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Optimization algorithms inspired by the world of nature have turned into powerful tools for solving the 
complicated problems. However, they have still some drawbacks need the investigation of new and 
better optimization algorithms. In this paper, we propose a new meta-heuristic algorithm called blind 
naked mole-rats (BNMR) algorithm. This algorithm has been developed based on the social behavior of 
the blind naked mole-rats colony in searching the food and protecting the colony against invasions. By 
introducing this algorithm, we have tried to overcome many disadvantages of the usual optimization 
algorithms including getting trapped in local minimums or having low rate of convergence. Using 
several benchmark functions, we demonstrate the superior performance of the proposed algorithm in 
comparison with some other well-known optimization algorithms. 
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INTRODUCTION 
 
The meta-heuristic algorithms have been mostly derived 
from the behavior of biological systems (for example, 
genetic algorithm (GA), particle swarm optimization 
(PSO), stem cells algorithm (SCA)) or physical systems 
(for example, simulated annealing (SA)). Perhaps the 
main reason for selecting and developing these 
algorithms is the simplicity in formulating and 
understanding their development. 

Among the well-known optimization algorithms, we can 
mention the genetic algorithm (GA). This algorithm is a 
technique of optimization firstly proposed by Holland 
(Holland, 1975). This algorithm is based on the idea of 
evolution in the nature and it looks into the problem on a 
fully random basis. 

This method is  based  on  some  biological  techniques 
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like genetic and mutation; the search is carried out in 
order to find better responses in each generation 
compared to the previous one. Among the features of the 
genetic algorithms are its ability to run in parallel way and 
its capability for searching very large and complicated 
spaces (Goldberg, 1989; Chang et al., 2010). 

Another well-known optimization algorithm is particle 
swarm optimization (PSO) (Clerc and Kennedy, 2002), 
which was developed for the optimization problems, and 
its features have so far been proved to be useful for both 
continuous and discrete functions. In this algorithm each 
particle is considered as a member of the society using 
the experiences of its previous particle as well as that of 
others in order to reach the ultimate goal. This algorithm 
is able to find the global optimum of the function in 
question in consequent iterations (Chakraborty et al., 
2010). 

Simulated annealing (SA) algorithm was presented 
basically intending to simulate between minimizing the 
target function of a problem and cooling  until  the  time  it 



 
 
 
 
gets to a state of basic energy (Kirkpatrick et al., 1983). 
In this algorithm, the first response is an important 
parameter and plays an important role and changes 
according to the type of problem. 

Stem cells algorithm (SCA) has been designed based 
on the biological behavior of stem cells in order to restore 
or evolve the damaged organ in the matured human body 
(Taherdangkoo et al., 2011; Taherdangkoo et al., 2012b). 
This algorithm uses the features of stem cells like self- 
renewal and the ability to evolve in a complete organ. 

The artificial bee colony (ABC) algorithm has been 
designed based on the social behavior of honey bees in 
their colonies looking for food sources. This algorithm has 
many advantages and some disadvantages caused that 
some constraints and parameters have been defined in 
order to resolve the disadvantages of this method and to 
increase the convergence rate in different problems, 
yielding a better performance (Karaboga and Basturk, 
2007; Akay and Karaboga, 2010). 

Among key components of swarm intelligence we can 
mention self-organization and division of labor. Group 
cooperation is the key to reach the optimal and ideal 
response within shortest period of time. 

In this paper, we have used BNMR algorithm for 
numerical functions optimization, and we use some 
Benchmark functions with high dimensions in order to 
prove better performance of this algorithm compared with 
other well-known optimization algorithms. The 
comparison part indicates better convergence rate and 
more precision in achieving the optimum response 
compared with other optimization algorithms. 
 
 

BLIND, NAKED MOLE-RATS COLONY IN REAL 
WORLD 
 

The blind naked mole-rats live in underground tunnels in 
some African countries and in green areas with almost 
fixed temperature and humidity. The temperature in the 
tunnels where the blind naked mole-rats live must always 
be between 30 to 35°C. Each tunnel has nearly a length 
of three kilometers (Brett, 1991; Bennett and Jarvis, 
1988). These animals are the only small mammals that 
live in community and in large colonies, just like honey 
bees or ant colonies. Each colony consists of three 
groups of moles as follows: 
 
1. A queen accompanied by one to three males that carry 
out the reproduction process. 
2. Employed moles that search for food sources and build 
suitable nests for the queen and the offspring’s. 
3. Soldier moles that are responsible for cleaning the 
tunnels and protect the colony against the invasions. 
 
In a real colony, the number of soldier moles is much 
higher than the employed moles. The tunnels where the 
blind naked mole-rats live are built with a unique 
regularity. These tunnels have chambers built for  special 
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purposes: kitchen room is used for collecting the food, 
toilet room is used for placing the wastes, and when they 
are filled up, another chamber is dug for this purpose. 
There are also some labyrinthine rooms. When invaders 
enter the tunnel, the soldiers quickly block their break into 
the tunnel with their wastes. Where their speed for this 
process is low, one of the soldiers sacrifices his life in 
order to help other soldiers find adequate time to stop the 
invaders breakthrough. 
 
 
BLIND, NAKED MOLE-RATS (BNMR) ALGORITHM 
 
The BNMR algorithm is an optimization algorithm, 
designed based on the social behaviour of blind naked 
mole-rats in a large colony. The research process starts 
from the centre of the colony, where the queen and 
offspring live. Note that for simplification purposes, we 
have placed the employed moles and soldier moles in 
one single group, which hereby is called the employed 
moles. 
In the beginning with the production of the initial 

population of the blind naked mole-rats colony starts 
working in the whole problem space on a completely 
random way. Note that the number of the population is 
two times of the number of food sources and each of the 
food sources represents a response for problem space. 
Let us define some parameters as follows: 
 

Members of BNMR = [M1, M2, ..., M
N

]                (1) 
 

Where N  is the number of members related to the 
number of problem’s unknown parameters. Initial 
production of food sources within the parameter’s borders 
is defined as follows: 
 

x i = x i

Min
+ β (x i

Max − x i

Min
)

i = 1, ..., S
 
                                (2) 

 

Where x
i
 represents the i th

food source and β is a 

random variable in the interval of [0, 1] and S  represents 
the number of food sources. 

Hereby, the food sources (responses) in the search 
process are considered as targets to be found by 
employed moles (for example, finding the location of food 
sources and their neighbours, determining the volume of 
enrichment, discharging food sources and storing them in 
the kitchen room). 

The random movement of employed moles starts from 
the centre of the colony towards food sources and their 
neighbours. Moreover, the employed moles carry out the 
process of digging labyrinthine tunnels to find food 
sources. 

The conditions of food sources in terms of temperature 
and humidity must always be suitable and  almost  stable. 
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These conditions are considered as an attenuation 
coefficient in the form of a random variable in the interval 
of [0, 1] in our algorithm in order to determine the 
movement of the employed moles from the target food 
sources towards their neighbors. In addition, we should 
consider the underground temperature in our algorithm 
defined as follows: 
 

H(x) = ρ (x)C(x)
∆T(x, t)

∆t

(ρC) = fs(ρC)s + fa (ρC)a + fw (ρC)w

f
s
+ f

a
+ f

w
= 1

 

                 (3) 
 

Where H  represents the soil temperature changing with 
the depth x  as its variable. ρ (x) and C(x)  are the 

thermal properties of the soil, i.e. the density and specific 
heat capacity respectively. ρ  and C  are variable related 

to x  which means that during the movement, they vary 
with area’s changes, however, due to the simplification of 
the algorithm, we considered them as constant. 
Empirically, the multiplication of ρ  and C  should be a 

value in the range of [2 4]. ∆ T(x, t)

∆ t
 shows the rate of 

the soil temperature changing with the time and it will be 
updated at each iteration in the proposed algorithm. The 

symbol f  represents the volumetric contribution (in 

percent) of each element in the compound, while, the 

subscripts s, a , w  indicate the components of the soil, 
for example sand, air and water, respectively. The sum of 
these volumetric percents is equal to unity in order to 

have a weighted averaging sum to obtain ρ C .  In 

moving towards searching the neighbors of food sources, 
the attenuation coefficient A must be updated in each 
iteration. When the temperature arrives at zero (for 
example, in real conditions where temperature is inclined 
towards 30°C), the search of neighborhoods of food 
sources is carried out with lower intensity and while the 
temperature is close to average volume in the interval of 
[0, 1], the search of the neighborhoods of food sources is 
carried out with higher intensity. We consider this fact by 
the following equation: 
 

A
i

t = Α
i

t −1[1 − exp (
−α t

T
)]

                                          (4) 
 

Where T  is derived from equation (3) and α  is a random 
variable in the interval of [0, 1], but for the sake of 
simplification in algorithm’s implementation and 

calculation, we considerα = 0.95as a fixed parameter, 
and t is the iteration step. 

Next, for each food source, two employed moles are 
sent, so the number of food sources is the half of the 
number of employed moles in the colony. After finding 
foods, their original quality and the path to reach  them  is 

 
 
 
 
saved in the memory of employed moles. In returning to 
the colony, the employed moles that carry information 
regarding the food sources share the information with 
others and with the queen. The obtained food sources 
are categorized with the probability P by the queen within 
a table sorted from the richest to lowest values, based on 
both the original quality of those food sources and the 
shorter paths to reach the food sources from the centre of 

the colony. The probability P  is computed as follows: 

 

Pi =
Fitnessi = FSi × Ri

Fitness j

j =1

N

∑
                                          (5) 

 
Where Fitness

i
 is evaluated by its employed moles, 

FS
i
 is related to the richest food source, R

i
 is related to 

the route for reaching food source and N  is the number 
of food sources which is the half of the number of 
employed moles. 

The first food source with highest probability is select 
by the queen. Then, the two employed moles that carry 
the information of this food source are selected to do the 
recruitment process, for moving toward the food source. 
After reaching this food source, one of the two employed 
moles, which is the head of the group, randomly chooses 
some of the soldiers and leads the process of collecting 
the food. The other employed mole becomes the head of 
another group and by choosing some other soldiers starts 
searching the neighborhood area of the food source. All 
accompanying moles will carry information regarding the 
existence of food resources in the area adjacent to the 
main food source. The process for collecting the food 
from the food resources and concurrently searching their 
neighbors will reduce significantly the time to get to an 
optimum response in the implementation of the proposed 
algorithm and consequently increase the convergence 
rate. This process is repeated for all food resources along 
with their neighborhoods until no food resource is 
available. 

Should be note, the search for neighbors of each food 
source is done in different directions starting from the 
food source.  The directions are in 45 degrees from each 
other. So, there are 8 directions for searching the 
neighbors of a food source. 

The next part of implementing the BNMR algorithm 
includes the consideration of defending the colony and 
preventing the invaders’ break-in into the tunnels. In 
implementing our proposed algorithm, those points with 
low cost function are determined in each iteration and 
considered as invaders and they are eliminated from the 
implementation process (that is, they are not considered 
as members of the whole population involved in the 
process). The number of eliminated points in each 
iteration is augmented related with respect to that in the 
previous   iteration   by   a  factor,  which  is  fixed  by  the 



 
 
 
 
designer. It is computed by the following equation: 
 

Bi

t = ζ × Bi

t−1
 
                                                             (6) 

 

Where ζ ≥1 is a factor, which is set by the designer and 
t

i
B  is the number of eliminated points for i

th
  food source 
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in iteration t.  Note that we replace the eliminated points 
in each iteration by new ones randomly selected from the 
space of selection.  

Using this idea, we apply some kinds of mutation 
process in the proposed algorithm, so that the new 
members having new information will prevent the 
algorithm being trapped in local minimums. 

The pseudo code of the BNMR algorithm as follows:

  

Begin

Objective Function, f (x), X = [x1 ,x2 ,..., xN ]
T

Initialize population, X
i
,{ i =1,L , N} & removal rate, B

i
,{ i =1, ..., N}.

Sort the initial population based on their objective function value.

Define α , β ,ζ , close neighbor & far neighbor from candidate food source.

while ( t < Maximum number of iteration )

Generate new solution by equation (2).

if ( rand < A
i

)

Select a solution among the best solution by equation (5).

Generate a local solution (neighbors around candidate food source) from previous step.

end if

Generate a new solution by search randomly

if ( rand < B
i

& f (x
i

t
) < f (x

Optimum

t
))

Accept and save the new solutions in the memory of mole− rat

end if

search for find the new solutions in current iterationand comparewith the solutions in previous

end while

end (obtainthe optimum response of the BNMR algorithm )

 and 

 and 

 and 

 
 
 
EXPERIMENTAL RESULTS 
 
Test Benchmark Function 
 
In order to assess the performance of our proposed 
algorithm that of other introduced optimization algorithms, 
we have compared the efficiency and the accuracy of 
BNMR algorithm using the 20 Benchmark functions 
(Suganthan, 2005) and the accuracy of all the mentioned 
algorithms using eight Benchmark functions (Suganthan, 
2005). For all Benchmark functions, 50 independent runs 
were applied with different random seeds for generating 
the random variables, each contains 5000 iterations, and 
the population size was set to 100 for all optimization 
algorithms mentioned before except the BNMR algorithm. 
Note that when the space size goes up (for example 
more that 50 (Dimension>50)) the performance of 
optimization algorithms drops dramatically because the 
algorithm will face with several optimal answers. In this 
case of distribution, the selected answer in that 
considered space also adds complexity to the subject 
randomly. Table 1 shows the list of Benchmark functions. 

Settings for algorithms 
 

The number of Maximum generation and population size 
are common control parameters of the algorithms. In the 
experiments, maximum number of generation for the 
dimension of 10, 20, 30 and 40 are considered. Table 2 
shows other control parameters of the algorithms and the 
schemes, with the value of these control parameters 
applied for GA, PSO, SA, SCA, ABC and BNMR 
algorithm. 
 
 

Results comparison 
 

We considered the performance of the BNMR algorithm 
and comparison between all mentioned optimization 
algorithms using 24 benchmark functions (Suganthan et 
al., 2005). 

These 24 functions consist of two categories. The first 

one is Unimodal functions: { F1 (Shifted Sphere Function), 

F2 (Shifted Schwefel’s problem 1.2), F3 (Shifted Rotated 

High     Conditioned     Elliptic     Function),    F4   (Shifted
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Table 1. The list of Benchmark functions. 
 

Function Global Min Search range Initial range Formulae 

F21 0 [-5, 5] [-5, 0] Suganthan et al. (2005) 

F22 0 [-5, 5] [-5, 0] Suganthan et al. (2005) 

F23 0 [-5, 5] [-5, 0] Suganthan et al. (2005) 

F24 0 [-5, 5] [-5, 0] Suganthan et al. (2005) 

     

Ackley 0 [-32.7, 32.7] [-32.7, 16] 
20 + e − 20e

−0.2
1

D
xi

2

i=1

D

∑
 

 

 
 

 

 

 
 

− e

1

D
cos(2πx i )

i=1

D

∑
 

     

Rosenbrock 0 [-2.04, 2.04] [-2.04, 0] 100 x
i+1 − x

i

2( )
2

+ x
i
−1( )

2[ ]i=1

D −1

∑  

     

Schwefel 0 [-500, 500] [-500, 200] 418.9829x D − −xi sin xi( )
i=1

D

∑  

     

Weierstrass 0 [-0.5, 0.5] [-0.5, 0.2] 

a
k
cos 2π b

k
x i + 0.5( )( )[ ]

k =0

kmax∑   
 
 
 

i=1

D

∑

−D a
k
cos 2π b

k
0.5( )[ ]

k= 0

kmax∑ ,

a = 0.5,b = 3, kmax = 20

 

 
 
 

Table 2. Values of parameters of each of six algorithms. 
 

Algorithm Parameter Value 

 

GA [2] 

Population 

Crossover 

Mutation rate 

Number of iterations 

100 

0.95 

0.001 

5000 

   

 

PSO [5] 

Number of Swarm 

ϕ1 = ϕ2  

wmin  

wmax  

Number of iterations 

100 

2 

0.7 

0.9 

5000 

   

 

SA [6] 

Probability threshold 

Initial temperature 

Temperature multiplier 

Final temperature 

Number of iterations detect steady stat 

Number of iterations 

0.98 

5 

0.98 

0.01 

500 

5000 

   

 

SCA [7] 

Population 

ζmin  

ζmax  

Number of Iterations 

100 

0.01 or 0.98 

0.98 

5000 
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Table 2. Contd. 
 

ABC [9] 

Population 

Number of sites selected for neighborhood search 

Number of bees recruited for best sites 

Number of iterations 

100 

10 

5 

5000 

   

BNMR 

Population 

α 

ζ  

Number of iterations 

100 

0.95 

0.95 

5000 

 
 
 

 
 

Figure 1. The results of applying the BNMR on F1 −F5 

(Convergence of Functions F1 −F5). 

 
 
 

 
 
Figure 2. The results of applying the BNMR on F6 −F10

 

(Convergence of Functions F6 −F10) 

Functions: F6 (Shifted Rosenbrock’s Function), F7 
(Shifted Rotated Griewank’s Function without 

Bounds), F8 (Shifted Rotated Ackley’s Function with 

Global Optimum on Bounds), F9 (Shifted Rastrigin’s 

Function), F10  (Shifted Rotated Rastrigin’s Function), F11 
(Shifted Rotated Weierstrass Function), F12  (Shifted 

Schwefel’s Problem 2.13)}, {Expanded Functions: F13  
(Expanded Extended Griewank’s plus Rosenbrock’s 

Function), F14  (Shifted Rotated Expanded Scaffer’s)}, 

{Hybrid Composition Functions: F15  (Shifted 

Rosenbrock’s Function), F16  (Shifted Rotated Griewank’s 

Function without Bounds), F17  (Shifted Rotated Ackley’s 

Function with Global Optimum on Bounds), F18  (Shifted 

Rastrigin’s Function), F19  (Shifted Rotated Rastrigin’s 

Function), F20  (Shifted Rotated Weierstrass Function), 

F21 (Shifted Schwefel’s Problem 2.13, F22  (Shifted 

Schwefel’s Problem 2.13, F23  (Shifted Schwefel’s 

Problem 2.13, F24  (Shifted Schwefel’s Problem 2.13, and 

the properties of these 24 functions are available in 
(Suganthan et al., 2005). 

Each algorithm has been executed 50 independent 
times and every time with different random seeds for 
generating the random variables for each Benchmark 
function. Figures 1, 2, 3 and 4 show the convergence of 

the BNMR algorithm on the Benchmark functions F1 to 

F20  by the number of fitness evaluations, and Figures 5, 

6, 7 and 8 show the convergence of all the mentioned 

algorithms on the Benchmark functions F21, F22 , F23 , 

F24  by the number of fitness evaluations, and Figures 9, 

10, 11 and 12 show the performance of all the mentioned 
algorithms on Ackley, Rosenbrock, Schwefel and 
Weierstrass functions by the number of Iteration. 

We want to show the comparison of the convergence of 
all the mentioned optimization algorithms by the number 
of fitness evaluations and the number of iterations. As 
can be seen, the BNMR algorithm has better 
convergence than the other optimization algorithms. In 
the other words, this proves that BNMR algorithm has the
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Figure 3. The results of applying the BNMR on F11−F15 (Convergence of Functions 

F11−F15). 

 
 
 

 
 

Figure 4. The results of applying the BNMR on F16 −F20 (Convergence of Functions 

F16 −F20). 
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Figure 5. The results of applying the different algorithms on F21 (Convergence of 

Function F21 for all algorithms). 

 
 
 

 
 

Figure 6. The results of applying the different algorithms on F22 (Convergence of 

Function F22 for all algorithms). 
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Figure 7. The results of applying the different algorithms on F23 (Convergence of 

Function F23 for all algorithms). 

 
 
 

 
 

Figure 8. The results of applying the different algorithms on F24 (Convergence of Function 

F24 for all algorithms). 
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Figure 9. The results of applying different algorithms on Ackley function. 

 
 
 

 
 
Figure 10. The results of applying different algorithms on Rosenbrock function. 
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Figure 11. The results of applying different algorithms on Schwefel function. 

 
 
 

 
 
Figure 12. The results of applying different algorithms on Weierstrass function. 
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Table 3. The final results of mean and standard derivations (SD) of different algorithms for F21 function. 

 

Dimensions 10 20 30 40 

GA 
Mean 6.015 9.182 12.077 19.016 

SD 3.088 7.087 11.247 14.085 

      

PSO 
Mean 1.58E-04 2.03E-04 7.46E-01 9.42E+02 

SD 2.67E-04 2.36E-03 1.84E-00 3.18E-01 

      

SA 
Mean 4.637 7.537 13.544 22.007 

SD 3.019 6.648 12.638 18.374 

      

SCA 
Mean 1.67E-11 4.36E-09 6.87E-07 9.24E-07 

SD 0.78E-12 4.98E-11 7.86E-08 8.21E-07 

      

ABC 
Mean 9.87E-11 1.26E-10 3.77E-09 4.65E-08 

SD 4.21E-12 7.98E-10 8.36E-09 3.81E-07 

      

BNMR 
Mean 2.12E-15 2.29E-14 4.27E-13 6.84E-11 

SD 2.56E-14 2.78E-13 5.36E-13 7.11E-13 

 
 
 

Table 4. The final results of Mean and Standard Derivations (SD) of different algorithms for F22 function. 

 

Dimensions 10 20 30 40 

GA Mean 17.049 29.018 41.297 53.709 

 SD 11.03 15.025 32.123 38.283 

      

PSO Mean 6.465 11.064 14.837 26.024 

 SD 7.0037 9.0026 16.048 21.074 

      

SA Mean 4.036 14.076 25.086 31.097 

 SD 3.019 8.024 17.028 26.842 

      

SCA Mean 1.17E-03 2.23E-01 6.11E+01 1.16E+02 

 SD 2.5E-02 7.21E-01 1.12E+01 1.27E+02 

      

ABC Mean 1.02E-00 1.27E+01 1.67E+02 6.34E+02 

 SD 3.12E-00 1.38E+01 1.89E+02 2.88E+02 

      

BNMR Mean 0.16E-04 1.28E-03 1.78E-03 3.18E-01 

 SD 2.56E-05 2.33E-04 1.24E-04 1.22E-02 

 
 
 
ability of getting out of a local minimum in the problem 
space and achieving the global minimum. So, we get 
better performance using BNMR algorithm in optimizing 
multimodal and multivariable functions. 

For different dimensions such as 10, 20, 30 and 40 the 
mean and standard derivations (SD) function values of 
the best solution found by the algorithms have been 
saved by GA, PSO, SA, SCA, ABC  and  BNMR  that  are 

shown in Tables 3 to 10. 
Meanwhile, we have studied the effect of scalability on 

the computational complexity of the BNMR algorithm for 
Weierstrass function as described in (Suganthan et al., 
2005). We also have computed the CPU Time; the time 
when the algorithm achieves its best results, of each 
algorithm on different mentioned Benchmark functions. 
Tables 11 to 18 show these times. The  characteristics  of
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Table 5. The final results of Mean and Standard Derivations (SD) of different algorithms for F23 function. 

 

Dimensions 10 20 30 40 

GA Mean 4.632 9.018 16.871 23.097 

 SD 3.673 7.762 12.406 20.742 

      

PSO Mean 0.072 0.274 1.527 3.036 

 SD 0.024 0.089 0.178 1.365 

      

SA Mean 3.627 6.979 11.046 27.187 

 SD 1.496 4.867 9.956 25.243 

      

SCA Mean 1.23E-14 1.28E-13 7.86E-12 1.22E-09 

 SD 3.45E-14 2.66E-13 1.29E-13 3.89E-11 

      

ABC Mean 3.67E-09 2.11E-12 6.87E-09 2.45E-06 

 SD 2.77E-10 1.86E-14 7.78E-09 1.77E-07 

      

BNMR Mean 1.87E-15 1.88E-14 7.78E-13 1.77E-12 

 SD 2.85E-16 3.67E-16 8.66E-14 2.56E-13 

 
 
 

Table 6. The final results of Mean and Standard Derivations (SD) of different algorithms for F24 function. 

 

Dimensions 10 20 30 40 

GA Mean 21.192 32.976 41.338 47.638 

 SD 11.764 14.275 19.588 28.872 

      

PSO Mean 0.0978 0.1763 0.6012 0.927 

 SD 0.0082 0.0312 0.165 0.214 

      

SA Mean 4.762 6.436 22.427 31.004 

 SD 3.826 5.982 16.536 19.739 

      

SCA Mean 1.17E-12 1.76E-11 8.47E-11 2.08E-10 

 SD 1.05E-13 8.16E-13 0.43E-11 9.83E-11 

      

ABC Mean 3.68E-11 1.72E-10 1.84E-08 2.67E-06 

 SD 1.88E-11 2.76E-09 4.56E-09 3.01E-05 

      

BNMR Mean 0.12E-14 1.36E-14 2.17E-14 0.02E-13 

 SD 1.07E-16 3.64E-14 0.65E-13 9.89E-13 

 
 
 
the computer on which the algorithms were run are: 
Macintosh OS, Two 2.93 GHz 6-Core Intel, 64 GB Ram, 
and the graphic card is ATI Radeon HD 5870 1 GB. 

Moreover, code execution time (T0 ), execution time of 

Weierstrass function for 200,000 evaluations (T1) and for 

five runs, mean of the BNMR algorithm execution times 
on Weierstrass function for 200,000 evaluations ( ˆ T 2) were 

computed. The complexity of algorithm was computed by 

{( ˆ T 2 − T1) /T0} and given in Table 19. 

Most of the mentioned optimization algorithms in this 
paper achieved good results but not as well as the 
proposed method (BNMR algorithm) since the other 
algorithms are intensively depended on the adjustment of 
their   parameters.  For  instance,  in  ABC  algorithm,  we
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Table 7. The final results of Mean and Standard Derivations (SD) of different algorithms for Ackley function. 
 

Dimensions 10 20 30 40 

GA 
Mean 0.63 0.89 1.13 3.78 

SD 0.32 0.33 0.37 0.57 

 

PSO 
Mean 6.8E-12 4.6E-07 3.6E-06 3.2E-03 

SD 7.2E-13 6.2E-08 5.7E-06 6.1E-02 

 

SA 
Mean 0.28 0.56 0.63 0.97 

SD 0.29 0.31 0.42 0.73 

 

SCA 
Mean 0 0 1.01E-16 1.26E-13 

SD 0 0 1.07E-14 1.28E-14 

 

ABC 
Mean 0 0 8.1E-11 6.2E-09 

SD 0 0 6.1E-12 1.6E-09 

 

BNMR 
Mean 0.6E-16 2.56E-16 4.66E-16 3.78E-15 

SD 0.3E-18 0.46E-17 2.66E-17 7.86E-16 

 
 
 

Table 8. The final results of Mean and Standard Derivations (SD) of different algorithms for Rosenbrock function. 
 

Dimensions 10 20 30 40 

GA 
Mean 2.563 7.865 13.757 23.456 

SD 1.763 3.678 9.457 17.642 

 

PSO 
Mean 0.876 1.342 9.453 17.453 

SD 1.124 3.651 7.563 15.674 

 

SA 
Mean 5.753 11.456 19.453 27.567 

SD 4.436 8.456 16.456 31.456 

 

SCA 
Mean 0.06E-03 1.24E-03 4.46E-01 7.66E-00 

SD 1.02E-04 7.26E-03 3.77E-03 7.66E-01 

 

ABC 
Mean 1.25E-02 1.76E-00 7.14E+1 2.16E+3 

SD 2.36E-02 5.76E-00 1.17E+1 0.68E+2 

 

BNMR 
Mean 0.87E-07 1.13E-07 1.56E-04 6.87E-02 

SD 1.02E-08 1.45E-07 4.33E-04 6.86E-03 

 
 
 
need to change its parameters (for example, MR, SF and 
etc.) for each function to obtain a good result for that 
function and due to this fact the algorithm cannot be an 
ideal one. 
 
 
DISCUSSION 
 
The genetic algorithm implements the law of survival with 

a focus on the existing solutions in order to reach a better 
solution. The genetic algorithm suffers a lot from too 
much dependency on such techniques such as selection, 
mutation, crossover, etc. with the conditions of the 
problem and the initial conditions and a weak selection of 
these constraints and parameters have got a remarkable 
influence on the function of genetic algorithm (GA). Of 
course, despite the existence of optimum methods 
presented to complete the GA, it is  still  damaged  in  the
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Table 9. The final results of Mean and Standard Derivations (SD) of different algorithms for Schwefel function. 
 

Dimensions 10 20 30 40 

GA 
Mean 10.844 22.783 41.983 78.564 

SD 9.032 17.637 36.272 47.782 

 

PSO 
Mean 2.567 6.547 11.365 21.457 

SD 1.098 3.093 7.543 18.366 

 

SA 
Mean 5.864 12.043 17.634 32.764 

SD 3.536 7.837 11.635 17.623 

 

SCA 
Mean 1.67E-05 1.69E-03 3.88E-01 7.65E-01 

SD 4.64E-05 7.35E-04 3.65E-02 2.35E-02 

 

ABC 
Mean 2.67E-03 3.65E-01 7.63E+01 8.71E+03 

SD 3.03E-03 2.11E-02 5.34E+1 6.34E+02 

 

BNMR 
Mean 2.11E-07 7.52E-06 3.65E-03 8.76E-03 

SD 1.22E-07 3.56E-06 4.89E-04 9.24E-03 

 
 
 

Table 10. The final results of Mean and Standard Derivations (SD) of different algorithms for Weierstrass function. 
 

Dimensions 10 20 30 40 

GA 
Mean 0.123 0.632 1.352 7.653 

SD 0.023 1.865 2.768 4.786 

 

PSO 
Mean 0.0002 0.0096 0.0167 1.677 

SD 0.0034 0.0082 0.0734 0.0962 

 

SA 
Mean 0.008 0.028 0.787 1.256 

SD 0.001 0.007 0.154 1.234 

 

SCA 
Mean 0 0 1.22E-08 2.66E-06 

SD 0 0 2.11E-07 4.19E-06 

 

ABC 
Mean 0 0 0 6.98E-11 

SD 0 0 0 2.66E-09 

 

BNMR 
Mean 1.22E-12 2.55E-11 8.66E-11 1.02E-10 

SD 2.09E-12 3.66E-11 4.88E-10 2.99E-09 

 
 
 

Table 11. CPU time obtained by applying the different algorithms on F21 function. 

 

Method GA PSO SA SCA ABC BNMR 

Real Time in Second 17.0017 9.0827 13.9038 3.0076 4.1073 1.2705 

 
 
 
problems with continuous and discontinuous spaces with 
high   dimensions   of   early   convergence   or   repeated 

interruptions. For instance, where some of weak people 
join the referenced set and form it and the continuation of
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Table 12. CPU time obtained by applying the different algorithms on F22 function. 

 

Method GA PSO SA SCA ABC BNMR 

Real Time in Second 19.0086 8.1026 15.6728 3.2618 3.1704 2.0074 
 
 
 

Table 13. CPU time obtained by applying the different algorithms on F23 function. 

 

Method GA PSO SA SCA ABC BNMR 

Real Time in Second 19.1703 9.1763 14.0762 2.9968 3.5603 2.3607 
 
 
 

Table 14. CPU time obtained by applying the different algorithms on F24 function. 

 

Method GA PSO SA SCA ABC BNMR 

Real Time in Second 18.0936 7.9825 13.5638 2.0216 2.0063 1.1607 
 
 
 

Table 15. CPU time obtained by applying the different algorithms on Ackley function. 
 

Method GA PSO SA SCA ABC BNMR 

Real Time in Second 9.0028 5.1004 8.9827 1.0034 1.9008 0.9162 
 
 
 

Table 16. CPU time obtained by applying the different algorithms on Rosenbrock function. 
 

Method GA PSO SA SCA ABC BNMR 

Real Time in Second 9.1076 5.2256 9.0034 1.2607 1.7683 0.8901 

 
 
 

Table 17. CPU time obtained by applying the different algorithms on Schwefel function. 
 

Method GA PSO SA SCA ABC BNMR 

Real Time in Second 9.2674 4.9907 8.4013 1.6003 1.4108 0.7243 

 
 
 

Table 18. CPU time obtained by applying the different algorithms on Weierstrass function. 

 

Method GA PSO SA SCA ABC BNMR 

Real Time in Second 9.3267 5.1806 7.6482 1.0764 2.0002 0.5624 
 
 
 

Table 19. Time complexity of the BNMR algorithm on Weierstrass function. 

 

Dimension T0  T1 
ˆ T 2 = Mean(T2)  

Complexity 

{( ˆ T 2 − T1) /T0} 

10 0.31845715929317 0.18714673563299 0.39948641607526 0.66677632 

30 0.31845715929317 0.18947360835546 0.46656005091724 0.87009014 

50 0.31845715929317 0.19544465678268 0.53936376385198 1.07995407 

100 0.31845715929317 0.19987782534738 0.69177629442021 1.54462996 
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examinations in the sample space is stopped, one of the 
reasons could be this issue that a very appropriate 
chromosome is selected for reproduction. As a result, the 
offspring becomes similar to its parent and this is when 
the chromosomes are very similar to each other. Thus, 
before reaching the optimal solution, the early 
convergence is formed. Of course, through applying 
constraints, we can prevent it, but this is when the 
dimensions of the issue do not rise. 

The particle swarm optimization (PSO) has got a very 
simple implementation, but it suffers from early 
convergence. Although PSO algorithm has got a more 
reasonable speed than other optimization algorithms 
(Deep and Bansal, 2009), but it cannot optimize the 
quality of solutions by increasing the number of 
repetitions. This issue is more visible when examining 
and optimizing the multi-model problems. The reason for 
its occurrence in gbest PSO is that the particles become 

convergent in one specific point, while this point is 
located on one line, between the best global position and 
the best individual position. The other problem arises 
from too much dependency to regulating the PSO 
algorithm parameters (Kang et al., 2012b). 

The simulated annealing (SA) algorithm (Oliveira et al., 
2012), Initial solution and neighboring formation 
mechanism are important parameters of the SA algorithm 
that play significant roles in reaching into the optimum 
solution. 

After selecting these two parameters, an initial 
temperature analogous to the kinetic energy is attributed 
to the system. Selecting initial value is arbitrary, but is 
applied depending on the behavior of the function at the 
start point. This SA algorithm process raises the time 
needed to reach the optimum solution and also increases 
the repetitions. SA is scrutinized in different problems and 
by many researchers but one of its main deficiencies is 
the large time in reaching into the optimum solution that 
is still unsolved. 

The self-renewal process plays an important role in the 
SCA algorithm (Taherdangkoo et al., 2012a), but the 
presence of symmetry (symmetric and asymmetric 
propagation) has increased the time of obtain the 
optimum solution and it practically reaches the final 
solution by high repetitions. This is considered as one of 
the main problems of this algorithm. 

The artificial bee colony (ABC) algorithm has got more 
accuracy and speed, than other optimization algorithms, 
but the use of roulette wheel in selecting the employed 
bees and the relation of employed bees and onlooker 
bees has not been turned into a model appropriately, and 
this issue does not make this algorithm distinguished 
from other optimization algorithms, and finally a research 
for modified of basic of artificial bee colony algorithm, 
was able to solve the main problem of ABC algorithm by 
using controlled of phase and magnitude and could 
achieve reasonable results (that should be note that in 
our proposed method, the same algorithm has been used 

 
 
 
 
for comparison with proposed methods, but they have 
been included within the context as ABC algorithm) 
(Kang et al., 2011, 2012a). 

Other optimization algorithms exist such as Bat 
algorithm (Yang, 2010), and etc. Although these almost 
new algorithms have solved the problems arising from 
other optimization algorithms, but through implementing 
relatively more constraints and conditions, they have 
more complexity compared to them in implementation. 

Although the Bat algorithm has been able to combine 
and use the advantages of other optimization algorithms 
with echolocation of the bat, but it has given much 
complexity to the algorithm and we should not neglect its 
high dependency on the initial conditions and constraints 
of the problem. In this paper, we have tried to cover all 
problems extracted from other optimization algorithms, 
while no additional constraint has been used in 
implementing the algorithm and flexibility of the algorithm 
is maintained. The observation of results is a good 
evidence of the aforesaid issue. 
 
 
Conclusion 
 
We have introduced a novel meta-heuristic algorithm for 
addressing the global optimization problems. The new 
algorithm is based on social behavior of blind naked 
mole-rats in finding food sources and protecting the 
colony against invasion. We have tested the proposed 
algorithm on several Benchmark functions and the 
obtained results compared with the other optimization 
algorithms have demonstrated the superior performance 
of the proposed algorithm. 
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