
Scientific Research and Essays Vol. 7(41), pp. 3515-3527, 27 October, 2012
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.675
ISSN 1992-2248 ©2012 Academic Journals

Full Length Research Paper

An imperialist competitive algorithm mixed model
assembly line sequencing problem on just in time

system

Asqar Hemmati*, Mojtaba Hemmati and Mohammad Ahmadifard

Department of Industrial Engineering, Islamic Azad University, Abhar Branch, Abhar City, Zanjan, Iran.

Accepted 11 June, 2012

Mixed-model lines are used to produce several kinds of models in small lots without carrying large
inventories. The production sequence for the mixed-model sequencing problem depends on the goals
of the production facility. In order to enjoy the useful application of these lines, it is vital to devise a
schedule for assembling the different products to be determined. Based on the NP-hardness of the
problem, this present paper introduces an imperialist competitive algorithm (ICA) in three phases so as
to solve a just-in-time (JIT) sequencing problem where the diversity of production rates to be optimized.
Performance of the ICA was compared against two other search heuristics genetic algorithm (GA) and
simulated annealing (SA) in small, medium and large problems. To compare presented algorithm with
previous ones, an extensive computational study on 3 sets of benchmark problems has been
conducted. Experimental results showed that our algorithm outperforms the previous algorithms, in
respect of comparison metric.

Key words: Mixed-model sequencing, just-in-time, imperialist competitive algorithm, genetic algorithm,
simulated annealing.

INTRODUCTION

Mixed-model assembly line (MMAL) is a type of
production line which is able to produce several small-
sized production lots and is highly responsive to sudden
demand fluctuations without necessitating holding large
stock of in process inventories. Nowadays, most
manufacturing firms employ this type of line because of
the increasing varieties of products in their attempts to
quickly respond to diversified customer demands.
Improvement of new technologies, competitiveness,
diversification of products, and large customer demands
has got practitioners to use different methods of
production development.

MMAL sequencing is a problem of determining a
sequence of the product models, in which a lot of
emphasis is put on enhancing the line utilization. The
effective utilization of a mixed-model line requires that

*Corresponding author. E-mail: asqar.hemmati@gmail.com.

managers pay attention two major problems (Miltenburg
and Sinnamon, 1989):

1. The assignment of tasks to workstations (that is, the
line balancing problem) and
2. The models sequencing on the line (that is, mixed
model sequencing problem).

In this work, we concentrate on the mixed-model
sequencing problem assuming that line balancing has
already been done. It has used an average cycle time for
assembling the products. When sequencing products on
JIT mixed-model assembly line, the decision maker (DM)
tries to achieve two objectives: parts usage smoothing
and workload smoothing at the different workstations.
Monden (1983) explained them as follows: The first
objective aims at minimizing variation in parts utilization
at the different workstations of the assembly line. If long-
time consuming models are successively sequenced at a
particular workstation, then a line-stoppage could occur.

3516 Sci. Res. Essays

Therefore the second objective aims at minimizing
variation of the workload associated with each
workstation.

In this paper also, we have first objectives. The usage
rate is a measure of the company's ability to keep the
schedule level, or evenly intermixed - keeping the raw
materials for the different products arriving to the system
at as constant a rate as possible. Because JIT systems
are concerned with having the right parts at the right
place at the right time, sequencing must be done so that
the raw materials are introduced into the system at a
fairly uniform rate (McMullen and Frazier, 2000).
Miltenburg (1989) has presented a metric to measure this
usage rate, which was adopted for this research. This
metric can be thought of as a surrogate for a firm's ability
to produce several items at a uniform rate.

The structure of this paper is as follows: First, this
paper reviews the previous studies, and presents a
mathematical formulation of the mixed-model assembly
line. Thereafter, the discrete particle swarm optimization
is proposed. The comparison of algorithms is then
explained. The experimental results are given and
various test problems are provided. Finally, we present
our conclusions.

LITERATURE REVIEW

The sequencing determination mixed-model assembly
line problem was introduced in 1960. The researches
activities are divided in two main parts. Those are the
researches before and after JIT production system. In the
first part, the sequence determination problem is defined
based on the line output criteria, and the second part the
most researches are based on pert production output
criteria. The sequence will vary depending upon the
possible goals of the company.

Monden (1983) defined two goals for the sequencing
problems: (1) smoothing the workload (total operation
times at each workstation on the assembly line) and, (2)
keeping a constant rate of usage of every part used by
the line. Toyota corporation developed goal chasing I
(GC-I) and II (GC-II) methods to solve these problems.
GC-I minimizes the one stage and assumes that the
length of the unique workstation is equal to zero. GC-II
solves GC-I under a special assumption regarding the
product structure. Goal 1 recognizes that all products do
not have the same operation time at each station on the
line. If products with relatively longer operation times are
successively scheduled, delays will eventually occur and
line stoppages is the result.

Okamura and Yamshina (1979) presented a heuristic
procedure for sequencing products (with different
operation times) on a MMAL. Their objective was to
minimize line stoppages. Other works on this problem
include those by Macaskill (1973) and Thomopoulos
(1967). Miltenburg and Sinnamon (1989) developed a

non-linear programming for the second goal mentioned
previously. The time complexity function of the proposed
program was exponential; therefore, he developed and
solved the problem by applying two heuristic procedures.

Miltenburg (1989) solved the same problem with a
dynamic programming algorithm. Inman and Bulfin (1991)
solved the problem proposed by Miltenburg and
Sinnamon (1989) by converting it to a mathematically
different approach. Other objectives have also been
considered by a number of researchers. Sequencing
mixed-model assembly lines have also been studied as a
multi-objective problem.

Bard et al. (1994) developed a model involving two
objectives minimizing the overall line length and keeping
a constant rate of part usage. They solved the problem
by using the weighted sum and proposed a tabu search
(TS) method. Hyun et al. (1998) addressed three
objectives minimizing total utility work, keeping a constant
rate of part usage, and minimizing total setup cost. This
problem was solved by proposing a new genetic
evaluation and selection mechanism.

Aigbedo and Monden (1997) developed a parametric
procedure to jointly consider the variations in finished-
goods production, part usage, assembly line workload,
and subassembly line workload. Zeramdini et al. (2000)
proposed a two-step approach to address the bi-criteria
sequencing considering part usage and workload
smoothing. After the initial sequence is determined by a
two-stage heuristic method for part usage consideration,
it is divided into a number of subsequences equal to the
supply frequency. Each subsequence is then
resequenced for workload smoothing. An evaluation
method based on part usage of each subsequence was
also proposed.

McMullen (1998) considered two objectives minimizing
number of setups and keeping a constant rate of part
usage, and solved this problem by a TS method.
McMullen and Frazier (2000) developed a simulated
annealing (SA) method for the model used by McMullen
(1998) and compared it against the TS method.

McMullen (2001a, b, c) also solved the same problem
by using genetic algorithms (GAs), kohonen self-
organizing map (SOM) and ant colony optimization,
respectively, and compared their performance with SA
and TS methods. Mansouri (2005) proposed Multi-
Objective Genetic Algorithm (MOGA) to solve the
problem proposed by McMullen (1998).

MATHEMATICAL FORMULATION OF PARTS USAGE
OBJECTIVE (PU)

Considering the previous discussions on the goals of this
study, the following mathematical formula was used.
However, the concept of a minimum part set (MPS) which
is a vector representing a product mix (Hyun et al., 1998;
Zaramdini, 2003) was used in this paper.

Notations

In the development of model, we used the following
notation:

: Number of variety of products. : Number of variety

of parts. :DT Total production quantity of all product

varieties. :id Production quantity of each product variety i

1 2
(, ,...,)d d d


: is called the Product Composition

Structure (PCS). :ijb Number of units of part variety j

required per unit of product variety i. : 1
ij

b  If product i

uses part j and 0
ij

b  if product i does not use part j.

:
j

N Total quantity of part j required by all products.

,
:

j k
X Total quantity of part j to be utilized for assembling

the products of determined sequence from the first to the

kth stage.
,

:
j k

P Cumulative quantity of product i at stage

k.

Optimizing the PU objective means the selection of a

sequence
,

{ }
i k

P  which minimizes the following

objective function:

2

,1 1
() (2)

DT j

PU j kk j

k N
f x F X

DT



 

 
   

 
 

 (2)

Subject to:

,1
1,..., (3)i ki

P k k DT



 

 (3)

, , 10 1 1,..., 1,..., (4)i k i kP P i k DT    
 (4)

, (5)i kP isanon negativeinteger i and k 
 (5)

,0 0 (6)iP i 
 (6)

, , ,1
() (7)j k i k i ji

X P b j and k



   (7)

, ,0 0 (8)j DT j jX N and X j  
 (8)

1
() 1,..., (9)j i iji

N d b j





  
 (9)

The objective function in the foregoing seeks to minimize
the variation in parts consumption. The first constraint
ensures that exactly k units are scheduled in periods 1
through k, while the last two constraints ensure, for each
model, that either one units is scheduled in a given

Hemmati et al. 3517

period or else it is not schedule at all.

Combinatorial complexity

Finding production sequences with desirable levels of
both number of setups and production rates variation is
NP-hard as pointed out by McMullen (2001b). Total
number of sequences for a mixed-model sequencing
problem having a product can be computed using the
general formula to compute the number of permutations
of a multi-set (Walpole and Myers, 1985) as follows:

1

1

(4)

!

()!

a

i

i

a

i

i

d

Total sequences

d





 
 
 




 (10)

As the problem increases in size, the number of feasible
solutions increases in an exponential fashion, thereby
attainment of optimal solutions becomes impractical for
large problems. Problems with a large number of possible
solutions usually cannot be solved to optimality within a
reasonable amount of time.

THE PROPOSED IMPERIALIST COMPETITIVE
ALGORITHM (ICA)

ICA is proposed by Esmaeil et al. (2008). They showed
the algorithms capability in dealing with different types of
optimization problems (Atashpaz et al., 2008). We use
this algorithm in a MMAL problem. Similar to other
evolutionary algorithms, this algorithm starts with an initial
population of solution which is named country. Some of
the best countries in the population are chosen to be the
‘imperialists’ and the rest are the ‘colonies’ of these
imperialists. All the colonies of initial population are
distributed among the imperialists based on their power.

A set of one imperialist and its colonies is called an
‘empire’. The power of an empire which is equivalent to
the fitness value in a genetic algorithm (GA) is inversely
proportional to its cost. After distribution of all colonies
among imperialists, these colonies start moving towards
their relevant imperialist country. The total power of an
empire relates to both the power of the imperialist country
and the power of its colonies. This fact will be modeled by
defining the total power of an empire by adding the
percentage of the mean power of colonies to their
imperialists. Then the imperialistic competition begins
among all the empires. Any empire which is not strong
enough to compete and cannot increase its power (or at
least prevent decreasing it) will be eliminated.

The imperialistic competition will lead slightly to an
increase in the power of powerful empires and a
decrease in the power of weaker ones. Weak empires will

3518 Sci. Res. Essays

Figure 1. Generating the initial empires: The more colonies an imperialist
possess, the bigger its relevant mark.

lose their power and finally they will collapse. The
movement of colonies towards their relevant imperialists
through the competition among empires and also the
collapse mechanism will hopefully cause all the countries
to converge to a state in which there is just one empire in
the world and all the other countries are colonies of that
empire. In this ideal new world, colonies have the same
position and power as the imperialist. The implementation
of this algorithm in MMAL is as follows:

Begin ICA

(1) Initialize the empires.
(2) Move the colonies toward their relevant imperialist
(assimilating).
(3) If there is a colony in an empire which has lower cost
than that of imperialist, exchange the positions of that
colony and the imperialist.
(4) Compute the total cost of all empires (related to the
power of both imperialist and its colonies).
(5) Pick the weakest colony from the weakest empire and
give it to the empire that has the most likelihood to
possess it (imperialistic competition).
(6) Change some weakest colonies with new ones
randomly (revolution).
(7) Eliminate the powerless empires.
(8) If stopping criteria met, stop, if not go to step 2.

End ICA

Generating initial empires

The main purpose of optimization is to find an optimal
solution; each solution in this algorithm is shown as a
country (similar to chromosome in GA In an n-

dimensional optimization problem, a country is a

array (the array of country represents a sequence of

models of product). Initial population is generated as
follows. Initial population generation is the first step in the
proposed ICA. In this study each solution (country) as a
sequence of each array of the products in a production
cycle of MPS demands that its length is equal to DT. For

example consider 5 productions A, B, C, D and E (

So is demand for each items according:
1. As a result,

total demand is equal to DT = 6 + 3 + 1 + 1 + 1 = 12. For
example, a sequence BABDAEAACAB a feasible solution
can be for this problem.

Optimization of an algorithm starts with generating
initial population (countries) of size pop. Of the most

powerful countries are selected to be imperialists. The

remaining of the population will be the colonies each

belongs to imperialists. Thus we have two types of
countries; imperialist and colony. To form the initial
empires, we distribute the colonies among imperialists
based on their power. To distribute the colonies among
imperialists, we define the normalized cost of an

imperialist as ; where is the

cost of nth imperialist and is its normalized cost. The

normalized power of each imperialist is shown as follows:

1

imp

PUn
n N

PUii

N
p

N






On one side, the normalized power of imperialist shows
the number of colonies that should be possessed by that
imperialist. Thus, the initial number of colonies of an

empire will be . Where is
the initial number of colonies of nth empire. For
distributing of colonies among the imperialist we
randomly choose of the colonies and give them to
it. The imperialist and its colonies will form nth empire.
Figure 1 shows the initial population of each empire. As

Hemmati et al. 3519

Figure 2. Moving colonies toward their relevant imperialist.

Figure 3. Moving colonies toward their relevant imperialist in a randomly deviated direction.

shown in Figure 1, bigger empires have a greater number
of colonies while weaker ones have less. In Figure 1,
imperialist 1 has formed the most powerful empire and
has the greatest number of colonies.

Moving the colonies of an empire toward the
imperialist (assimilating)

Imperialists countries started to improve their colonies.
This fact has been modeled by moving all the colonies
toward the imperialist. This movement is shown in Figure
2 in which the colony moves toward the imperialist by x
units. The new position of colony is shown in a darker
color. The direction of the movement is the vector from

colony to imperialist. In this figure, x is a random variable
with uniform (or any proper) distribution. Then for x we

have ; where β is a number greater than 1

and d is the distance between colony and imperialist. A β
> 1 causes the colonies to get closer to the imperialist
state from both sides.

To search different points around the imperialist we add
a random amount of deviation to the direction of
movement. Figure 3 shows the new direction. In this
figure θ is a random number with uniform (or any proper)

distribution. Then ; where γ is a parameter that

adjusts the deviation from the original direction.
Nevertheless the values of β and γ are arbitrary, in most
of our implementation a value of about 2 for β and about
π/4 (Rad) for γ have resulted in good convergence of

3520 Sci. Res. Essays

Figure 4. Exchanging the positions of a colony and the imperialist.

Figure 5. The entire empire after position exchange.

countries to the global minimum.

Exchanging positions of the imperialist and a colony

Owing to movement towards the imperialist, a colony
may reach a position with lower cost than imperialist. In
such a condition, the position of imperialist and colony
are changed. After that, the algorithm will continue by the
imperialist in a new position and then colonies start
moving toward this position. Figure 4 depicts the position

exchange between a colony and the imperialist. In
Figures 4 and 5 the best colony of the empire is shown in
a darker colour. This colony has a lower cost than that of
the imperialist. Figure 5 shows the whole empire after
exchanging the position of the imperialist and that colony.

Total power of an empire

Total power of an empire is mainly affected by the power
of the imperialist country, though the power of the
colonies of an empire has an effect, albeit negligible, on
the total power of that empire. Therefore, the equation of
total cost is:

Where the total is cost of the nth empire and is a

positive number which is considered to be less than 1. A

little value for causes the total power of the empire to be

determined by just the imperialist and increasing it will
increase the role of the colonies in determining the total
power of an empire.

Imperialistic competition

As mentioned previously, all empires try to possess the
other empires’ colonies and control them. Through this
imperialistic competition the power of weaker empires will
decrease and as a result the power of more powerful
ones will increase. We model this competition by just
picking one of the weakest colonies of the weakest
empires and making a competition among all empires to
possess this colony.

Figure 6 illustrates the modeled imperialistic
competition. Based on their total power, in this
competition, each of the empires will have a likelihood of
taking possession of the mentioned colonies. In other
words, these colonies will not be possessed by the most
powerful empires; however, these empires will be more
likely to possess them.

To start the competition, first, the possession
probability of each empire should be found based on its
total power. The normalized total cost is simply obtained
by ; where and

are respectively total cost and normalized total cost of nth
empire. Having the normalized total cost, the possession
probability of each empire is given by:

1

n imp

TPUn
p N

TPUii

N
P

N






To divide the mentioned colonies among empires based
on the possession probability of them, we form the vector

Hemmati et al. 3521

Figure 6. Imperialistic competition. The more powerful an empire is, the more
likely it will possess the weakest colony of the weakest empire.

P as . Then we create a vector R

with the same size as P whose elements are uniformly
distributed random numbers.

1 1[,...,] ; ,..., ~ (0,1)
imp impN NR r r r r U

Vector D is obtained by subtracting R from P.

Referring to vector D, we will hand the mentioned
colonies into an empire whose relevant index in D is
maximum.

Revolution

In each iteration we select some of the weakest colonies
and replace them with new ones, randomly. The
replacement rate is named as the revolution rate.

Eliminating the powerless empires

Powerless empires will collapse in the imperialistic
competition and their colonies will be distributed among
other empires. In modeling collapse mechanism, different
factors can be defined for considering an empire
powerless. In this paper, we assume an empire collapses
when it loses all of its colonies.

Stopping criteria

The algorithm continues until no iteration is remaining or
just one empire exists in the world.

COMPARISON OF ALGORITHMS

Performance of the ICA was compared against two other
search heuristics GA and SA, and each structure is as
follows:

Genetic algorithm (GA)

Genetic algorithms start with a population of solutions,
whereas most stochastic search methods start with a
single solution. An initial population is formed randomly or
by means of a heuristic algorithm. Solutions are encoded
in a form, which are called chromosomes. Each
chromosome shows a complete solution to a problem.
They are each assigned a fitness score that represents
the ability of chromosomes to compete for mating and
staying alive. Parents are picked up to mate according to
their fitness values.

The fitter chromosomes produce more offspring than
the less fit chromosomes. The solution set is then
imposed to crossover, mutation and inversion. These
stochastic operators are required for diversifying the
solution pool and especially getting better solutions.
Since the size of the population should be maintained

3522 Sci. Res. Essays

Table 1. Average relative percentage deviation (RPI) and average CPU time for algorithms.

Problem size

Comparative algorithms

GA

SA

ICA

RPI CPU time

RPI CPU time

RPI CPU time

Small
problem

PS1 0.0000 0.22

0.0000 0.27

0.0000 0.26

PS2 0.0000 1.34

0.0000 1.22

0.0000 1.43

PS3 0.0000 2.46

0.0000 2.05

0.0000 2.14

PS4 0.4628 3.58

0.4103 3.66

0.3421 4.04

PS5 0.5921 4.7

0.5345 5.23

0.5042 4.12

Medium
problems

PM1 0.0000 15.41

0.0000 13.33

0.0000 15.44

PM2 1.0000 30.22

1.0000 27.14

1.0000 30.42

PM3 0.4431 44.36

0.2381 39.67

0.2642 38.93

PM4 0.3325 35.19

0.3005 38.47

0.2842 33.89

PM5 0.4538 55.32

0.1325 46.87

0.1634 50.13

Large
problems

PL1 0.4921 373.44

0.3845 342.52

0.3367 312.36

PL2 0.3842 412.65

0.2067 405.19

0.2005 420.87

PL3 0.5823 574.18

0.4942 550.28

0.3895 985.93

PL4 0.3848 778.76

0.2884 693.19

0.2274 669.45

PL5 0.8491 894.55

0.6422 817.88

0.5942 785.67

Average 0.3984533 215.09

0.3087933 199.13133

0.2870933 223.672

statically, some weak individuals in the population die,
and better solutions thrive to stay alive. The cycle
continues until a certain number of iterations are
executed or once the population converges. The solution
procedure is summarized in the pseudo-code in Table 1.

Algorithm 2: The main procedure of genetic algorithm
(GA)

1. Begin,
2. Choose initial population,
3. Repeat,
4. Evaluate the individual fit nesses function of a certain
proportion of the population,
5. Select pairs of best-ranking individuals to reproduce,
6. Apply crossover operator,
7. Apply mutation operator,
8. Apply inversion operator,
9. Until terminating condition,
10. End.

Operator’s genetic algorithm

There are numerous crossover and mutation methods. In
this work order crossover (OX), inversion (INV) operators
(Michalewicz, 1992) and mutation are used.

Order crossover: To illustrate how it works, consider the
following two parent sequences:

Parent 1: A A A A | A A B B B | B C C D D.

Parent 2: D A B A | B C B A A | B C A D A.

Brackets designate the portion of the sequences that will
remain intact and become part of the offspring in the
crossover process. The location of the brackets is
determined at random, however the left bracket must be
to the right of the first character in a sequence and the
right bracket must be to the left of the last character in the
sequence. A new parent is then created by moving all the
characters appearing after the right bracket of the original
parent at the beginning of the sequence. The results of
this are shown as follows:

Parent 1 : B C C D | D A A A A | A A B B B (C D D A A A

A B B).

Parent 2 : B C A D | A D A B A | B C B A A (C D D A A C

B A A).

From this new sequence, characters that match the
characters between the brackets of the other original
parent are removed. For instance, from Parent 1 , the first

two A’s, the first two B’s, and the first C are removed

because Parent 2 has the sequence BCBAA between its

brackets. The sequence between the brackets of the
original parent and this shortened list as shown in
previous parentheses from the other parent is then used
to construct an offspring. For instance, the sequence
AABBB is taken from Parent 1 and the shortened list from

Parent 2 is added starting at the right bracket and wrapping

around to the beginning of the sequence. Using this
technique, the following offspring are created (McMullen,
2001a).

Offspring 1: C B A A | A A B B B | C D D A A.
Offspring 2: A A B B | B C B A A | C D D A A.

Inversion: Inversion is a un-array operator that
generates offspring from a single parent. It first chooses
two random cut points in a parent. The elements between
the cut points are then reversed. An example of the
inversion operator is presented as follows:

Before inversion: C B A | B A B C | C A.
After inversion: C B A | C B A B | C A.

Mutation: The mutation operator changes one or some
of the genes in a single parent randomly. This operator
has been used to increase the diversity. In this paper,
swapping mutation was used. Consider the following
sequence:

Before mutation: B A A A C A B A B B C D D D

The two gray elements are randomly selected unique
elements that are targeted for swapping. After swapping,
or mutation, the sequence is as follows:

After mutation: B A A B C A B A B A C D D D

Simulated annealing (SA)

The SA technique proposed by Kirkpatrick et al. (1983) is
an iterative, stochastic, neighborhood-based search
method motivated from an analogy between the
simulation of the annealing of solids and the strategy of
solving combinatorial optimization problems. SA has
been widely applied to solve combinatorial optimization
problems (Yao, 1995). It is inspired by the physical
process of heating a substance and then cooling it slowly,
until a strong crystalline structure is obtained. This
process is simulated by lowering an initial temperature by
slow stages until the system reaches to an equilibrium
point, and no more changes occur. In this paper similar to
Behnamian et al. (2009), algorithmic framework of SA is
described:

Algorithm 3: The main procedure of simulated annealing
(SA).

1. Input: an instance x of a combinatorial optimization
problem
2. S ← Generate Initial solution ()
3. k ← 0
4. Tk ← Set Initial temperature ()
5. While termination conditions not met do
6. S′ ← Pick neighbor at random (N(S))
7. If f(S′) ≤ f(S) then
8. S ← S′;
9. Else

Hemmati et al. 3523

10. Accept S′ as new solution with probability p (Tk, S′, S)
11. End if
12. Adapt temperature (Tk)
13. End while
14. Sbest ← S
15. Output: Sbest, “candidate” to optimal solution for x.

The main idea of this technique is to start from some
initial solution, π′, and successively move among
neighboring solutions until the stopping condition is
satisfied. At each iteration, iter, a random solution, π′, is
selected from the neighborhood of actual solution (πiter)
and it replaces with a probability.

(5)
() ()

(, ,) min 1,exp(iter
iter iter

iter

f f
P t

t

 
 

  
   

  (5)

Where
itert is a parameter called the temperature at

iteration iter. The temperature decreases during the
search process according to the cooling scheme. The
performance of SA depends on the following parameters,
which have to be precisely selected: initial temperature,
cooling scheme and final temperature. The following
presents the implementation of SA algorithm. For detailed
description of the SA method, the reader is referred to the
literature of Aarts and Lenstra (2003), Kirkpatrick et al.
(1983) and Tian et al. (1999).

Initial temperature

The initial temperature is selected on the basis of K = nm

+ 1 solutions
0 1; ;...; k   , where

j is randomly selected

from the neighborhood of
1j 
and

0 is an initial solution.

The initial temperature is defined as:

0 1 , (6)t
mn




 (6)

Where
1,..., 1max { () ()}.j k j jf f    

Cooling scheme

The temperature changes in every iteration according to
the logarithmic cooling scheme:

1 , (7)
1

j

j

j

t
t

t
 


 (7)

Where parameter  is defined as:

3524 Sci. Res. Essays

0

0
, (8)

ft t

ft t
ft






 (8)

And f is 200. The final temperature
ft is determined from

the following expression (Janiak et al., 2007):

0
2

()
. (9)f

f
t

mn




 (12)

COMPUTATIONAL EXPERIMENTS

Data and test problems

In order to compare these algorithms against together,
the problems used in McMullen (2001a) and Zaramdini
(2003) were selected. These include 3 problem sets,
each set consist of 5 problems, as presented in Appendix
Table 1. They cover a diverse set of mixed-model
sequencing problems, from the smallest problem with

11,880 solutions to the largest one with

possible solutions.

Appendix Table 1 refers to the Bill of materials ()ijb

where for example, product A needs one unit of each part
type: b, c, d and f. But for the assembly of product A, the
part types a, e, g and h are not needed. Note that the
small problem of the products type A to E, medium
problems of the products type A to J and large problems
of the products type A to O of Appendix Table 1 is used.
In here, each problem 20 times by the algorithm
performed, and the best solution for each algorithm in
each step we have compared. These algorithms have
been compiled in Matlab 7.0 and all numerical examples
were tested on a PC with Intel Pentium 4, 1.67 GHz
processor, 256 memory and windows XP professional
operating system.

Parameters settings

The performance of the meta-heuristic algorithms is a
direct relationship with parameters setting in a way that
wrong choice of the parameters of the fully operational
algorithms can bring about malfunctioning. There are
several parameters that may influence the performance
of the algorithms. For example, the larger population size
may find better solution quality but cost higher
computational expense.

It should be noted that changing these parameters may
result in different outcomes than those achieved in this
research. The numerous parameters of an ICA algorithm
can be adapted to maximize the convergence on each
problem. However our experimental approach was to
select values which present a good trade-off in order to
have a problem-free implementation. We have applied

parameters tuning only for the Zeta (), revolution rate,

Revolution rate, Number of imperialists and Number of
(countries, iterations) were set to 0.05, 0.4, 9 and (300;
1000) respectively.

In GA, the population size was tenfold the total number
of units for all products, crossover, mutation and
inversion probabilities were taken as 0.8, 0.1 and 0.1
respectively. Selection strategic for the mate selection, by
tournament selection with a size of 2 to carry out the
order crossover. Again the tournament selection with a
size of 2 was used for constructing the population for the
next generation. In addition, GA employed the insert
operator as a mutation scheme. Initial temperature

parameter
1 used uniform (0.5, 1) and final temperature

parameter
2 used uniform (0, 0.1) in SA algorithm.

Experimental results

In this section, we are going to compare the proposed
ICA, GA and SA for part usage problem in MMAL. All
algorithms are coded in Matlab7.0 software and run on a
PC with Intel Pentium 4, 1.67 GHz processor, 256
memory and windows XP professional operating system.
After computation of objective line stoppage of each
algorithm for its instances, the best solution obtained for
each instance (which is named Minsol) by any of the three
algorithms is calculated. We use relative percentage
index (RPI) as performance measure to compare the
methods, because RPI fulfills some drawbacks of relative
percentage deviation (RPD) in case of the line stoppage
objective. When each algorithm has been obtained for its
instances, the best and worst solutions obtained for each
instance (which are named Minsol and Woratsol,
respectively) by any of the three algorithms are
calculated. RPI is obtained by given formula as follows:

lg
(10)sol sol

sol

A Min
RPI

Worst Min
sol





 (12)

Where Algsol is value objective function obtained for a
given algorithm and instance. RPI takes value between 0
and 1. Clearly, lower values of RPI are preferred.
Achieved results of the experiments for each comparing
algorithm are presented in Table 1. For exclusion of the
by-effects caused by randomized results, we execute
each of the exemplary problems set for five times and the
average of the attained results has founded the basis of
the comparisons. Notice that these algorithms are run in
equal times and first time in which the algorithm solutions
do not change are comparison criterion we considered.

As you observe in Table 1 the out coming results of the
average RPI and the average operation time of the
algorithm is much better comparing the other methods. In
Table 1, for showing the efficiency of algorithms in
against together the statistical analysis is used, that is

Hemmati et al. 3525

Table 2. Pair-wise comparisons of results from RPI algorithms DPSOL,
DPSO, GA and SA against each other.

Algorithm Test Results of P-value

ICA : GA -0.88 0.810

ICA : SA -1.08 0.503

GA : SA 1.33 0.135*

* Means the paired t_test is significant, that is, P Value  

0

0.1

0.2

0.3

0.4

0.5 1.5 2.5 3.5

R
P
I

GA SA ICA 0.5

Figure 7. Plot of RPI for the type of algorithm factor.

pair-wise comparisons were made at significance level α
= 0.01 employing one-tail t-test, since basically each
problem is independent of the other problems. In fact the
comparison is about the average RPI in the achieved
results of the algorithms. In this hypothesis testing,

alternative hypothesis is
1
: 0H D  versus

: 0H D  whereas D is different between the averages

RPI of comparative algorithms. Therefore, assume zero
can be rejected if and only if:

; 1 (11)
/

n

D

D
t t

S n
  

 (11)

t and test of hypothesis results from the confidence level
of 95% for average RPI is given in Table 2. As you see
in Table 2 with the confidence level of 95% the average
RPI in the achieved results of the ICA is much better than
the other ones in the presented problem, and also the
average RPI for SA results are less than GA. Figure 7
shows the diagram for the average value LSD
(confidence interval 95%) for various algorithms.

Following Figure 7 clearly asserts the claim that the
proposed ICA is superior over the other comparing
algorithms. From another aspect in order to check the

effect of the performance of other comparing algorithms,
in this section basis for comparison is the size of
problem.

CONCLUSIONS AND SUGGESTION

According to increasing variety of products and industries
movement toward more production based on customer’s
order, we will face with increasing the number of various
models; also, in increase the capacity of production is
one of the assembly industries’ targets. So, the usage of
meta-heuristic methods in order to define the sequence
of production related to common methods will be more
noticeable.

Since the assembly time, the combination and quantity
of needed parts for each kind of model are usually
different; minimizing part usage in different workstation
can be a vital factor in determining the process sequence
of the products. This is a kind of NP-Hard problem and
accessing the integer’s linear programming is so difficult.
Because of, this paper presented an imperialist
competitive algorithm. This goal is one of the most
important goals in MMAL, so that the usage rate is a
measure of the company's ability to keep the schedule
level, or evenly intermixed - keeping the raw materials for

3526 Sci. Res. Essays

the different products arriving to the system at as
constant a rate as possible.

In order to prove the efficiency of the proposed
algorithm, three distinct kinds of methods have been
used in the produced literature: innovative searching
method of the GA and hybrid SA in the set of small,
medium and large problems. The results indicated that
the ICA excels comparing to the other comparing
algorithms. We can offer some suggestions for the
development of the present study. Introducing the
problem in the dynamic and probability situations,
applying changes in the problem assumption, using
different operators in order to increase possibility of more
searching of algorithm and leveling the convergence,
applying new constraints on problem considering the
existing constraints and employing the innovative
methods such as the neural network, and colony
combination of both.

REFERENCES

Aarts E, Lenstra JK (2003). Local Search in combinatorial optimization.

Princeton University Press.
Aigbedo H, Monden Y (1997). A parametric procedure for multicriterion

scheduling for just-in-time assembly lines. Int. J. Prod. Res.
35(9):2543–2564.

Atashpaz-Gargari E, Hashemzadeh F, Lucas C (2008). Designing
MIMO PIID controller using colonial competitive algorithm: Applied to
distillation column process. IEEE Congress on Evolutionary
Computation (CEC 2008), No. 4631052, 1929–1934.

Bard JF, Shtub A, Joshi SB (1994). Sequencing mixed-model assembly
lines to level parts usage and minimize line length. Int. J. Prod. Res.
32(10):2431–2454.

Behnamian J, Zandieh M, Fatemi GSMT (2009). Due window
scheduling with sequence-dependent setup on parallel machines
using three hybrid metaheuristic algorithms. Int. J. Adv. Manuf.
Technol. 44(7-8):795-808.

Esmaeil AG, Farzad H, Ramin R, Caro L (2008). E“Colonial competitive
algorithm: A novel approach for PID controller design in MIMO
distillation column process”. Int. J. Intell. Comput. Cybernet. (IJICC)
1(3):337-355.

Hyun CJ, Kim YK, Kim Y (1998). A genetic algorithm for multiple
objective sequencing problems in mixed model assembly lines.
Comput. Oper. Res. 25(7-8):675–690.

Inman RR, Bulfin RL (1991). Sequencing JIT mixed-model assembly
lines. Manage. Sci. 37(7):901–904.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983). Optimization by simulated

annealing. Science 220(4598):671–680.
Macaskill JLC (1973). Computer simulation for mixed-model production

lines. Manage. Sci. 20(3):341–348.
Mansouri SA (2005). A multi-objective genetic algorithm for mixed-

model sequencing on JIT assembly Lines. Eur. J. Oper. Res.
167(3):696-716.

McMullen PR (1998). JIT sequencing for mixed-model assembly lines
with setups using Tabu search. Prod. Plan. Control 9(5):504-510.

McMullen PR (2001a). An efficient frontier approach to addressing JIT
sequencing problems with setups via search heuristics. Comput. Ind.
Eng. 41(3):335-353.

McMullen PR (2001b). A Kohonen self-organizing map approach to
addressing a multiple objective, mixed-model JIT sequencing
problem. Int. J. Prod. Econ. 72(1):59-71.

McMullen PR (2001c(. An ant colony optimization approach to
addressing a JIT sequencing problem with multiple objectives. Artif.
Intell. Eng. 15(3):309-317.

McMullen PR, Frazier GV (2000). A simulated annealing approach to
mixed-model sequencing with multiple objectives on a JIT line. IIE
Trans. 32(8):679-686.

Michalewicz Z (1992). Genetic algorithms + data structures = Evolution
programs. Berlin: Springer.

Miltenburg J (1989). Level schedules for mixed-model assembly lines in
just-in-time production systems. Manage. Sci. 35(2):192-207.

Miltenburg J, Sinnamon G)1989(. Scheduling mixed model multi-level
just-in-time production systems. Int. J. Prod. Res. 27(9):1487–1509.

Monden Y (1983). Toyota production system (2nd ed.). Norcross, GA:
Institute of Industrial Engineers.

Okamura K, Yamashina H (1979). A Heuristic Algorithm for the
Assembly Line Model Mix Sequencing Problem to Minimize the Cost
of Stopping the Conveyor. Int. J. Prod. Res. 17(3):233-247.

Thomopoulos NT (1967). Line Balancing Sequencing for Mixed Model
Assembly. Manage. Sci. 14(2):59-75.

Tian P, Ma J, Zhang DM (1999). Application of the simulated annealing
algorithm to the combinatorial optimization problem with permutation
property: An investigation of generation mechanism. Eur. J. Oper.
Res. 118(1):81–94.

Walpole RE, Myers RH (1985). Probability and Statistics for Engineers
and Scientists, Third ed. Macmillan, New York.

Yao X (1995). A new simulated annealing algorithm. Int. J. Comput.
Math. 56(3-4):161–168.

Zaramdini W (2003). A Study of Just-In-Time Sequencing Procedures
for Mixed-Model Assembly Lines Based on Genetic Algorithms. The
Fifth Metaheuristics International Conference, Kyoto, Japan, August
25–28.

Zeramdini W, Aigbedo H, Monden Y (2000). “Bicriteria sequencing for
just-in-time mixed-model assembly lines”. Int. J. Prod. Res.
38(15):3451–3470.

Hemmati et al. 3527

APPENDIX

Table 1. Problem sets used in the experiments.

Problem DT I MPS Solutions

Small problems

PS1 12 5 (8,1,1,1,1) 11,880

PS2 12 5 (4,3,2,2,1) 831,600

PS3 12 5 (3,3,2,2,2) 1,663,200

PS4 15 5 (4,3,3,3,2) 126,126,000

PS5 15 5 (3,3,3,3,3) 168,168,000

Medium problems

PM1 20 10 (7 5 1 1 1 1 1 1 1 1)
PM2 20 10 (6,5,2,1,1,1,1,1,1,1)
PM3 20 10 (5,5,3,1,1,1,1,1,1,1)
PM4 20 10 (4 4 4 2 1 1 1 1 1 1)
PM5 20 10 (2,2,2,2,2,2,2,2,2,2)

Large problems

PL1 100 15 (30,30,15,10,5,1,1,1,1,1,1,1,1,1,1)
PL2 100 15 (25,25,20,15,5,1,1,1,1,1,1,1,1,1,1)
PL3 100 15 (20,20,15,15,10,6,6,1,1,1,1,1,1,1,1)
PL4 100 15 (15,15,15,10,10,10,10,5,4,1,1,1,1,1,1)
PL5 100 15 (7,7,7,7,7,7,7,7,7,7,6,6,6,6,6)

Bill of assembly time configuration

Product type
Part type

 a b c d e f g h

A 0 1 1 1 0 1 0 0

B 0 1 0 0 0 0 0 0

C 0 0 0 1 0 0 0 1

D 1 0 1 0 0 0 0 1

E 1 0 0 0 1 0 1 0

F 0 1 0 0 0 0 1 0

G 0 0 1 0 0 1 0 0

H 0 0 0 1 0 0 1 0

I 1 0 0 0 1 1 0 0

J 0 0 0 0 1 0 0 1

K 1 0 0 1 0 0 0 1

L 1 0 1 0 0 1 0 1

M 1 0 1 0 1 0 1 0

N 0 1 0 1 0 1 1 0

O 0 1 1 0 0 1 0 0

The number in the table denotes the demand for that particular product.

