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Undue bulkiness, which characterizes most design in the past, is gradually giving way to economic 
approach to design, which gives optimal solutions to engineering problems through optimum design 
techniques, leading to material and cost economy. This paper formulates a mathematical problem and 
presents a computer–aided solution for determination of economic thickness of local fire-clay cooking 
pot for functional performance in heat retention at minimum expense on heating and material. Cost 
analysis of heating and pot material was integrated into heat transfer phenomenon in spherical shells. 
The thickness of the pot at which the total cost function goes through a minimum, found to be 10.02 
mm for hemispherical pot of 3.3523 × 10

-8 
capacity was taken as the economic solution. 
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INTRODUCTION 
 
Until a few decades ago, components were generally 
over designed. They were either too bulky or were made 
with unwarranted precision for the intended use (Stephen 
and Raymond, 1980). Good engineering practice, 
however, requires that projects, products and planning be 
approached in a cost effective manner (Udomon, 2001). 
Today, the concept of optimum design makes possible 
economy of resources. An optimum economic design 
could either be based on conditions giving maximum 
profit per unit of production or minimum cost per unit of 
time (Robert et al., 1997). For the later, the total cost may 
go through a minimum at one value of a particular design 
variable. Such a value is ultimately taken as the optimum. 
This technique is herein adopted for determination of 
economic thickness of the local clay pot for cooking of 
food items and or boiling of fluids. Clay is one of the 
cheapest refractory raw materials in existence. This class 
of material is inorganic  and  non-metallic  in  nature,  and 

may be described as those which will retain the original 
physical shape and chemical stability when subjected to 
high temperatures. Thus, they are characterized by the 
ability not only to withstand the heat but also to 
chemically attack, abrasion, impact and shock caused by 
thermal stresses (Borode et al., 2000). The thermal 
conductivity of clay is generally below 0.2 Wm

-1
 K

-1
 at an 

operational temperature of 200°C (Warmer et al., 1993), 
though (Folaranmi, 2009) asserted that thermal 
conductivity increases with moisture content of clay while 
(Manukaji, 2013) reported that it decreases with the 
addition of sawdust. Borode et al. (2000) and Hassan and 
Adewara (1994) have confirmed the suitability of most 
types of clay, especially Nigerian clays; for high 
temperature applications. This justifies the practice, from 
the olden days to the present, of the use of clay pots for 
cooking. The subsequent retention of heat by the pot for 
a considerable period of time affords thermal
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conditioning of food items. This property prevents food 
items such as stew from early loss of taste. In order that 
the heat loss through the clay pot be reduced, increase in 
the thickness of the clay can be considered a practical 
solution. 

However, increase in the thickness of the clay layer 
leads to an increased operational cost of the clay pot. A 
minimum thickness must therefore exist which ensures 
the required reduction of heat loss to the surrounding and 
minimizes heating and insulation cost. This work is aimed 
at determining this economic thickness of the clay pot. 
Local fire clay pots are modeled in a hemispherical 
configuration (Daniel, 1973); the heat transfer 
phenomenon associated with the clay pot is therefore 
analyzed using the thick spherical shell design approach 
(Kurmi, 1991). 
 
 
MATERIALS AND METHODS 
 
In this problem, it is assumed that conduction is the predominant 
mode of heat-transfer in the system, hence the emphasis in the use 
of Fourier’s law. This is expressed as: 
 

dx

dt
kAQ =  …………………………                                     (1) 

 
where Q         = quantity of heat transferred per second (W). 
 k = thermal conductivity of clay (Wm

-1
K

-1
). 

 A = surface area of the material (m
2
). 

 dt = temperature difference on any two 
faces (K)., 
 dx = thickness of the body through which 
the heat flows (m). 
 
Common clay pots are of hemi-spherical configuration, considering 
this shape (Figure 1); Equation (1) takes the form: 
 








 −
=

dr

dt
kAQ    …………………                                             (2) 

 
where from Figure 1, 
 t1      =        temperature of the inside wall of the pot (K). 
 t2      =        outside temperature (ambient). 
 r1      =        inside radius of hemispherical pot (m). 
 r2      =        outside radius of the pot (m). 
 dt     =         temperature across the thickness (K). 
            dr     =         small element of thickness (m). 
 
A thick sphere may be imagined to consist of a large number of thin 
concentric spheres of increasing radii (Kurmi, 1991). Considering 
any thin imaginary sphere of thickness dr at a distance r from the 
center of the sphere; 
Surface area of spherical object is given as: 
 
A = 4 πr

2
  ……………………                                                          (3) 

 
and the volume of the hemispherical pot is given as 
 
V   =   4/6 (πr

3
)   ………………………                                            (4) 

 
 
 
 
Substituting Equation (3) in (2): 
 
Q = - 4 π k r

2 
(dt/dr) ……………                                      (5a) 

 
Solving Equations (5) using separation of variables 
 

dt
Q

k

r

dr








−=

π4
2

  …………………………                             (5b) 

 
from which 
 
Q  =  4πkr1r2[(t1-t2) / (r2-r1)]      ………………                                  (6) 
 
Let the clay pot thickness be X such that 
 
X  =  r2 - r1              …………………………                                       (7) 
 
Let the heat transfer coefficient from the item in the pot to the inner 
layer of the pot be denoted as U. Hence 
 
Q  = U (titem-t1)    ……………………………                                     (8) 
 
where: 
titem = the temperature of the item being cooked (K). 
 
Combining Equations (6), (7), and (8) 
 
4πkr1r2(t1-t2) /X  =  U (titem-t1)   ………………                                  (9) 
 
From Equation (9) 
 
X = 4πkr1r2 (t1-t2)  /  U (titem-t1)   ………….                                     (10) 
 
Let the cost of heat transfer from the item (heated up through wood 
burning in a local stove) through the clay pot to the surrounding be 
Cheat 
 
Cheat = 3600 Q Cw T ………………………                       (11) 
 
where 
Cw = dry wood cost; equivalent to 1.0 joule of heat. That is, cost of 
0.0556 kg of dry wood (Folaranmi, 2009). 
T = time of operation of the pot per year. 
 
Cost associated with the insulating property of the pot can be 
expressed as 
 
Cpot = Cc X / Sl      ………………….…..                                         (12) 
 
Where 
Cc = Cost per unit volume of clay (Nm

-3
). 

Sl = Service life of the pot (years). 
 
The cost per unit volume of the clay has been put at the cost of 
304.34 kg of fine-clay. 
Therefore the total cost of heating is given by Equation (11) and 
(12) as 
 
CHT =Cc X / Sl + 3600 Q CwT   ………                                          (13) 
 
Substituting for Q from Equation (8) and X from Equation (10) 
 
CHT = [4Ccπkr1r2 (t1-t2) / [ U (titem-t1) Sl  ]]  + 3600 U CwT (titem-t1)  …                          
                                                                                                     (14) 
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Figure 1. A typical hemispherical cross-section of the clay pot. 

 
 
 
The heat transfer coefficient, U is a function of t1, hence 
 
U = J (t1)   ………………………………….                                    (15) 
 
where J is a constant. 
 
Substituting Equation (15) in Equation (9) 
 
4πkr1r2(t1-t2) /X = J t1 (titem-t1) …………..                                       (16) 
 
This reduces to a form 
 
Jt

2
1 + ((4πkr1r2 / X) - Jtitem ) t1 – (4πkr1r2t2 / X) = 0 ……                 (17) 

 
The resulting quadratic equation can be solved for the practical 
value of the inner surface temperature of the pot. This is obtained 
as 
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1 ππ D ……….        (18) 

 
 
Computer simulation 

 
A non-differential numerical method is employed in determining the 
economic thickness of the clay pot. With a predetermined capacity 
of the pot intended, the hemispherical internal radius r1, is 
determined from Equation (4). 

A guess value of the outside radius r2 of the pot is then chosen; 
this results in a guess value of the pot thickness through Equation 

(7). Other parameters needed to arrive at the pot inner surface 
temperature in Equation (18) are characteristic of the heating 
system and clay properties; values of which are known. Hence, the 
total cost of heating can be deduced from Equation (14). This 
process is then repeated several times; each time with an 
increment in the guess value for r2. 

A computer simulation of the above procedure was carried out. 
The program, written in C++ language and run on the Borland C++ 
version 5.02 compiler is presented with this paper. It carries out 50 
iterations and “home in” on an optimum thickness value of the clay 
pot corresponding to the least cost of the pot material and the 
heating process (Algorithm 1). 

The following are the data used for program assessment and 
validation. 
 
k = 0.0865 Wm

-1
K

-1
, titem = 100°C, U = 4.0, t2 = 27.83°C, J = 0.25, Cc 

= N20.00, V = 3.3523 × 10
-8 

m
3
, Outside diameter increment = 

0.004 m, Sl = 5 yrs, T = 2180 h, Cw = ₦2.0 × 10
-8

. 

 
 
RESULTS AND DISCUSSION 
 
The above data were fed into the program, and run using 
Borland C++ 5.02 compiler, the result of which is as 
presented in Table 1. It is observed at first that increase 
in the thickness of the pot results in a decrease in the 
total annual operational cost. 

After some iteration, the total annual operational cost 
begins to rise. From a  plot  of  the  total  cost  versus  pot  
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// Computer program 

// Compiler  : BORLAND C++  Version  5.02    ^^^^^^^^^^^^^^^^^^^^^^^^^^ 

#include<iostream.h> 

#include<fstream.h> 

#include<math.h> 

float a,b,c,Cpre; 

char filename[20]; 

double k,t1,T,t2,Pi,Cc,Cht; 

int main() { 

cout<<"enter filename"<<endl; 

cin>>filename; 

ofstream fout(filename); 

float U,J,R1,R2,titem,DD,b1,b2,d; 

float Sl,Cw,X,D2,aa,bb; 

float V,C1,C2,C3; 

// INTERRACTIVE DATA ENTRY  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

cout<<"Enter the capacity of the pot intended,(cubic metre).\n"; 

cin>>V; 

cout<<"Enter cost of dry wood equivalent to\n"; 

cout<<"the consumption of 1.0Joule of heat,(=N=/J).\n"; 

cin>>Cw; 

cout<<"Enter service life of the Clay Pot,(Yr.).\n"; 

cin>>Sl; 

cout<<"Enter  operational time of the Pot,(hr./yr).\n"; 

cin >>T; 

cout<<"Enter cost per cubic metre of clay,(=N=/cubic metre).\n"; 

cin>>Cc; 

cout<<"Enter heat transfer coefficient from the inner surface\n"; 

cout<<"of the Pot to the item being cooked,(W/sq.metre/K).\n"; 

cin>>U; 

cout<<"Enter the value of constant J."<<endl; 

cin>> J; 

cout<<"Enter a gues value for the outside diameter of the pot\n"; 

cout<<"intended,(m)."<<endl; 

cin>>D2; 

cout<<"Enter a small change in the value just entered."<<endl; 

cin>>DD; 

a=J;  
 
Algorithm 1. Computer simulation written in C++ language and run on the Borland C++ 

version 5.02 compiler. 
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cout<<"Enter coeff of thermal conductivity of clay,(W/m/K)./n"; 

cin>>k; 

cout<<"Enter flame temperature,or temperature of the hot item.\n"; 

cin>>titem; 

cout<<"Enter the temperature of the surrounding\n"; 

cout<<"for which the pot is to be put,(K).\n"; 

cin>>t2; 

//  OUTPUT HEADING   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

cout<<"Clay thickness  Total Cost   Inner Surface Temp."<<endl; 

fout<<"Clay thickness  Total Cost   Inner Surface Temp."<<endl; 

cout<<"     (m)          (=N=)            (K)         "<<endl; 

fout<<"     (m)          (=N=)            (K)         "<<endl; 

//   ITERATION   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

 for(int i=0;i<50;i++) { 

  Pi = 22.0/7.0;   cout<<"Pi"<<Pi; 

  aa = 1.0/3.0;   cout<<"aa"<<aa; 

  bb = (3.0*V)/(4.0*Pi);   cout<<"bb"<<bb; 

  R1 = pow(bb,aa);   cout<<"R1"<<R1; 

  R2 = D2/2.0;   cout<<"R2"<<R2; 

  X  = R2-R1;   cout<<"X"<<X; 

  b1 = (4.0*Pi*k*R1*R2)/X; 

  cout<<"b1"<<b1; 

  b2 = J*titem;   cout<<"b2"<<b2; 

  c  = ((4.0)*Pi*k*R1*R2*t2)/X; 

  cout<<"c"<<c; 

  b  = b1-b2;   cout<<"b"<<b; 

  d  = (b*b-4*a*c);   cout<<"d"<<d; 

  t1 = (-b+sqrt(d))/(2.0*a);   cout<<"t1"<<t1; 

  C1 = 4.0*Pi*k*Cc*R1*R2*(t1-t2); 

  cout<<"C1"<<C1; 

  C2 = U*(titem-t1)*Sl;   cout<<"C2"<<C2; 

  C3 = 3600.0*Cw*T*U*(titem-t1);   cout<<"C3"<<C3; 

  Cpre=(C1/C2)+C3; 

  cout<<"Cpre"<<Cpre; 

  Cht = Cpre;    D2+=DD; 

//  WRITING RESULTS TO OUTPUT FILE  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

  cout<< X <<"\t"<<"\t"<<Cht<<"\t"<<"\t"<<"\t"<<t1<< endl; 

  fout<< X <<"\t"<<"\t"<<Cht<<"\t"<<"\t"<<"\t"<<t1<< endl;    }}   

       //  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 

 
Algorithm 1. Contd. 
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Table 1. Output of the Program. 

 

Clay thickness (m) Total cost (=N=) Inner surface  temperature (°C) 

0.00500016 0.419450 99.4433 

0.00520016 0.411501 99.4605 

0.00540016 0.404352 99.4763 

0.00560016 0.397914 99.4911 

0.00580016 0.392116 99.5048 

0.00600016 0.386891 99.5176 

0.00620016 0.382186 99.5296 

0.00640016 0.377952 99.5408 

0.00660016 0.374145 99.5514 

0.00680016 0.370729 99.5613 

0.00700016 0.367670 99.5707 

0.00720016 0.364936 99.5795 

0.00740016 0.362503 99.5879 

0.00760016 0.360347 99.5958 

0.00780016 0.358446 99.6033 

0.00800016 0.356781 99.6105 

0.00820016 0.355333 99.6173 

0.00840016 0.354090 99.6237 

0.00860016 0.353036 99.6299 

0.00880016 0.352157 99.6358 

0.00900016 0.351444 99.6414 

0.00920016 0.350885 99.6468 

0.00940016 0.350467 99.6519 

0.00960016 0.350187 99.6569 

0.00980015 0.350031 99.6616 

0.0100002 0.349996 99.6661 

0.0102002 0.350072 99.6705 

0.0104002 0.350253 99.6747 

0.0106002 0.350534 99.6788 
0.0108002 0.350910 99.6826 
0.0110002 0.351373 99.6864 

0.0112002 0.351921 99.6900 

0.0114002 0.352549 99.6935 

0.0116002 0.353252 99.6969 

0.0118002 0.354027 99.7001 

0.0120002 0.354870 99.7033 

0.0122002 0.355778 99.7063 

0.0124002 0.356747 99.7093 

0.0126002 0.357776 99.7121 

0.0128002 0.358860 99.7149 

0.0130002 0.359997 99.7175 

0.0132002 0.361186 99.7201 
0.0134002 0.362423 99.7227 
0.0136002 0.363707 99.7251 

0.0138001 0.365035 99.7275 

0.0140001 0.366405 99.7298 

0.0142001 0.367816 99.7320 

0.0144001 0.369267 99.7342 

0.0146001 0.370755 99.7363 

0.0148001 0.372279 99.7384 
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Figure 2. A plot of total cost against pot thickness. 

 
 
 
thickness, presented in Figure 2, the turning point was 
found to correspond with the least value of the total cost 
function. This value is therefore taken as the minimum 
cost and the corresponding thickness (10.02 mm) 
adopted as the economic thickness of the clay pot. 
 
 
Conclusion 
 
The economic thickness of local fire clay cooking pots 
was found to be 0.01002 m for hemispherical pots of 
capacity 3.3523 × 10

-8
 m

3
 for any food item with a 

maximum boiling temperature of 100°C. 
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