

Scientific Research and Essays Vol. 6(2), pp. 394-405, 18 January, 2011
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE10.896
ISSN 1992-2248 ©2011 Academic Journals

Full Length Research Paper

A genetic algorithm approach for finding the shortest
driving time on mobile devices

Ismail Rakip Karas1* and Umit Atila2

1
Computer Engineering Department, Faculty of Engineering, Karabük University, Baliklarkayasi Mevkii,

78050, Karabuk, Turkey.
2
Directorate of Computer Center, Gazi University, Teknikokullar, Besevler, 06500, Ankara, Turkey.

Accepted 24 November, 2010

Recently, with the increasing interest in using handheld devices, the application of navigation systems
that provide driving information to the drivers has become widespread in daily life. An efficient route
guidance system should consider the influential factors of traffic flow such as traffic density and
allowable velocity limits of the roads. As the number of influential factors and amount of nodes in road
network increase, the computational cost increases. On navigation systems, using handheld devices
with limited processing speed and memory capacity, it is not feasible to find the exact optimal solution in
real-time for the road networks with excessive number of nodes using deterministic methods such as
Dijkstra algorithm. This paper proposes a Genetic Algorithm approach applied to a route guidance
system to find the shortest driving time. Constant length chromosomes have been used for encoding the
problem. It was found that the mutation operator proposed in this algorithm provided great contribution
to achieve optimum solution by maintaining the genetic diversity. The efficiency of the genetic algorithm
was tested by applying it on the networks with different sizes.

Key words: Genetic algorithm, navigation, route guidance, optimization, shortest path, shortest driving time.

INTRODUCTION

The use of navigation systems that provide driving
information to the drivers has become widespread in daily
life. The logic behind this kind of systems provides the
users with the shortest path between beginning and end
points. The downside of the current navigation systems
ignores the important decision variables including the
traffic density and allowable velocity limits of the roads.
However, the shortest path suggested by a system
cannot be the optimal route in every case, if these
variables are not being considered. Therefore, an ideal
navigation system should not only consider the distances,
but also the traffic density and allowable velocity limits
between intersection points in real-time.

The shortest path problem

The shortest path problem is to find the shortest path

*Corresponding author. E-mail: ismail.karas@karabuk.edu.tr.
Tel: +90370 4332021 (Ext. 188). Fax: +90370 4333290.

between two vertices of a directed graph where each arc
has been weighted. The shortest path is considered as
one of the most fundamental network optimization
problems. This problem comes up in practice and arises
as a sub problem in many network optimization
algorithms (Xu et al., 2007). As a brief explanation, let G
= (N, A) be a simple directed graph, where N is the set of
the nodes, of cardinality n, and A is the set of the arcs, of
cardinality m.

Let c: A → R be a function which assigns a cost cij to

each (i, j) ∈ A. Given a root r ∈ N, the problem of the
shortest path tree (SPT) is seen in finding a directed tree
T such that the (only) path from r to i in T is one of the

shortest paths from r to i in G, and for each i ∈ N which is
connected to r, a directed path from r to i exists
(Pallottino and Grazia, 1996). The computation of the
shortest paths is an important task in network analysis
and transportation related analysis. One of the most
popular algorithm is the conceived Dijkstra's algorithm,
which solves the shortest path problem in O (n

2
) time on

a graph with n number of nodes and positive edge
weights (Dijkstra, 1959).

Genetic algorithm

Deterministic methods used by researchers from all over
the world may not reach the solution for the nonlinear
problems and they are subject to excessive solution time
as the number of parameters increase. These disadvan-
tages direct the researchers to use other methods such
as heuristic techniques. Unlike the deterministic methods,
heuristic techniques do not guarantee optimal solutions,
but they can find good/near optimal solutions within a
reasonable time (Aruga et al., 2005). Genetic algorithm
(GA) is a heuristic technique developed by John Holland
in 1975 based on genetic and natural selection principles
(Holland, 1975). Goldberg (1989) proved that genetic
algorithm is one of the powerful search methods in both
theory and practice. Genetic algorithm starts with
generating an initial population by random selection of
the individuals named chromosomes that each encodes
the solution of the problem. Each chromosome that
encodes a candidate solution of the problem is made with
a combination of significant genes (Whitley, 1994).

The genetic algorithm founded is based on two
fundamental evolutionary concepts:

1. A Darwinian notion of fitness, which describes an
individual’s ability to survive.
2. Genetic operators, which determine the next
generation’s genetic makeup based on the current
generation (De Jong, 1988).

Conventionally, genetic operations are achieved through
crossover and mutation operators. The crossover
operator generates new individuals called offspring, by
recombining the genetic material of two individuals,
deemed as the parents. Individuals with higher fitness
scores are selected with greater probability to be parents
and ‘‘pass on’’ their genes to the next generation. This is
known as the fitness proportional selection method.
Crossovers allow exploitation of successful subspaces of
the solution space. The mutation operator randomly
alters one or more genes in an individual. Mutations add
genetic diversity to the population, in that through
mutation, GAs can search previously unexplored sections
of the solution space. Consequently, mutations ensure

that the entire search space is connected (Cedric and
Pawan, 2003).

In the genetic algorithm, the initial population is
evaluated on the optimal solution by crossover and
mutation operations. The first step starts with obtaining
the values that the fitness function returns for each
chromosome and selects the best chromosomes of the
initial population, which will form the individuals of the
next generation. The parents selected for regeneration
are replaced by crossover operation and changed by
mutation operation to produce child chromosomes. The
chromosomes that are not passed through crossover or
mutation and the newly generated child chromosomes

Karas and Atila 395

form a new population (Holland, 1975; Whitley, 1994).
The generation of new populations is repeated for a
defined number of times in advance or is being continued
until there are no better chromosomes (Figure 1).

In the last decade, there have been a number of
approaches used by GA in the solution of the shortest
path problems. Munemoto et al. (1998) implemented a
GA, which is practically feasible on the wired or wireless
network environment. For encoding the problem, they
used chromosomes with variable lengths. They defined
crossing points as the loci (positions of nodes in a route),
where identical genes (nodes) in both chromosomes
(routes) are found at the same location and at the
selected location of the crossing point, randomly.

Inagaki et al. (1999) proposed an algorithm with fixed
length chromosomes. The chromosomes in the algorithm
are sequences of integers and each gene represents a
node ID that is selected randomly from the set of nodes
connected with the node corresponding to its locus
number. In the crossover phase, one of the genes (from
two parent chromosomes) is selected at the locus of the
starting node ID and put in the same locus of an
offspring. One of the genes is then selected randomly at
the locus of the previously chosen gene’s number. This
process is continued until the destination node is
reached.

Ahn and Ramakrishna (2002) reported that the
algorithm proposed by Munemoto required a relatively
large population for an optimal solution due to the con-
straints on the crossover mechanism. Furthermore, it was
reported that this was not suitable for large networks or
real-time communications, since Dijkstra’s algorithm had
a prohibitive computational cost. On the other hand, they
suggested that the algorithm proposed by Inagaki et al.
(1999) required a large population to attain an optimal or
high quality of solution due to its inconsistent crossover
mechanism. Some offspring might generate new chromo-
somes that resemble the initial chromosomes in fitness,
thereby retarding the process of evolution. Ahn and
Ramakrishna (2002) proposed a GA for solving the
shortest path problem that uses chromosomes with
variable lengths. A chromosome (routing path) encodes
the problem by listing node IDs from its source node to its
destination node based on the topological information
database (routing table) of the network. The gene of the
first locus is always reserved for the source node and the
gene of the second locus is randomly selected from the
nodes connected with the source node. A chosen node is
removed from the topological information database to
prevent the node from being selected twice, thereby
avoiding loops in the path. It is possible that the algorithm
encounters a node for which all of the neighboring nodes
have already been visited.

In this case, the defective chromosome is refreshed
and reinitialized. In the crossover phase, a set of node
pairs, which is commonly included in the two (chosen)
chromosomes (but without positional consistency) is

396 Sci. Res. Essays

Figure 1. Steps of genetic algorithm.

formed in the first phase. Then, one pair is randomly
chosen and the locus of each node becomes a crossing
site of each chromosome. Each partial route is
exchanged and assembled and thus, two new routes are
produced eventually. In the mutation phase, the proposed
genetic algorithm generates an alternative partial-route
from the mutation node to the destination node using
topological database. After crossover and mutation
phases, some repair functions are taken to avoid
infeasible chromosomes. Ahn and Ramakrishna (2002)
worked on networks with 15 to 50 nodes through
randomly assigned link costs. The quality results of the
proposed algorithm were compared with the algorithms of
Munemoto et al. (1998) and Inagaki et al. (1999), which
indicated that the solution quality of the proposed
algorithm was much higher than the others. Ahn and
Ramakrishna (2002) showed that as the number of the
nodes becomes more than 20, the computing time by
adopting the GA becomes less than that when the

Djikstra algorithm is adopted.
Hasan et al. (2007) produced a different solution for the

shortest path problem using GA. They employed a
chromosome-coding scheme using node indices and
distance weights. The complete chromosome of a
candidate was divided into node fields, which were equal
to the number of nodes in the network. Each node was
represented by three genes. The first value represents
the previous array in the classical Dijkstra’s algorithm,
while the second value is the node number itself and the
third value is used to store the cost of the path from the
source to the target node. The first node of every
candidate path is the source node. Other entries are
random nodes, covering all other nodes in the graph, with
random predecessors, preventing self-edge nodes. They
proposed different crossover and mutation methods,
which are appropriate in encoding their chromosomes.
They tested their proposed algorithm on networks with
10, 20, 50 and 100 routers, and the results demonstrated

consistent and speedy convergence for the tested
scenarios.

Lin et al. (2009) designed a route guidance system
based on the genetic algorithm of Ahn and Ramakrishna
(2002) for finding the shortest driving time which is their
application on virtual maps of square matrix with
appropriate to be used on handheld devices. They tested
sizes of 4 x 4, 8 x 8, 16 x 16 and 32 x 32, and on a real
map with 8039 nodes. They adopted both Dijkstra and
GA for the shortest driving time, but they only reported
the results of GA as the memory required by the Dijkstra
algorithm went beyond the limited memory of the portable
device. As a result, they reported that the shortest driving
time approach, which can be computed by the GA on
handheld device, was feasible to be used in the route
guidance system.

Objectives and organization

Increasing the number of nodes in a network, and the
parameters considered in calculating the shortest driving
time, increases the resource consumption and compu-
tational cost of the handheld device with limited
processing speed and memory capacity. To overtake
these problems, heuristic algorithms with approximate
solutions can be used rather than deterministic
algorithms with exact solutions. The GA is one of them.

This study presents a route guidance system and a GA
approach applied on this routing system to find the
shortest driving time. The proposed guidance system
provides the driving advice for the drivers considering not
only the distances, but also the traffic density and the
allowable velocity limits of the roads. Thus, it computes
the shortest driving time instead of the shortest path.

For encoding the problem, chromosomes with constant
length have been used. The length of the chromosome is
the number of nodes on the network. The genes of a
chromosome represent nodes included in a path between
a designated pair of source and destination nodes.

The crossover used in the algorithm is identical to the
method proposed by Ahn and Ramakrishna (2002)
except a difference on implementation. To produce the
initial population DFS (depth of first search), the algorithm
was reorganized to make a random selection of the
nodes from source to destination and the same approach
was also used in the mutation phase to produce alter-
native paths from the mutation point to the destination
point.

The remaining parts of this paper is organized as
follows: a description of the shortest driving time problem
and the genetic algorithm proposed to solve this problem;
the basic design of the proposed route guidance system;
the experimental results of the genetic algorithm obtained
from the networks with different sizes; and the general

Karas and Atila 397

conclusions of the study.

THE PROPOSED GENETIC ALGORITHM FOR THE
ROUTE GUIDANCE SYSTEM

Shortest driving time

It is possible to describe this network with a directed
graph

G = (N,

A) where N is the set of the nodes of cardinality n, and A
is the set of the arcs of cardinality m. There is a cost Tij

for each (i, j) ∈ A.
These costs are defined in a cost matrix C = [Tij].

Source and destination nodes are respectively shown as
B and V. The connection information of the nodes with
each other is described in an adjacency matrix Iij shown
as follows (Ahn and Ramakrishna, 2002):

In the shortest driving time problem, the cost which is Tij
defines the driving time from node i to node j. Using these
definitions, the shortest driving time problem can be
formulated as a combinatorial optimization problem,
minimizing the objective function as follows (Ahn and
Ramakrishna, 2002):

Minimize (1)

subject to (2)

and (3)

In the shortest driving time problem, cost Tij is calculated
as follows:

dij = distance from node i to node j;
vij = allowable velocity limit from node i to node j;
yij = traffic density from node i to node j.

On calculation of the driving time from node i to node
j,allowable velocity limits and traffic densities from node i

398 Sci. Res. Essays

Figure 2. Chromosome, encoding a routing path.

to node j are considered. In this case, driving time can be
formulated as follows:

 (4)

Genetic representation

In the chromosome structure of the proposed GA, node
numbers of the route from source to destination are
stored as positive integer numbers. Each locus of the
chromosome represents an order of a node in a routing
path. The chromosome length is static, and the total
number of nodes N is the length of each chromosome in
the network. The node numbers that represent the
routing path from source (B) to destination (V) are
encoded in the chromosome. If the node number of the
solution is smaller than the total node number N, unused
genes of the chromosome are assigned by a zero value.
The chromosome encoding the proposed GA is shown in
Figure 2.

Initialization of the population

To produce the initial population of the DFS (depth of first
search), the algorithm is reorganized to produce random
paths from source to destination. The pseudo code for
population initialization is as follows:

{Step 1: Store the source node in the gene of the first
locus of the chromosome.
Step 2: Randomly select a node among the nodes that
the current node is directly connected to and not visited
before.
Step 3: If there is no node to select, cancel the
chromosome and go to Step 1.
Step 4: Store the selected chromosome in the gene of
the next locus of the chromosome.
Step 5: If the selected node is not the destination node,
go to Step2.
Step 6: If the selected node is the destination node, store
the node in the gene of the next locus of the
chromosome.}

Fitness function

The fitness function is the object to be optimized. The
fitness function must accurately measure the quality of
the chromosome in the population and must have
computational efficiency; therefore, the fitness function
has a critical importance. The cost of the fitness function
described by Ahn and Ramakrishna (2002) rearranged
according to the formula given in “the shortest driving
time” to compute the shortest driving time is as follows:

fi: fitness function of the i th chromosome;
gi (j): j th gene of the i th chromosome;
 l: length of the chromosome;
D: distance between two nodes;

V: allowable velocity limit between two nodes;
Y: traffic density between two nodes.

 (5)

Selection (reproduction) of a new generation

The selection (reproduction) operator is intended to
improve the average quality of the population by giving
the high-quality chromosomes a better chance to be
copied into the next generation. In this study, roulette
wheel selection method, which is a proportionate
selection method that picks out chromosomes based on
their fitness values relative to the fitness of the other
chromosomes in the population, was performed. In
roulette wheel selection method, the probability (p) of the
n number of chromosomes with the fitness function of f is
calculated. However, the probability of the k th
chromosome is calculated as follows:

 (6)

Subsequently, the cumulative sum of the probabilities of
each chromosome in the population is calculated. The
cumulative sum for the k th chromosome is calculated as
follows:

 (7)

After that, a random number between 0 and 1 is
generated, and the particular cumulative sum that has the
number is searched. If the generated random number is
equal or less than the first cumulative value, the first
chromosome is passed on to the new generation directly.
Otherwise, the chromosome with greater cumulative sum
is passed on to the new generation. This process is
continued as population size increases.

Crossover

Crossover operation is applied to obtain better chromo-
somes. The crossover used in the proposed algorithm is
identical to the method proposed by Ahn and
Ramakrishna (2002), except the difference in

Karas and Atila 399

implementation. Ahn and Ramakrishna (2002) searched
the same nodes on two chromosomes in crossover
toindicate the potential crossover points, and thus, select
one of the points randomly among them. In the first-
matched gene search method proposed in this study, the
first genes matched on two chromosomes as crossover
points were selected. The difference of the crossover
phase used in this study from the classical crossover is
that crossover points do not have to be in the same locus
of chromosomes. The crossover points may be different
for each parent chromosomes in the crossover phase, in
that the crossover is done in a loop that is repeated as a
number of chromosomes. At each cycle of the loop, a
random number between 0 and 1 is generated and
checked if it is smaller than the crossover rate. If so, two
chromosomes from the population are randomly selected
for crossover, otherwise, the loop is continued. In the end
of the crossover operation, two child chromosomes are
obtained. If these child chromosomes are infeasible, a
repair function for dealing with the infeasible
chromosomes is performed. The pseudo code used for
the crossover phase is as follows:

{Step 1 : Generate a random number between 0 and 1.
Step 2 : If the random number is smaller than the
crossover rate, go to Step 3, otherwise go to the next
cycle of the loop.
Step 3 : Select two chromosomes randomly from the
population.
Step 4 : Search for the matching gene starting from the
gene of the second locus of the first chromosome. Select
the locus numbers of the chromosomes in which the first
matched genes are included as crossover points.
Step 5 : Starting from the crossover point, exchange the
genes between the chromosomes.
Step 6 : If the newly generated chromosomes have
loops (feasible), remove the loops.
Step 7: Move the possible zero gene values, which may
occur after removing loops, to the highest locus numbers
of the chromosomes.
Step 8 : Pass the newly generated chromosomes to the
population.}

Steps of the crossover phase are shown in Figure 3.

Mutation

Mutation operation maintains the genetic diversity of the
population and changes the genes of the selected
chromosomes, thereby keeping them away from local
optima. In this study, mutation is done in a loop that is
repeated as a number of chromosomes. At each cycle of
the loop, a random number between 0 and 1 is generated
and checked if it is smaller than the mutation rate. If so, a

400 Sci. Res. Essays

Figure 3. Crossover phase.

chromosome from the population is randomly selected.
The mutation point of the chromosome is randomly
selected among the genes excluding the source and
destination points. A random path is generated using the
algorithm described in the “initialization of the population”
from the mutation node to the destination node. This
random generated path is exchanged with the genes
starting from the mutation point, due to the fact that the
mutated chromosome may be feasible. In this case, a
repair function for dealing with these infeasible
chromosomes is performed. The pseudo code used for
the mutation phase is as follows:

{Step 1: Generate a random number between 0 and 1.
Step 2: If the random number is smaller than the mutation
rate, go to Step 3, otherwise go to the next cycle of the
loop.
Step 3: Select a chromosome randomly from the
population.
Step 4: Select a random gene from the chromosome as
the mutation point, excluding the source and destination
genes.
Step 5: Generate a random path from the mutation node
to the destination node.
Step 6 : Exchange the generated path with the genes
starting from the mutation point.
Step 7: If the newly generated chromosomes have loops
(feasible), remove the loops.
Step 8: Move the possible zero gene values which may
occur after removing the loops to the highest locus

numbers of the chromosome.
Step 9: Pass the mutated chromosome to the
population.}

Steps of the mutation phase are shown in Figure 4.

Steps of the proposed genetic algorithm and
termination

To terminate the genetic algorithm, the fitness value of
the best chromosome on each generation is checked. If
the fitness value of the best chromosome obtained does
not change for 10 generations, the algorithm is stopped.
The pseudo code of the algorithm is a follows:

{Step 1: Initialize the crossover rate, mutation rate and
population size.
Step 2: Read the graph.
Step 3: Create the initial population.
Step 4: Calculate the fitness values of the chromosomes.
Step 5: Counter = 0, Generation = 1.
Step 6: The values are repeated in the infinite loop.
Step 7: Roulette wheel selection.
Step 8: Crossover on selected chromosomes.
Step 9: Mutation on selected chromosomes.
Step 10: Calculate the fitness values of the new
chromosomes.
Step 11: If (Generation>1 and minimum_fitness of the
value [Generation 1]== minimum_fitness_value

Karas and Atila 401

Figure 4. Mutation phase.

Figure 5. Route guidance system.

[Generation-2]) Counter++; If (Counter>10), stop loop.
Step 12: Counter = 0;
Step 13: Generation ++; Go to Step 7.}

Basic principles of the designed route guidance
system

The route guidance system proposed was recommended
to the drivers on the path with the least driving time from
source to destination by considering the parameters that
affect driving time, like traffic density and allowable
velocity, in real-time. The system had been designed for
navigation devices and for pocket computers that use
processor capacities even on large networks with

thousands of nodes. Real-time traffic conditions are
obtained from a XML service and this service produces
XML data based on the traffic condition periodically. Client
devices also take the data periodically. The maps that are
supposed to be used in the route guidance system
should be loaded on the device in advance and therefore,
only the traffic density should be obtained from the XML
service over internet connection in real-time. The route
guidance system is shown in Figure 5 and the traffic
density is simulated in the map loaded on the navigation
device. Colors of the roads on the map are based on the
final velocity limits of the roads calculated by considering
the traffic densities and allowable velocity limits of the
roads. The roads are divided into four groups according
to the final velocity limits. The color codes of these

402 Sci. Res. Essays

Table 1. Velocity ranges for coloring the map in the

route guidance system.

Colors Velocity limit ranges (km/h)

Red 0 to 30

Orange 30 to 50

Yellow 50 to 70

White 70 to 90

Figure 6. Map screen for the route guidance system.

groups are described in Table 1. A sample map loaded
on a pocket pc is shown in Figure 6, while the obtained
road after calculation is shown to users in blue color.

Table 2. Effect of the crossover rate.

Crossover
rate (%)

Average
generation number

Average difference
(%)

10 16 42

20 15 37

30 14 36

40 14 34

50 14 29

60 14 28

70 14 23

80 14 22

90 13 21

100 13 15

RESULTS

The route guidance system had been developed using
C# programming language. Windows Mobile 5.0 Pocket
PC R2 emulator installed on Microsoft Visual Studio 2008
is used on experiments. Random generated graphs with
10, 50, 250 and 1000 nodes are used. Distances, velocity
limits and updated traffic density obtained from XML
service are periodically generated randomly. The experi-
ments done 100 times for each case are given on the
result tables. On a graph with 50 nodes, when the
population size was 100 and the mutation rate was set to
be 5%, the average difference of the exact solution found
by Dijkstra's algorithm and the approximate solution
found by the proposed genetic algorithm was shown on
Table 2 in order to confirm the effect of the crossover
operator.

As given in Table 2, by increasing the crossover rate,
the average difference of the exact and approximate
solutions had decreased and no notable difference had
been seen on average generations. When the crossover
rate was 70%, the average difference was decreased
from 42 to 23% and after this point, it was not less than
15% even on 100% crossover rate. With the increase in
the crossover rate, the processor and memory
consumption increased. Thus, it is feasible to select the
crossover rate between ranges of 70 and 80%. On a
graph with 50 nodes, the average difference of the
exactsolution found by Dijkstra's algorithm and the
approximate solution found by the proposed genetic
algorithm was shown on Table 3 in order to show the
effect of the mutation operator when the population size
was 100 and the crossover rate was set to be 75%. As
given in Table 3, the algorithm, found in the approximate
solutions with average difference between the ranges of
2 and 5%, started from the mutation rate of 30%.
Variation on the mutation rate affected the average

Karas and Atila 403

Table 3. Effect of the mutation rate.

Mutation rate (%) Average generation number Average difference (%)

1 20 71

5 19 34

10 18 23

20 18 12

30 17 5

40 19 4

50 20 2

60 18 2

70 18 2

80 19 2

90 20 2

100 20 2

Table 4. Average generations to find the optimum path.

Number of nodes

10 50 250 1000

Population size

30 17.05 19.43 33.09 36.4

50 14.16 19.41 30.57 33.2

100 12.45 16.13 27.53 28.2

200 12.01 13.22 25.24 27.6

400 12 12.21 21.37 23.43

800 12 12.01 18.14 20.12

difference rather than the average generations. By
increasing the mutation rate from 1 to 30%, the average
difference of the exact and approximate solutions was cut
from 71 to 5%. Considering the resources consumption, it
was feasible to select the mutation rate at about 30%.
Table 4 shows the average generations of the genetic
algorithm to find the shortest driving time. As given in
Table 4, even the number of nodes grew to 1000, while
the average generation to find the optimum path was not
much than 36.4, which is in a worst case, and by
increasing the population size, it was seen that the
algorithm found solutions in fewer generations. When the
number of nodes grew 10 times from 10 to 1000, the time
needed for finding the solution grew only almost twice.
Fitness function evolution of the proposed genetic
algorithm is shown in Figure 7. It can be seen on the
graph that on each step to the next generation, the
minimum fitness function and average fitness function of
the chromosomes in the population converge with each
other. The average fitness values of the proposed genetic
algorithm that converges with the exact solution found by
Dijkstra algorithm is shown in Figure 8. Table 5 shows
the average difference of the exact and approximate
routes found by the proposed genetic algorithm.
According to the results given in Table 5, the approximate
solutions found by the proposed genetic algorithm were

very close to the exact solutions with node number 10
and 50. On a graph with 10 nodes, the exact solutions
were obtained when the population size was 50 or
greater than 50. When the node number grew to 50, the
exact solutions were obtained with the population starting
from 400. By increasing the population size, it was seen
that the algorithm got closer to the exact solutions. When
the node number was 1000, the average difference of the
exact and approximate routes was cut from 159.3 to
12.4% with the increase of the population size from 30 to
800.

Conclusions

An efficient route guidance system should provide driving
advice considering the influential factors of traffic flow
such as traffic density and allowable velocity limits of the
roads obtained from internet based information providers
rather than showing only the shortest path from source to
destination. On handheld devices, it is not proper to find
the exact solutions when the amount of the data being
processed is too large. The GA presented in this paper
finds the acceptable approximate solutions effectively
even on large networks, while considering real-time
information. Results obtained from the experiments show

404 Sci. Res. Essays

.

Figure 7. Convergence property of the genetic algorithm.

Figure 8. Convergence property of the proposed genetic algorithm and Dijkstra algorithm.

Table 5. Average difference of the exact and approximate routes in %.

Number of nodes

10 50 250 1000

Population size

30 0.6 20.7 140.1 159.3

50 0 9.1 79.8 87.3

100 0 3.6 57.1 71.2

200 0 0.3 34.7 52.8

400 0 0 20.2 33.1

800 0 0 4 12.4

that a route guidance system that computes the shortest
driving time considering the real-time traffic information
can be designed using GA for handheld devices
produced with limited processor and memory capacities.

REFERENCES

Ahn CW, Ramakrishna RS (2002). A Genetic Algorithm for Shortest

Path Routing Problem and the Sizing of Populations. IEEE Trans.
Evol. Comput., 6: 566-579.

Aruga K, Sessions J, Akay A, Chung W (2005). Simultaneous

optimization of horizontal and vertical alignments of forest roads
using Tabu Search. Int. J. Forest Eng., 16(2): 137-151.

Cedric D, Pawan D (2003). Genetic algorithms for rerouting shortest
paths in dynamic and stochastic networks. Eur. J. Oper. Res., 144:
27-38.

De Jong K (1988). Learning with Genetic Algorithms: An Overview.
Machine Learn., 3: 121-138.

Dijkstra EW (1959). A Note on Two Problems in Connection with
Graphs. Numerische Math., 1: 269-271.

Goldberg DE (1989). Genetic Algorithms in Search Optimizations and
Machine Learning. Boston, Addison-Wesley Longman Publishing Co.

Hasan BS, Khamees MA, Mahmoud ASH (2007). A Heuristic Genetic
Algorithm for the Single Source Shortest Path Problem. In Computer
Systems and Applications, Proceedings of the 5th IEEE/ACS
International Conference. Amman, Jordan, pp. 187-194.

Holland JH (1975). Adaptation in natural and artificial system. Ann
Arbor, The University of Michigan Press.

Inagaki J, Haseyama M, Kitajima H (1999). A genetic algorithm for
determining multiple routes and its applications. In Circuits and
Systems, Proceedings of the 1999 IEEE International Symposium.
Orlando, FL, USA, pp. 137-140.

Karas and Atila 405

Lin CH, Yu JL, Liu JC, Lai WS, Ho CH (2009). Genetic Algorithm for

Shortest Driving Time in Intelligent Transportation Systems. Int. J.
Hybrid Inf. Tech., 2 (1): 21-30.

Munemoto M, Takai Y, Sato YA (1998). A migration scheme for the
genetic adaptive routing algorithm. In Proceedings of the Systems,
Man, and Cybernetics 1998 IEEE International Conference. San
Diego, CA, USA, pp. 2774-2779.

Pallottino S, Grazia M (1996). Shortest path algorithms in transportation
models: Classical and innovative aspects. In Proceedings of the 25th
Anniversary Meeting of the Centre for Research on Transportation on
Equilibrium and Advanced Transportation Modeling. Montreal,
Canada, pp. 245-281.

Whitley D (1994). A genetic algorithm tutorial. Statist. and Comput., 4:
65-85.

Xu MH, Liu YQ, Huang QL, Zhang YX, Luan GF (2007). An improved
Dijkstra’s shortest path algorithm for sparse network. Appl. Math.
Comput., 185: 247-254.

