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Mixed-model lines are used to produce several kinds of models in small lots without carrying large 
inventories. The production sequence for the mixed-model sequencing problem depends on the goals 
of the production facility. In order to enjoy the useful application of these lines, it is vital to devise a 
schedule for assembling the different products to be determined. Based on the NP-hardness of the 
problem, this present paper introduces an imperialist competitive algorithm (ICA) in three phases so as 
to solve a just-in-time (JIT) sequencing problem where the diversity of production rates to be optimized. 
Performance of the ICA was compared against two other search heuristics genetic algorithm (GA) and 
simulated annealing (SA) in small, medium and large problems. To compare presented algorithm with 
previous ones, an extensive computational study on 3 sets of benchmark problems has been 
conducted. Experimental results showed that our algorithm outperforms the previous algorithms, in 
respect of comparison metric. 
 
Key words: Mixed-model sequencing, just-in-time, imperialist competitive algorithm, genetic algorithm, 
simulated annealing. 

 
 
INTRODUCTION 
 
Mixed-model assembly line (MMAL) is a type of 
production line which is able to produce several small-
sized production lots and is highly responsive to sudden 
demand fluctuations without necessitating holding large 
stock of in process inventories. Nowadays, most 
manufacturing firms employ this type of line because of 
the increasing varieties of products in their attempts to 
quickly respond to diversified customer demands. 
Improvement of new technologies, competitiveness, 
diversification of products, and large customer demands 
has got practitioners to use different methods of 
production development. 

MMAL sequencing is a problem of determining a 
sequence of the product models, in which a lot of 
emphasis is put on enhancing the line utilization. The 
effective utilization  of  a  mixed-model  line  requires  that 
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managers pay attention two major problems (Miltenburg 
and Sinnamon, 1989): 
 
1. The assignment of tasks to workstations (that is, the 
line balancing problem) and 
2. The models sequencing on the line (that is, mixed 
model sequencing problem). 
 
In this work, we concentrate on the mixed-model 
sequencing problem assuming that line balancing has 
already been done. It has used an average cycle time for 
assembling the products. When sequencing products on 
JIT mixed-model assembly line, the decision maker (DM) 
tries to achieve two objectives: parts usage smoothing 
and workload smoothing at the different workstations. 
Monden (1983) explained them as follows: The first 
objective aims at minimizing variation in parts utilization 
at the different workstations of the assembly line. If long-
time consuming models are successively sequenced at a 
particular workstation, then a line-stoppage  could  occur. 
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Therefore the second objective aims at minimizing 
variation of the workload associated with each 
workstation.  

In this paper also, we have first objectives. The usage 
rate is a measure of the company's ability to keep the 
schedule level, or evenly intermixed - keeping the raw 
materials for the different products arriving to the system 
at as constant a rate as possible. Because JIT systems 
are concerned with having the right parts at the right 
place at the right time, sequencing must be done so that 
the raw materials are introduced into the system at a 
fairly uniform rate (McMullen and Frazier, 2000). 
Miltenburg (1989) has presented a metric to measure this 
usage rate, which was adopted for this research. This 
metric can be thought of as a surrogate for a firm's ability 
to produce several items at a uniform rate.   

The structure of this paper is as follows: First, this 
paper reviews the previous studies, and presents a 
mathematical formulation of the mixed-model assembly 
line. Thereafter, the discrete particle swarm optimization 
is proposed. The comparison of algorithms is then 
explained. The experimental results are given and 
various test problems are provided. Finally, we present 
our conclusions. 
 
 
LITERATURE REVIEW 
 
The sequencing determination mixed-model assembly 
line problem was introduced in 1960. The researches 
activities are divided in two main parts. Those are the 
researches before and after JIT production system. In the 
first part, the sequence determination problem is defined 
based on the line output criteria, and the second part the 
most researches are based on pert production output 
criteria. The sequence will vary depending upon the 
possible goals of the company.  

Monden (1983) defined two goals for the sequencing 
problems: (1) smoothing the workload (total operation 
times at each workstation on the assembly line) and, (2) 
keeping a constant rate of usage of every part used by 
the line. Toyota corporation developed goal chasing I 
(GC-I) and II (GC-II) methods to solve these problems. 
GC-I minimizes the one stage and assumes that the 
length of the unique workstation is equal to zero. GC-II 
solves GC-I under a special assumption regarding the 
product structure. Goal 1 recognizes that all products do 
not have the same operation time at each station on the 
line. If products with relatively longer operation times are 
successively scheduled, delays will eventually occur and 
line stoppages is the result. 

Okamura and Yamshina (1979) presented a heuristic 
procedure for sequencing products (with different 
operation times) on a MMAL. Their objective was to 
minimize line stoppages. Other works on this problem 
include those by Macaskill (1973) and Thomopoulos 
(1967). Miltenburg  and  Sinnamon  (1989)  developed  a 

 
 
 
 
non-linear programming for the second goal mentioned 
previously. The time complexity function of the proposed 
program was exponential; therefore, he developed and 
solved the problem by applying two heuristic procedures. 

Miltenburg (1989) solved the same problem with a 
dynamic programming algorithm. Inman and Bulfin (1991) 
solved the problem proposed by Miltenburg and 
Sinnamon (1989) by converting it to a mathematically 
different approach. Other objectives have also been 
considered by a number of researchers. Sequencing 
mixed-model assembly lines have also been studied as a 
multi-objective problem. 

Bard et al. (1994) developed a model involving two 
objectives minimizing the overall line length and keeping 
a constant rate of part usage. They solved the problem 
by using the weighted sum and proposed a tabu search 
(TS) method. Hyun et al. (1998) addressed three 
objectives minimizing total utility work, keeping a constant 
rate of part usage, and minimizing total setup cost. This 
problem was solved by proposing a new genetic 
evaluation and selection mechanism. 

Aigbedo and Monden (1997) developed a parametric 
procedure to jointly consider the variations in finished-
goods production, part usage, assembly line workload, 
and subassembly line workload. Zeramdini et al. (2000) 
proposed a two-step approach to address the bi-criteria 
sequencing considering part usage and workload 
smoothing. After the initial sequence is determined by a 
two-stage heuristic method for part usage consideration, 
it is divided into a number of subsequences equal to the 
supply frequency. Each subsequence is then 
resequenced for workload smoothing. An evaluation 
method based on part usage of each subsequence was 
also proposed.  

McMullen (1998) considered two objectives minimizing 
number of setups and keeping a constant rate of part 
usage, and solved this problem by a TS method. 
McMullen and Frazier (2000) developed a simulated 
annealing (SA) method for the model used by McMullen 
(1998) and compared it against the TS method.  

McMullen (2001a, b, c) also solved the same problem 
by using genetic algorithms (GAs), kohonen self-
organizing map (SOM) and ant colony optimization, 
respectively, and compared their performance with SA 
and TS methods. Mansouri (2005) proposed Multi-
Objective Genetic Algorithm (MOGA) to solve the 
problem proposed by McMullen (1998). 
 
 
MATHEMATICAL FORMULATION OF PARTS USAGE 
OBJECTIVE (PU) 
 
Considering the previous discussions on the goals of this 
study, the following mathematical formula was used. 
However, the concept of a minimum part set (MPS) which 
is a vector representing a product mix (Hyun et al., 1998; 
Zaramdini, 2003) was used in this paper. 



 
 
 
 
Notations 
 
In the development of model, we used the following 
notation: 
 

:  Number of variety of products. :  Number of variety 

of parts. :DT Total production quantity of all product 

varieties. :id Production quantity of each product variety i 

1 2
( , ,..., )d d d


: is called the Product Composition 

Structure (PCS). :ijb Number of units of part variety j 

required per unit of product variety i. : 1
ij

b    If product i 

uses part j and 0
ij

b  if product i does not use part j. 

:
j

N Total quantity of part j required by all products. 

,
:

j k
X Total quantity of part j to be utilized for assembling 

the products of determined sequence from the first to the 

kth stage. 
,

:
j k

P Cumulative quantity of product i at stage 

k. 
 

Optimizing the PU objective means the selection of a 

sequence 
,

{ }
i k

P   which minimizes the following 

objective function: 
 

2

,1 1
( ) (2)
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 
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Subject to: 
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1,..., (3)i ki

P k k DT



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                                          (3) 
 

, , 10 1 1,..., 1,..., (4)i k i kP P i k DT    
                       (4) 

 

, (5)i kP isanon negativeinteger i and k 
                            (5) 
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                                                                (6) 
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1
( ) 1,..., (9)j i iji

N d b j





  
                                  (9) 

 
The objective function in the foregoing seeks to minimize 
the variation in parts consumption. The first constraint 
ensures that exactly k units are scheduled in periods 1 
through k, while the last two constraints ensure, for each 
model,   that   either  one  units  is  scheduled  in  a  given 
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period or else it is not schedule at all. 
 
 
Combinatorial complexity 
 
Finding production sequences with desirable levels of 
both number of setups and production rates variation is 
NP-hard as pointed out by McMullen (2001b). Total 
number of sequences for a mixed-model sequencing 
problem having a product can be computed using the 
general formula to compute the number of permutations 
of a multi-set (Walpole and Myers, 1985) as follows: 
 

1

1

(4)

!

( )!

a

i

i

a

i

i

d

Total sequences

d





 
 
 




                                      (10) 

 
As the problem increases in size, the number of feasible 
solutions increases in an exponential fashion, thereby 
attainment of optimal solutions becomes impractical for 
large problems. Problems with a large number of possible 
solutions usually cannot be solved to optimality within a 
reasonable amount of time. 
 
 
THE PROPOSED IMPERIALIST COMPETITIVE 
ALGORITHM (ICA) 
 
ICA is proposed by Esmaeil et al. (2008). They showed 
the algorithms capability in dealing with different types of 
optimization problems (Atashpaz et al., 2008). We use 
this algorithm in a MMAL problem. Similar to other 
evolutionary algorithms, this algorithm starts with an initial 
population of solution which is named country. Some of 
the best countries in the population are chosen to be the 
‘imperialists’ and the rest are the ‘colonies’ of these 
imperialists. All the colonies of initial population are 
distributed among the imperialists based on their power.  

A set of one imperialist and its colonies is called an 
‘empire’. The power of an empire which is equivalent to 
the fitness value in a genetic algorithm (GA) is inversely 
proportional to its cost. After distribution of all colonies 
among imperialists, these colonies start moving towards 
their relevant imperialist country. The total power of an 
empire relates to both the power of the imperialist country 
and the power of its colonies. This fact will be modeled by 
defining the total power of an empire by adding the 
percentage of the mean power of colonies to their 
imperialists. Then the imperialistic competition begins 
among all the empires. Any empire which is not strong 
enough to compete and cannot increase its power (or at 
least prevent decreasing it) will be eliminated. 

The imperialistic competition will lead slightly to an 
increase in the power of powerful empires and a 
decrease in the power of weaker ones. Weak empires will
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Figure 1. Generating the initial empires: The more colonies an imperialist 
possess, the bigger its relevant mark. 

 
 
 
lose their power and finally they will collapse. The 
movement of colonies towards their relevant imperialists 
through the competition among empires and also the 
collapse mechanism will hopefully cause all the countries 
to converge to a state in which there is just one empire in 
the world and all the other countries are colonies of that 
empire. In this ideal new world, colonies have the same 
position and power as the imperialist. The implementation 
of this algorithm in MMAL is as follows: 
 
 
Begin ICA 
 
(1) Initialize the empires. 
(2) Move the colonies toward their relevant imperialist 
(assimilating). 
(3) If there is a colony in an empire which has lower cost 
than that of imperialist, exchange the positions of that 
colony and the imperialist. 
(4) Compute the total cost of all empires (related to the 
power of both imperialist and its colonies). 
(5) Pick the weakest colony from the weakest empire and 
give it to the empire that has the most likelihood to 
possess it (imperialistic competition). 
(6) Change some weakest colonies with new ones 
randomly (revolution). 
(7) Eliminate the powerless empires. 
(8) If stopping criteria met, stop, if not go to step 2. 

 
 
End ICA 

 
Generating initial empires 
 
The main purpose of optimization is to find an optimal 
solution; each solution in this algorithm is shown as a 
country (similar to chromosome in GA In an n-

dimensional optimization problem, a country is a  

array (the array of country represents a sequence of 

models of product). Initial population is generated as 
follows. Initial population generation is the first step in the 
proposed ICA. In this study each solution (country) as a 
sequence of each array of the products in a production 
cycle of MPS demands that its length is equal to DT. For 

example consider 5 productions A, B, C, D and E (  

So is demand for each items according: 
1. As a result, 

total demand is equal to DT = 6 + 3 + 1 + 1 + 1 = 12. For 
example, a sequence BABDAEAACAB a feasible solution 
can be for this problem. 

Optimization of an algorithm starts with generating 
initial population (countries) of size pop.  Of the most 

powerful countries are selected to be imperialists. The 

remaining of the population will be the colonies each 

belongs to imperialists. Thus we have two types of 
countries; imperialist and colony. To form the initial 
empires, we distribute the colonies among imperialists 
based on their power. To distribute the colonies among 
imperialists, we define the normalized cost of an 

imperialist as  ; where is the 

cost of nth imperialist and  is its normalized cost. The 

normalized power of each imperialist is shown as follows: 
 

1

imp

PUn
n N

PUii

N
p

N





 

 
On one side, the normalized power of imperialist shows 
the number of colonies that should be possessed by that 
imperialist. Thus, the initial number of colonies of an 

empire will be . Where is 
the initial number of colonies of nth empire. For 
distributing of colonies among the imperialist we 
randomly choose of the colonies and give them to 
it. The imperialist and its colonies will form nth empire. 
Figure 1 shows the initial population of  each  empire.  As
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Figure 2. Moving colonies toward their relevant imperialist. 

 
 
 

 
 

Figure 3. Moving colonies toward their relevant imperialist in a randomly deviated direction. 

 
 
 
shown in Figure 1, bigger empires have a greater number 
of colonies while weaker ones have less. In Figure 1, 
imperialist 1 has formed the most powerful empire and 
has the greatest number of colonies. 
 
 
Moving the colonies of an empire toward the 
imperialist (assimilating) 
 
Imperialists countries started to improve their colonies. 
This fact has been modeled by moving all the colonies 
toward the imperialist. This movement is shown in Figure 
2 in which the colony moves toward the imperialist by x 
units. The new position of colony is shown in a darker 
color. The direction of the movement  is  the  vector  from 

colony to imperialist. In this figure, x is a random variable 
with uniform (or any proper) distribution. Then for x we 

have ; where β is a number greater than 1 

and d is the distance between colony and imperialist. A β 
> 1 causes the colonies to get closer to the imperialist 
state from both sides. 

To search different points around the imperialist we add 
a random amount of deviation to the direction of 
movement. Figure 3 shows the new direction. In this 
figure θ is a random number with uniform (or any proper) 

distribution. Then ; where γ is a parameter that 

adjusts the deviation from the original direction. 
Nevertheless the values of β and γ are arbitrary, in most 
of our implementation a value of about 2 for β and about 
π/4 (Rad) for  γ  have  resulted  in  good  convergence  of 
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Figure 4. Exchanging the positions of a colony and the imperialist. 
 
 
 

 
 

Figure 5. The entire empire after position exchange. 

 
 
 

countries to the global minimum. 
 
 
Exchanging positions of the imperialist and a colony 
 
Owing to movement towards the imperialist, a colony 
may reach a position with lower cost than imperialist. In 
such a condition, the position of imperialist and colony 
are changed. After that, the algorithm will continue by the 
imperialist in a new position and then colonies start 
moving toward this position. Figure 4 depicts the  position 

 
 
 
 
exchange between a colony and the imperialist. In 
Figures 4 and 5 the best colony of the empire is shown in 
a darker colour. This colony has a lower cost than that of 
the imperialist. Figure 5 shows the whole empire after 
exchanging the position of the imperialist and that colony. 
 
 
Total power of an empire 
 
Total power of an empire is mainly affected by the power 
of the imperialist country, though the power of the 
colonies of an empire has an effect, albeit negligible, on 
the total power of that empire. Therefore, the equation of 
total cost is: 
 

 
 

Where the total is cost of the nth empire and  is a 

positive number which is considered to be less than 1. A 

little value for causes the total power of the empire to be 

determined by just the imperialist and increasing it will 
increase the role of the colonies in determining the total 
power of an empire. 
 
 
Imperialistic competition 
 
As mentioned previously, all empires try to possess the 
other empires’ colonies and control them. Through this 
imperialistic competition the power of weaker empires will 
decrease and as a result the power of more powerful 
ones will increase. We model this competition by just 
picking one of the weakest colonies of the weakest 
empires and making a competition among all empires to 
possess this colony. 

Figure 6 illustrates the modeled imperialistic 
competition. Based on their total power, in this 
competition, each of the empires will have a likelihood of 
taking possession of the mentioned colonies. In other 
words, these colonies will not be possessed by the most 
powerful empires; however, these empires will be more 
likely to possess them. 

To start the competition, first, the possession 
probability of each empire should be found based on its 
total power. The normalized total cost is simply obtained 
by ; where and  

are respectively total cost and normalized total cost of nth 
empire. Having the normalized total cost, the possession 
probability of each empire is given by: 
 

1

n imp

TPUn
p N

TPUii

N
P

N





 

 
To divide the mentioned colonies among empires based 
on the possession probability of them, we form the vector



Hemmati et al.         3521 
 
 
 

 
 

Figure 6. Imperialistic competition. The more powerful an empire is, the more 
likely it will possess the weakest colony of the weakest empire. 

 
 
 
P as . Then we create a vector R 

with the same size as P whose elements are uniformly 
distributed random numbers. 
 

1 1[ ,..., ] ; ,..., ~ (0,1)
imp impN NR r r r r U

 
 
Vector D is obtained by subtracting R from P. 
 

 
 
Referring to vector D, we will hand the mentioned 
colonies into an empire whose relevant index in D is 
maximum. 
 
 

Revolution 
 
In each iteration we select some of the weakest colonies 
and replace them with new ones, randomly. The 
replacement rate is named as the revolution rate. 
 
 

Eliminating the powerless empires 
 
Powerless empires will collapse in the imperialistic 
competition and their colonies will be distributed among 
other empires. In modeling collapse mechanism, different 
factors can be defined for considering an empire 
powerless. In this paper, we assume an empire collapses 
when it loses all of its colonies. 

Stopping criteria 
 
The algorithm continues until no iteration is remaining or 
just one empire exists in the world. 
 
 
COMPARISON OF ALGORITHMS 
 
Performance of the ICA was compared against two other 
search heuristics GA and SA, and each structure is as 
follows: 
 
 
Genetic algorithm (GA) 
 
Genetic algorithms start with a population of solutions, 
whereas most stochastic search methods start with a 
single solution. An initial population is formed randomly or 
by means of a heuristic algorithm. Solutions are encoded 
in a form, which are called chromosomes. Each 
chromosome shows a complete solution to a problem. 
They are each assigned a fitness score that represents 
the ability of chromosomes to compete for mating and 
staying alive. Parents are picked up to mate according to 
their fitness values.  

The fitter chromosomes produce more offspring than 
the less fit chromosomes. The solution set is then 
imposed to crossover, mutation and inversion. These 
stochastic operators are required for diversifying the 
solution pool and especially getting better solutions. 
Since the size  of  the  population  should  be  maintained
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Table 1. Average relative percentage deviation ( RPI ) and average CPU time for algorithms. 
 

Problem size 
  

Comparative algorithms 

GA 
 

SA 
 

ICA 

RPI CPU time 
 

RPI CPU time 
 

RPI CPU time 

Small 
problem 

PS1 0.0000 0.22 
 

0.0000 0.27 
 

0.0000 0.26 

PS2 0.0000 1.34 
 

0.0000 1.22 
 

0.0000 1.43 

PS3 0.0000 2.46 
 

0.0000 2.05 
 

0.0000 2.14 

PS4 0.4628 3.58 
 

0.4103 3.66 
 

0.3421 4.04 

PS5 0.5921 4.7 
 

0.5345 5.23 
 

0.5042 4.12 

Medium 
problems 

PM1 0.0000 15.41 
 

0.0000 13.33 
 

0.0000 15.44 

PM2 1.0000 30.22 
 

1.0000 27.14 
 

1.0000 30.42 

PM3 0.4431 44.36 
 

0.2381 39.67 
 

0.2642 38.93 

PM4 0.3325 35.19 
 

0.3005 38.47 
 

0.2842 33.89 

PM5 0.4538 55.32 
 

0.1325 46.87 
 

0.1634 50.13 

Large 
problems 

PL1 0.4921 373.44 
 

0.3845 342.52 
 

0.3367 312.36 

PL2 0.3842 412.65 
 

0.2067 405.19 
 

0.2005 420.87 

PL3 0.5823 574.18 
 

0.4942 550.28 
 

0.3895 985.93 

PL4 0.3848 778.76 
 

0.2884 693.19 
 

0.2274 669.45 

PL5 0.8491 894.55 
 

0.6422 817.88 
 

0.5942 785.67 

Average 0.3984533 215.09 
 

0.3087933 199.13133 
 

0.2870933 223.672 
 
 
 

statically, some weak individuals in the population die, 
and better solutions thrive to stay alive. The cycle 
continues until a certain number of iterations are 
executed or once the population converges. The solution 
procedure is summarized in the pseudo-code in Table 1. 
 
 
Algorithm 2: The main procedure of genetic algorithm 
(GA) 
 
1. Begin, 
2. Choose initial population, 
3. Repeat, 
4. Evaluate the individual fit nesses function of a certain 
proportion of the population, 
5. Select pairs of best-ranking individuals to reproduce, 
6. Apply crossover operator, 
7. Apply mutation operator, 
8. Apply inversion operator, 
9. Until terminating condition, 
10. End. 
 
 
Operator’s genetic algorithm 
 
There are numerous crossover and mutation methods. In 
this work order crossover (OX), inversion (INV) operators 
(Michalewicz, 1992) and mutation are used. 
 
Order crossover: To illustrate how it works, consider the 
following two parent sequences: 
 
Parent 1: A A A A | A A B B B | B C C D D. 

Parent 2: D A B A | B C B A A | B C A D A. 

 
Brackets designate the portion of the sequences that will 
remain intact and become part of the offspring in the 
crossover process. The location of the brackets is 
determined at random, however the left bracket must be 
to the right of the first character in a sequence and the 
right bracket must be to the left of the last character in the 
sequence. A new parent is then created by moving all the 
characters appearing after the right bracket of the original 
parent at the beginning of the sequence. The results of 
this are shown as follows: 

 
Parent 1 : B C C D | D A A A A | A A B B B (C D D A A A 

A B B). 

Parent 2 : B C A D | A D A B A | B C B A A (C D D A A C 

B A A). 

 
From this new sequence, characters that match the 
characters between the brackets of the other original 
parent are removed. For instance, from Parent 1 , the first 

two A’s, the first two B’s, and the first C are removed 

because Parent 2  has the sequence BCBAA between its 

brackets. The sequence between the brackets of the 
original parent and this shortened list as shown in 
previous parentheses from the other parent is then used 
to construct an offspring. For instance, the sequence 
AABBB is taken from Parent 1 and the shortened list from 

Parent 2 is added starting at the right bracket and wrapping 

around to the beginning of the sequence. Using this 
technique, the following offspring are created (McMullen, 
2001a). 



 
 
 
 
Offspring 1: C B A A | A A B B B | C D D A A. 
Offspring 2: A A B B | B C B A A | C D D A A. 

 
Inversion: Inversion is a un-array operator that 
generates offspring from a single parent. It first chooses 
two random cut points in a parent. The elements between 
the cut points are then reversed. An example of the 
inversion operator is presented as follows: 
 
Before inversion: C B A | B A B C | C A. 
After inversion: C B A | C B A B | C A. 
 
Mutation: The mutation operator changes one or some 
of the genes in a single parent randomly. This operator 
has been used to increase the diversity. In this paper, 
swapping mutation was used. Consider the following 
sequence: 
 
Before mutation:  B A A A C A B A B B C D D D 
 
The two gray elements are randomly selected unique 
elements that are targeted for swapping. After swapping, 
or mutation, the sequence is as follows: 
 
After mutation:  B A A B C A B A B A C D D D 

 
 
Simulated annealing (SA) 

 
The SA technique proposed by Kirkpatrick et al. (1983) is 
an iterative, stochastic, neighborhood-based search 
method motivated from an analogy between the 
simulation of the annealing of solids and the strategy of 
solving combinatorial optimization problems. SA has 
been widely applied to solve combinatorial optimization 
problems (Yao, 1995). It is inspired by the physical 
process of heating a substance and then cooling it slowly, 
until a strong crystalline structure is obtained. This 
process is simulated by lowering an initial temperature by 
slow stages until the system reaches to an equilibrium 
point, and no more changes occur. In this paper similar to 
Behnamian et al. (2009), algorithmic framework of SA is 
described: 
 
Algorithm 3: The main procedure of simulated annealing 
(SA). 
 
1. Input: an instance x of a combinatorial optimization 
problem 
2. S ← Generate Initial solution () 
3. k ← 0 
4. Tk ← Set Initial temperature () 
5. While termination conditions not met do 
6. S′ ← Pick neighbor at random (N(S)) 
7. If f(S′) ≤ f(S) then 
8. S ← S′; 
9. Else 
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10. Accept S′ as new solution with probability p (Tk, S′, S) 
11. End if 
12. Adapt temperature (Tk) 
13. End while 
14. Sbest ← S 
15. Output: Sbest, “candidate” to optimal solution for x. 
 
The main idea of this technique is to start from some 
initial solution, π′, and successively move among 
neighboring solutions until the stopping condition is 
satisfied. At each iteration, iter, a random solution, π′, is 
selected from the neighborhood of actual solution (πiter) 
and it replaces with a probability. 
 

(5)
( ) ( )

( , , ) min 1,exp( iter
iter iter

iter

f f
P t

t

 
 

  
   

                 (5) 
 

Where
itert  is a parameter called the temperature at 

iteration iter. The temperature decreases during the 
search process according to the cooling scheme. The 
performance of SA depends on the following parameters, 
which have to be precisely selected: initial temperature, 
cooling scheme and final temperature. The following 
presents the implementation of SA algorithm. For detailed 
description of the SA method, the reader is referred to the 
literature of Aarts and Lenstra (2003), Kirkpatrick et al. 
(1983) and Tian et al. (1999). 
 
 
Initial temperature 
 
The initial temperature is selected on the basis of K = nm 

+ 1 solutions
0 1; ;...; k   , where 

j is randomly selected 

from the neighborhood of 
1j 
and 

0 is an initial solution. 

The initial temperature is defined as: 
 

0 1 , (6)t
mn




                                                              (6) 
 

Where 
1,..., 1max { ( ) ( )}.j k j jf f    

 
 
 
Cooling scheme 
 
The temperature changes in every iteration according to 
the logarithmic cooling scheme: 
 

1 , (7)
1

j

j

j

t
t

t
 


                                                                (7) 

 

Where parameter   is defined as: 
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0

0
, (8)

ft t

ft t
ft






                                                                (8) 
 

And f is 200. The final temperature 
ft is determined from 

the following expression (Janiak et al., 2007): 
 

0
2

( )
. (9)f

f
t

mn




                                                          (12) 
 
 

COMPUTATIONAL EXPERIMENTS 
 

Data and test problems 
 

In order to compare these algorithms against together, 
the problems used in McMullen (2001a) and Zaramdini 
(2003) were selected. These include 3 problem sets, 
each set consist of 5 problems, as presented in Appendix 
Table 1. They cover a diverse set of mixed-model 
sequencing problems, from the smallest problem with 

11,880 solutions to the largest one with   

possible solutions.  

Appendix Table 1 refers to the Bill of materials ( )ijb
 

where for example, product A needs one unit of each part 
type: b, c, d and f. But for the assembly of product A, the 
part types a, e, g and h are not needed. Note that the 
small problem of the products type A to E, medium 
problems of the products type A to J and large problems 
of the products type A to O of Appendix Table 1 is used. 
In here, each problem 20 times by the algorithm 
performed, and the best solution for each algorithm in 
each step we have compared. These algorithms have 
been compiled in Matlab 7.0 and all numerical examples 
were tested on a PC with Intel Pentium 4, 1.67 GHz 
processor, 256 memory and windows XP professional 
operating system. 
 
 

Parameters settings 
 

The performance of the meta-heuristic algorithms is a 
direct relationship with parameters setting in a way that 
wrong choice of the parameters of the fully operational 
algorithms can bring about malfunctioning. There are 
several parameters that may influence the performance 
of the algorithms. For example, the larger population size 
may find better solution quality but cost higher 
computational expense. 

It should be noted that changing these parameters may 
result in different outcomes than those achieved in this 
research. The numerous parameters of an ICA algorithm 
can be adapted to maximize the convergence on each 
problem. However our experimental approach was to 
select values which present a good trade-off in order to 
have a  problem-free  implementation.  We  have  applied 

 
 
 
 

parameters tuning only for the Zeta ( ), revolution rate, 

Revolution rate, Number of imperialists and Number of 
(countries, iterations) were set to 0.05, 0.4, 9 and (300; 
1000) respectively. 

In GA, the population size was tenfold the total number 
of units for all products, crossover, mutation and 
inversion probabilities were taken as 0.8, 0.1 and 0.1 
respectively. Selection strategic for the mate selection, by 
tournament selection with a size of 2 to carry out the 
order crossover. Again the tournament selection with a 
size of 2 was used for constructing the population for the 
next generation. In addition, GA employed the insert 
operator as a mutation scheme. Initial temperature 

parameter 
1  used uniform (0.5, 1) and final temperature 

parameter 
2  used uniform (0, 0.1) in SA algorithm. 

 
 

Experimental results 
 
In this section, we are going to compare the proposed 
ICA, GA and SA for part usage problem in MMAL. All 
algorithms are coded in Matlab7.0 software and run on a 
PC with Intel Pentium 4, 1.67 GHz processor, 256 
memory and windows XP professional operating system. 
After computation of objective line stoppage of each 
algorithm for its instances, the best solution obtained for 
each instance (which is named Minsol) by any of the three 
algorithms is calculated. We use relative percentage 
index (RPI) as performance measure to compare the 
methods, because RPI fulfills some drawbacks of relative 
percentage deviation (RPD) in case of the line stoppage 
objective. When each algorithm has been obtained for its 
instances, the best and worst solutions obtained for each 
instance (which are named Minsol and Woratsol, 
respectively) by any of the three algorithms are 
calculated. RPI is obtained by given formula as follows: 
 

lg
(10)sol sol

sol

A Min
RPI

Worst Min
sol





                                             (12) 

 
Where Algsol is value objective function obtained for a 
given algorithm and instance. RPI takes value between 0 
and 1. Clearly, lower values of RPI are preferred. 
Achieved results of the experiments for each comparing 
algorithm are presented in Table 1. For exclusion of the 
by-effects caused by randomized results, we execute 
each of the exemplary problems set for five times and the 
average of the attained results has founded the basis of 
the comparisons. Notice that these algorithms are run in 
equal times and first time in which the algorithm solutions 
do not change are comparison criterion we considered. 

As you observe in Table 1 the out coming results of the 
average RPI and the average operation time of the 
algorithm is much better comparing the other methods. In 
Table 1, for showing the efficiency of algorithms in 
against together the  statistical  analysis  is  used,  that  is
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Table 2. Pair-wise comparisons of results from RPI algorithms DPSOL, 
DPSO, GA and SA against each other. 
 

Algorithm Test Results of  P-value 

ICA : GA -0.88 0.810 

ICA : SA -1.08 0.503 

GA : SA 1.33 0.135* 
 

* Means the paired t_test is significant, that is, P Value    
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Figure 7. Plot of RPI for the type of algorithm factor. 

 
 
 
pair-wise comparisons were made at significance level α 
= 0.01 employing one-tail t-test, since basically each 
problem is independent of the other problems. In fact the 
comparison is about the average RPI in the achieved 
results of the algorithms. In this hypothesis testing, 

alternative hypothesis is 
1
: 0H D   versus 

: 0H D  whereas D is different between the averages 

RPI of comparative algorithms. Therefore, assume zero 
can be rejected if and only if: 

 

; 1 (11)
/

n

D

D
t t

S n
  

                                                         (11) 

 
t and test of hypothesis results from the confidence level 
of 95% for average RPI  is given in Table 2. As you see 
in Table 2 with the confidence level of 95% the average 
RPI in the achieved results of the ICA is much better than 
the other ones in the presented problem, and also the 
average RPI for SA results are less than GA. Figure 7 
shows the diagram for the average value LSD 
(confidence interval 95%) for various algorithms. 

Following Figure 7 clearly asserts the claim that the 
proposed ICA is superior over the other comparing 
algorithms. From another  aspect  in  order  to  check  the 

effect of the performance of other comparing algorithms, 
in this section basis for comparison is the size of 
problem. 
 
 
CONCLUSIONS AND SUGGESTION 
 
According to increasing variety of products and industries 
movement toward more production based on customer’s 
order, we will face with increasing the number of various 
models; also, in increase the capacity of production is 
one of the assembly industries’ targets. So, the usage of 
meta-heuristic methods in order to define the sequence 
of production related to common methods will be more 
noticeable. 

Since the assembly time, the combination and quantity 
of needed parts for each kind of model are usually 
different; minimizing part usage in different workstation 
can be a vital factor in determining the process sequence 
of the products. This is a kind of NP-Hard problem and 
accessing the integer’s linear programming is so difficult. 
Because of, this paper presented an imperialist 
competitive algorithm. This goal is one of the most 
important goals in MMAL, so that the usage rate is a 
measure of the company's ability to keep the schedule 
level, or evenly intermixed - keeping the raw materials for 
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the different products arriving to the system at as 
constant a rate as possible.  

In order to prove the efficiency of the proposed 
algorithm, three distinct kinds of methods have been 
used in the produced literature: innovative searching 
method of the GA and hybrid SA in the set of small, 
medium and large problems. The results indicated that 
the ICA excels comparing to the other comparing 
algorithms. We can offer some suggestions for the 
development of the present study. Introducing the 
problem in the dynamic and probability situations, 
applying changes in the problem assumption, using 
different operators in order to increase possibility of more 
searching of algorithm and leveling the convergence, 
applying new constraints on problem considering the 
existing constraints and employing the innovative 
methods such as the neural network, and colony 
combination of both. 
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APPENDIX 

 
Table 1. Problem sets used in the experiments. 
 

Problem    DT I MPS Solutions 

Small problems 

PS1 12 5 (8,1,1,1,1) 11,880 

PS2 12 5 (4,3,2,2,1) 831,600 

PS3 12 5 (3,3,2,2,2) 1,663,200 

PS4 15 5 (4,3,3,3,2) 126,126,000 

PS5 15 5 (3,3,3,3,3) 168,168,000 

 

Medium problems 

PM1 20 10 (7 5 1 1 1 1 1 1 1 1)  
PM2 20 10 (6,5,2,1,1,1,1,1,1,1)  
PM3 20 10 (5,5,3,1,1,1,1,1,1,1)  
PM4 20 10 (4 4 4 2 1 1 1 1 1 1)  
PM5 20 10 (2,2,2,2,2,2,2,2,2,2)  

 

Large problems 

PL1 100 15 (30,30,15,10,5,1,1,1,1,1,1,1,1,1,1)  
PL2 100 15 (25,25,20,15,5,1,1,1,1,1,1,1,1,1,1)  
PL3 100 15 (20,20,15,15,10,6,6,1,1,1,1,1,1,1,1)  
PL4 100 15 (15,15,15,10,10,10,10,5,4,1,1,1,1,1,1)  
PL5 100 15 (7,7,7,7,7,7,7,7,7,7,6,6,6,6,6)  

      

Bill of assembly time configuration 

Product type 
Part type 

 a   b   c   d   e   f   g   h 

A  0   1   1   1   0   1   0   0 

B  0   1   0   0   0   0   0   0 

C  0   0   0   1   0   0   0   1 

D  1   0   1   0   0   0   0   1 

E  1   0   0   0   1   0   1   0 

F  0   1   0   0   0   0   1   0 

G  0   0   1   0   0   1   0   0 

H  0   0   0   1   0   0   1   0 

I  1   0   0   0   1   1   0   0 

J  0   0   0   0   1   0   0   1 

K  1   0   0   1   0   0   0   1 

L  1   0   1   0   0   1   0   1 

M  1   0   1   0   1   0   1   0 

N  0   1   0   1   0   1   1   0 

O  0   1   1   0   0   1   0   0 
 

The number in the table denotes the demand for that particular product. 
 
 
 
 
 


