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In this study, we first modeled laminar mixed convection inside rectangular enclosure with moving wall 
and ‘aspect ratio’ = 10 and then the results were compared with other investigators. After showing verity 

of results, we continued our investigation with turbulent flow using standard ε−k , RNG ε−k  and RSM 
models for Richardson numbers 0.1 to 10 and Ra = 6 × 10

9
. The results showed that the turbulence 

intensity depends on the position. For example, in vertical walls and boundary layer, the flow was 
laminar and flow in center of enclosure was turbulent. In addition, the results indicated that as the 
Richardson number increased, the velocity changed happen more frequently in the vertical direction 
and fluctuations were seen more and more. Another conclusion to be drawn was that at natural 
convections, the Reynolds stresses curves gone under too many fluctuations all of which was the great 
impact of the ‘buoyancy force’ and the properties of ‘natural convection’ within this Richardson number. 
The last and foremost deduction was that at the ‘turbulence flow’, ‘heat transfer’ was generally greater 
than laminar flow and that was due to high level of mixing at the first. 
 
Key words: Reynolds stress, Richardson number, Boussinesq approximation, mixed convection heat transfer, 
turbulent intensity. 

 
 
INTRODUCTION 
 

Mixed convection heat transfer is a phenomenon in which 
both natural and forced convections happen. Mixed 
convection heat transfer takes place either when 
buoyancy effect matters in a forced flow or when there 
are sizable effects of forced flow in a buoyancy flow. 
Dimensionless numbers to determine this type of flow are 
as follows: Grashof number (Gr = g.β.∆T.L

3
/ v

2
), 

Reynolds number (Re = ρ.v.l/µ), Rayleigh number (Ra = 
Gr.Pr), Prandtl number (Pr = Cp.µ/K) and Richardson 
number (Ri). If  you  divide  natural  convection  effect  by  
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forced convection effect, it yields to Richardson number 
and it is written as such: Ri = Gr/Re

2
. When it comes to 

limits and we have Ri→0 or Ri→∞, forced convection and 
natural convection become dominant heat transfers 
respectively (Safaiy and Goshayeshi, 2011). Mixed 
convection heat transfer is a fundamentally significant 
heat transfer mechanism that occurs in selection 
industrial and technological applications. Fluid flow and 
heat transfer in rectangular or square cavities driven have 
been studied extensively in the literature. A review shows 
that there are two kinds of studies: one way includes the 
entry of hot (or cold) fluid from one side, passing 
isothermal walls and exit from the other side. In this case, 
we could evaluate and compare the forced convection 
effect caused by the  entry  and  exit  of  the  fluid.  Some  



 
 
 
 
scientists have applied thermal flux on the way fluid 
passes through the channel and then, they studied the 
effects of it. Among the studies, we can mention the ones 
done by Rahman et al. (2007), Saha et al. (2006, 2008). 
Another method to create mixed convections is to move 
enclosure walls in presence of hot (cold) fluid inside the 
enclosure. This creates shear stresses and provides 
thermal and hydrodynamic boundary layers in the fluid 
inside the enclosure and eventually creates forced 
convection in it. Numerous studies have been conducted 
in this field so far. We can mention the study done by 
(Oztop and Dagtekin, 2004) as an instance. They have 
studied a two-dimensional square shaped enclosure with 
vertical isothermal moving walls and insulated horizontal 
walls. In this work, different situations have been 
considered concerning the movement of vertical walls 
and 0.01≤Ri≤100 have been presupposed. The rate of 
heat transfer has also been expressed in the form of 
Nusselt numbers. The results of this work suggest that in 
low Richardson values, if the moving walls move in the 
opposite directions, heat transfer from enclosure is more 
than when walls slide convergent. 

Basak et al. (2009) studied the mixed convection flow 
inside a square enclosure with left and right cold walls, 
insulated moving upper wall and fixed lower hot wall by 
using finite element method. They suggested that by 
increasing Gr with Pr and Re fixed, recirculation power 
would improve. In 2007, Sharif (2007) studied the 
‘laminar mixed convection’ in inclined rectangular 
enclosures with aspect ratio of 10 by using Fluent 6. He 
let the Rayleigh number variable to be between 10

5
 to 10

7
 

and Reynolds number fixed to be 408.21. The fluid he 
used was water with Prandtl as 6 and the enclosure 
inclination angel to the horizon varied between 0° to 30°. 
The mentioned enclosure had hot moving upper wall, 
cold fixed lower wall and adiabatic left and right walls. His 
study showed that local Nusselt number heightened by 
increasing the enclosure's inclination angel. It is 
undeniable that the advancement in different sciences in 
the last decade has resulted in much subtle laboratory 
measuring tools and it is true that using of modern 
methods like parallel processing has enabled us to 
efficiently use numerical analysis methods. Yet analysis 
of turbulent flows inside the enclosure is still a 
challenging topic in fluid mechanics; that is because in 
experimental situation, it is too difficult to reach ideal 
adiabatic wall condition. It is at the same time difficult to 
measure low speeds in enclosure boundary layers 
through using present sensors and probes. Even 
numerically, although numerical methods like DES, LES 
and DNS have been subject to dramatic advancements, it 
is still nearly impossible to predict the stratification in the 
core of the enclosure. Non-linearity and coupling of the 
predominant equations have contributed into making the 
calculations complicated and time consuming. That is 
while in designing large enclosures, Rayleigh number is 
usually large and so, the flow  nature  is  turbulent (Safaiy  
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and Goshayeshi, 2010). 

The aim of this study is to investigate mixed convection 
heat transfer inside the rectangular enclosure, the result 
will be compared with other investigator such as Sharif 
(2007) and then we continue our investigation with using 

Standard ε−k , RNG ε−k  and RSM Turbulent models. 

 
 
MATHEMATICAL MODEL 
 
For modeling the investigated flow, we solve continuity, 
momentum, energy and turbulent equations. The Prandtl 
number of our fluid that is water, assumed 6 and k, µ  

and Cp values are constant. In addition, the density is 
calculated while using Boussinesq approximation (Bejan, 
2004). The governing equations are (Safaiy and 
Goshayeshi, 2011): 
 
Continuity equation: 
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X and Y momentum equations: 
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Energy equation: 
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The k-ε model is the most famous 2-equation model. This 
is because it is easy to understand and applied in 
programming. In k-ε Eddy-viscosity models, the turbulent 
field is expressed to be related to two variables: 
Turbulent kinetic energy transport equation: 
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Dissipation of ‘turbulent kinetic energy transport’ 
equation: 
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The Eddy viscosity from Prandtl-Kolmogorov relation is 
achieved: 
 

ε
µµ

2
k

fCvt =                                                                  (7) 

 
The ‘stress production term’, Pk, can also be achieved by: 
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The ‘buoyancy term’, Gk can be expressed as follows: 
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Also for term of εR  in ε  equation, we have: 
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The major difference between standard ε−k  and RNG 

ε−k  is in the term of εR  in dissipation of turbulent 

kinetic energy transport equation. In the other words, the 

RNG ε−k  model is the same with standard ε−k , but the 

standard ε−k  can be achieved by experimental but the 

Prandtl number has improved for turbulent RNG ε−k  

model. In the RSM model, calculation of each Reynolds 
stresses terms is done with the aid of a transport 
equation. To solve a two-dimensional problem we need 
to solve four transport equations. Otherwise, if you resort 
to a 2-equation model such as k-ε, you should only 
suffice to finding just two of the unknown variables with a 
good approximation and the rest will be calculated less 
precisely. This model could include many of complex 
effects of flows in the nature and the engineering. Among 
them we can point out to the natural  convection  flows  or  

 
 
 
 
buoyancy flows both of which we can be efficiently 
modeled using this model. For RSM model, the 
turbulence equations are as follows: Reynolds stress 
transport equations: 
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That: 
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( )ijjiij fufuG ′′+′′= : Production (by body force) 

 

ij

i

j

j

i
ij S

P

x

u

x

uP

ρρ
φ

′
=















∂

′∂
+

∂

′∂′
=

2
: Pressure-strain correlation 

 

k

j

k

i
ij

x

u

x

u
v

∂

′∂

∂

′∂
= 2ε : Dissipation 

 
Turbulent kinetic energy transport equation: 
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Except the terms convection and production in Reynolds 
stress transport equation, all the other terms have 
contributed in introducing a series of correlations, which 
have to be identified according to some known and 
unknown quantities so that the equation system can be 
configured. Diffusion term: 
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Redistribution term: 
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Table 1. Coefficients for RNG k-ε turbulent model. 
 

µC  0.0845 

kσ  1 

εσ  1.3 

C1 1.42 

C2 1.68 

0η  4.38 

β  0.012 

K 0.41 

 
 
 
 

Table 2. Coefficients for standard k-ε turbulent 
model. 
 

µC
 0.0845 

kσ
 1 

εσ
 1.3 

C1 1.42 

C2 1.68 
 
 
 

Table 3. Coefficients for RSM turbulent 
model. 
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Cs 0.22 

C1 1.8 

C2 0.6 

C3 2.5 
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yn is the distance from the wall. The role of terms Φij

(2)
, 

Φij
(1)

 is to return isotropy (or terminating anisotropic flow 
with distributing kinetic energy of Reynolds huge stresses 
among the stresses of smaller size). The terms Φij

(1)
 and 

Φij
(2)

 are called "return to isotropy" and "isotropization of 
production", respectively. The term Φij

(w)
 is named as 

"wall reflection term". For dissipation term, we have: 
 

εδε ijij
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2
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The constants of the aforementioned equations can be 
found in Tables 1, 2 and 3. For solving the governing 
equations we use the ‘finite volume method’ which has 
been explains in Patankar (2003) and Safaiy (2009). This 
method is a specific case of residual weighting methods. 
In this approach, the computational field is divided to 
some control volumes in a way that a control volume 
surrounds each node and control volumes have no 
volumes in common. Then, the differential equation is 
integrated on each control volume. Profiles in pieces that 
show changes (of a certain quantity like temperature, 
velocity, etc.) among the nodes are used to calculate the 
integrals. The result is discretization equation, which 
includes quantities for a group of nodes (Safaiy and 
Goshayeshi, 2011). The advantage of this method is high 
accuracy even in low nodes. The Ra is changing from 10

5
 

to 10
7
 for laminar flow and 6 × 10

9
 for turbulent flow. 

Figure 1 is the schematic of this study. In these 
conditions, stream function is: 
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MESH INDEPENDENCY 
 
Meshes that designed to cover control volumes are 
square meshes provided on physical domain with 
different distances in order to reach independence. The 
mentioned mesh-independence for each turbulence 
model and any different Ri has been separately 
calculated. Tables 4 to 6 show some meshes used in this 
study. 
 
 

RESULTS 
 
In this study, we investigate the mixed convection inside 
the rectangular enclosure with moving wall. The main 
dimensionless parameter in this investigation is Richardson  
number that varies from 0.1 to 10. Figures 2 to 5 show 
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Figure 1. Schematic of the problem. 

 
 
 

Table 4. Some meshes used for solving the problem with standard k-ε model. 
 

Ri Standard k-ε 

Ri = 0.1 570 × 57 1010 × 101 1610 × 161 

Ri = 1 680 × 68 1350 × 135 2010 × 201 

Ri = 10 750 × 75 1500 × 150 2250 × 225 
 

 
 
 
 

Table 5. Some meshes used for solving the problem with RNG k-ε model. 
 

Ri RNG k-ε 

Ri = 0.1 610 × 61 1190 × 119 1810 × 181 

Ri = 1 810 × 81 1600 × 160 2410 × 241 

Ri = 10 900 × 90 1750 × 175 2700 × 270 

 
 
 

Table 6. Some meshes used for solving the problem with RSM model. 
 

Ri RSM 

Ri = 0.1 750 × 75 1190 × 119 2010 × 201 

Ri = 1 900 × 90 1600 × 160 2700 × 270 

Ri =10 1050 × 105 1800 × 180 3000 × 300 

 
 
 

 
 

Figure 2. Contours of Stream Function for 
510=Ra  and 1.0=Ri . 

 
 
 

 
 

Figure 3. Contours of Isotherm Lines for 
510=Ra  and 1.0=Ri . 
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Figure 4. Contours of stream function for 
610=Ra  and 1=Ri . 

 
 
 

 
 

Figure 5. Contours of isotherm lines for 
610=Ra  and 1=Ri . 
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Figure 6. Turbulent intensity diagram at y/H = 0.5 and different turbulent models. 

 
 
 
the ‘stream function’ and ‘isotherm line’ for laminar flow 
and Figure 17 shows changing of Local Nusselt number 
in cold and hot walls in Ri = 1 at comparison of result of 
Sharif (2007). Good agreement was found in contours 
and diagrams. Turbulence intensity (Figure 6) is defined 
by fluctuation velocity (U’) divided by average flow 
velocity (Uave). 
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Turbulence intensities are considered small if less than 
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Figure 7. Shear stress curve on the hot upper wall for different Richardson numbers and 
turbulent models. 

 
 
 
1% and big if more than 10%. The figure well 
demonstrates that the ‘turbulence intensity’ is relatively 
low inside the enclosure. In addition, the curve shows 
that the minimum value of turbulence intensity 
corresponds to the left wall and its maximum value 
happens inside the boundary layer on the right wall.  
Although the turbulence intensity is maximum at Ri = 0.1, 
there occurs maximum fluctuation and minimum value for 
turbulence intensity at Ri = 10. The reason is the 
existence of small but numerous eddies at the state of 
natural convection. Whilst at forced convection, one giant 
and strength full eddy occupies the whole enclosure. 
Figure 7 demonstrate the Shear stress curve on the hot 
upper wall. As seen from the curve, the shear stress 
value is rather steady in every Richardson except at both 
extremes near the left and the right walls. It is also 
understood from the curve that the shear stress is 
minimum at Ri = 10 and maximum at Ri = 10. In a way, 
that at natural convection, the stress neighbors zero. The 
UU, VV, WW and UV Reynolds stresses are shown in 
various Richardson's and for the RSM turbulent model. It 

is obvious from Figures 8 to 11 that the UU, VV and WW 
curves bear a similarity in shape and have the same 
maximum points. However, the UV curve stands out. It is 
also evident that the curves 8 to 10 at Ri = 0.1 grow 
rather exponentially from the left wall until they reach to 
their peak value in x~8.5 m. Then, decline down to the 
footsteps of the boundary layer after which they increase 
up to the vicinity of the right wall. On the right wall, again 
the Reynolds stresses fall to zero due to validity of the ‘no 
slip condition’. For the mixed convection, the Reynolds 
stresses are all –except at some points- somewhat near 
zero forming a straight line on the curve. It only rises 
slightly at the footsteps of the boundary layer of the right 
wall and falls again to zero on the wall itself. For Ri = 10, 
though the stresses are less stable as the Reynolds 
stresses curve fluctuates. This is due to both the impacts 
of Buoyancy force and to the properties of ‘natural 
convection’ at this Richardson. The case is different for 
UV stress. 

At Ri = 0.1, the curve plummets rather exponentially 
from zero until it attains the minimum value at x~8.4.  
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Figure 8. UU Reynolds stress diagram at y/H = 0.5. 
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Figure 9. VV Reynolds stress diagram at y/H = 0.5. 
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Figure 10. WW Reynolds stress diagram at y/H = 0.5. 
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Figure 11. UV Reynolds stress diagram at y/H = 0.5. 



Safaei et al.          4835 
 
 
 

 

Y
 v

e
lo

c
it

y
 (

m
/s

) 

Position (m) 
 

 
Figure 12. Vertical velocity diagram at y/H = 0.5. 

 
 
 
From there after it goes, upwards to touch the maximum 
value in the cold wall is round about it. The UV stress is 
again zero on the cold wall itself. At Ri = 1, the UV 
Reynolds stress, except at some points, forms a straight 
line with values near zero. The aforementioned values 
are negative at the interval between 6.5 and 9 m. At Ri = 
10, the UV Reynolds stress has inherent vacillating 
characteristics, yet the significance of the fluctuations are 
much less than the fluctuations of UU, VV and WW 
Reynolds stresses. The diagram of V in terms of the 
position at the mid height is drawn in Figure 12 for a 
variety of Richardson numbers and turbulence models. 
As seen in the figure, at Ri = 0.1, the size of V barely 
changes from zero. Only in two small areas on the two 
end of the wall where the curve is subject to a maximum 
and minimum. At Ri = 10, the velocity is no more equal to 
zero except at a number of points. Furthermore, the ‘max 
and min’ values of both ends undergo a short fall. Also 
the shape of the curve at this state and between x = 7.3 
m and x = 9.3 m is subject to some upward leaps. 
Therefore, it can be inferred that as Ri grows, the 
changes in velocity grow and there is more fluctuation. 
Such happening is justifiable according to the 
streamlines. The upper wall’s speed downturn and the 
consequent raise in Ri initiates the formation of some 
separate vortexes inside the enclosure; something that 
explains the abundant fluctuations of the V profile. This is 
even truer at Ri = 10. Figure 13 depicts the Local Nusselt 
number curve on the hot upper wall for different 

Richardson numbers and turbulence models. As it is 
observed from the figure, the maximum local Nusselt is 
around x = 0, but as x grows to the end of the wall, the 
value declines to zero. The local Nusselt number drops 
sharply with a high gradient in the beginning but it 
continues with a much lower one. If we raise the Ri, -Ri = 
10- the Nusselt number’s max value drops significantly 
and as X grows, it falls again but with a difference which 
is the curve takes some upward leaps-but still keeps its 
decreasing path- along the wall before it reaches its 
minimum at the end of the wall. 

Also it is clear from the aforementioned chart that the 
Nusselt number enjoys maximum value under the forced 
convection and minimum value under the natural 
convection, all of which shows that under equal 
circumstances forced convection has a higher heat 
transfer rate. It can also be said that due to a greater 
mixing at the turbulent state, the heat transfer rate is 
generally higher than the laminar state. Figure 18 
represents the turbulent kinetic energy curve (K) on the 
top and bottom walls at Ri = 1 and according to Standard 
K turbulence model. Apparently this energy is quite 
symmetrical on the hot and cold planes and thereby the K 
enjoys a balanced value at Ri = 1. Figure 14 is a Contour 
related to this curve bearing the proof to the 
aforementioned words. This is not true at Ri = 0.1 though, 
as Figures 15 and 16 show. Due to the impact of the 
upper wall’s velocity, the turbulent kinetic energy tends to 
the left side of the hot wall where the velocity enters the 
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Position (m)  
 
Figure 13. Local Nusselt number diagram on the hot upper wall for different 
Richardson numbers. 

 
 
 

 
 

Figure 14. Contour of turbulent kinetic energy at Ri = 1 and for ε−k  Standard turbulent model. 

 
 
 

 
 

Figure 15. Contour of turbulent kinetic energy at Ri = 0.1 and for RNG ε−k  turbulent model. 

 
 
 

 
 

Figure 16. Contour of turbulent kinetic energy at Ri = 0.1 and for standard ε−k  turbulent 

model. 
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Figure 17. Variation of the local Nusselt number along the hot and cold surfaces, 
Laminar flow and Ri = 1. 

 
 
 

 H (m)  
 

Figure 18. Diagram of turbulent kinetic energy at Ri = 1, on the top and bottom walls and for standard ε−k  

turbulent model. 

 
 
 
enclosure. This means that the K is maximum at the 
entrance of velocity to the enclosure. 
 
 
CONCLUSIONS 
 
In this study, turbulence mixed convection in water-filled 
enclosures was ‘modeling numerically’ by finite volume 
method for different Richardson numbers. Initially and to 
prove the validity of the results, stream function and 

temperature contours have been compared to the laminar 
results driven from the research (Sharif, 2007) and after 
the accuracy of the calculations is attested, the case is 

solved with RNG ε−k , standard ε−k  and RSM 

turbulence models. The results testify that: 
 
i) The value of turbulence intensity is maximum under 
forced convection and it bears the most fluctuations and 
the least value under natural convection. 
ii) With   Richardson  number  growing,  velocity  variance  
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grows vertically and fluctuations are seen in it. 
iii) At Ri = 10, the Reynolds stresses curve has numerous 
fluctuations all of which is the impact of the ‘buoyancy 
force’ and the properties of the natural convection at this 
Richardson. 
iv) At the turbulent state, due to a greater mixing, the heat 
transfer rate is generally higher than the laminar state. 
v) The Nusselt number enjoys maximum value under the 
forced convection and minimum value under the natural 
convection. 

vi) Standard ε−k , RNG ε−k  and RSM have good 

agreement between their results, although RSM turbulent 
model is more accurate and time consuming. 
 
Nomenclature: vu, , velocities in x and y directions (m/s); 

yx, , Cartesian coordinates (m); P , pressure (Pa); T , 

temperature (K); t, time (s); g, gravitational acceleration 
(m/s

2
); K, turbulent kinetic energy transport (m

2
/s

2
); k , 

thermal conductivity (W/m.K); Re, Reynolds number; Ri, 
Richardson number; Gr, Grashof number; Nu, Nusselt 
number; Pr, Prandtl number; Ra, Rayleigh number. 
 
Greek symbols: ε, dissipation of turbulent kinetic energy 

transport (m
2
/s

3
); tυ , turbulent kinematics viscosity 

(m
2
/s); Tσ , turbulent thermal diffusivity (m

2
/s); β , 

thermal expansion coefficient (1/K); ρ , density (Kg/m
3
); 

υ , kinematics viscosity (m
2
/s]). 

 
Subscripts: h, hot wall; c, cold wall; m, mean; lid, Lid. 
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