that time delay 0.2τ = . In accordance to 

Theorem 1, we select control parameter 99ξ =  which 

satisfies the stability conditions that is 25

4
ii iiA I c I c Bξ− − −  

is negative definite matrix.  
Figure 1 shows the anti-synchronization errors of 

1( )ie t , 2 ( )ie t , 3( )ie t (1 8)i≤ ≤  under the feedback 

controllers (28). Clearly, all anti-synchronization errors 
are rapidly converging to zero. 
 

 

Example 2 
 

To verify the effectiveness of Theorem 2 with the Qi 
chaotic system. We consider a weighted linearly coupled 
complex dynamical network (29) with coupling delay 
consisting of 8 identical Qi chaotic systems. Then, the 
network system is defined as 
  

1 1 2 3

2 2 1 3
1

1 23 3

( )

i i i i N

i i i i ij j i
j

i ii i

x x x x

x A x x x c Bx t u

x xx x

τ
=

     
     

= + − + − +     
    
    

∑

&

&

&

 ,      (30) 
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Figure 2. Anti-synchronization errors 1( )ie t , 2 ( )ie t , 3( )ie t  of the network (30). 

 
 
 
Where 
 

2 2 0 0 0 0 0 0

2 3 1 0 0 0 0 0

0 1 3 2 0 0 0 0

0 0 2 4 2 0 0 0

0 0 0 2 5 3 0 0

0 0 0 0 3 6 3 0

0 0 0 0 0 3 4 1

0 0 0 0 0 0 1 1

C

− 
 

− 
 −
 

− =
 −
 

− 
 −
 
 − 

,

1 0 0

0 1 0

0 0 1

B

 
 

=  
 
 

 

1,2,..,8i = .                                     (31) 

 
According to Theorem 2 in Section 3, the following 
feedback controllers are chosen 
  

( ( ), ) ( ( ), ) ( )i ii iu f s t t f s t t c eξ= − − − + − +  , 1,2,..,8i =  .  

                                                (32) 
 
By Equations (30) and (32), we can get the error 
dynamical system  
 

1

( ) ( ) ( ) ( ( ), ) ( ( ), ) ( )
N

i i ij j i ii i
j

e t Ae t c Be t f x t t f s t t c eτ ξ
=

= + − + − − + − +∑& .       

                                               (33) 
 

Assume that time delay 0.2τ = . In accordance to  

Theorem 2, we select control parameter 70ξ =  which 

satisfies the stability conditions that is 25
( )

4
ii iiA L c I c Bξ+ − − −  

is negative definite matrix. Then, the anti-synchronization 

errors 1( )ie t , 2 ( )ie t , 3( )ie t (1 8)i≤ ≤ of the complex 

network (30) is shown in Figure 2. The numerical results 
show that feedback controllers for complex delayed 
dynamical networks (30) are effective in Theorem 2.  
  
 
CONCLUSIONS  
 
A general complex dynamical network with delayed 
nodes has been studied in this paper. By constructing 
appropriate Lyapunov function, two feedback anti-
synchronization criteria are derived. The criteria are very 
useful for understanding the mechanism of anti-synchro-
nization in complex networks with time delayed nodes. 
Moreover, the feedback controllers for achieving network 
anti-synchronization are expressed in simple forms that 
can be readily applied in practical situations. Finally, 
numerical simulations have been presented to 
demonstrate the effectiveness of the proposed anti-
synchronization criteria. 
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