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The work desires to determine the optimum level of batch size in bottleneck facility, and to analyze the 
effect of common components on work-in-process (WIP) level and cycle time, in a multistage 
production system and uncertain environment created by machine breakdown and quality variation. 
Few simulation models were developed based on a live case from a company. The models were verified 
and validated with the historical data from the company and by face validity. Taguchi approach for 
orthogonal array was used in designing experiments and these were executed in WITNESS, a 
simulation package. It was observed that the variation in level of common component in the system had 
significant impact on the production WIP level and cycle time. The main contribution of this research is 
determination of the optimal level of batch size in a bottleneck resource under the uncertainties. This 
approach can be generalized to any multistage production system, regardless of the precedence 
relationships among the various production stages in the system. 
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INTRODUCTION 
 
The classical lot sizing model assumes the output of the 
production process is of perfect quality. However, in real 
manufacturing system, nonconforming items may 
produce as time goes. These nonconforming items need 
to be screened out. The presence of defective product 
motivate in a smaller lot size. Optimum lot size for each 
stage is even more complicated in multistage production 
system when cycle time for each stage is different. The 
number of defectives may vary in multistage production 
system where the products move from one stage to 
another. Depending on proportion of defective items, the 
optimal batch sizes in the stages also varies. However, 
small batch size may reduce the productivity, and stock 
out and this increases the total  expected  cost.  Thus,  an  
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optimum lot size must be obtained when quality is 
stochastic. Multi-stage production planning is a system 
which transforms or transfer inventories through a set of 
connected stages to produce the finished goods. The 
stages represent the delivery or transformation of raw 
materials, transfer of work-in-process between production 
facilities, assembly of component parts, or the distribution 
of finished goods. The fundamental challenge of multi-
stage production is the propagation and accumulation of 
uncertainties that influences the conformity of the outputs 
(Du and Chen, 2000). The present study is concern with 
such a multistage system and simulation is chosen to 
analyse the objectives. 

A simulation model is a surrogate for experimenting 
with a real manufacturing system. It is often infeasible or 
not cost-effective to do an experiment in a real process. 
Thus, it is important for an analyst to determine whether 
the simulation model is an accurate representation of the 
system being studied. Further, the model has to be 
credible; otherwise, the results may never be used in the 
decision-making process, even if the model is “valid” 
(Law and McComas, 1997). Few  simulation  models  are  



 
 
 
 
used to analyze various effects of uncertain factors 
namely machine breakdown and quality variability. 
Machine breakdown means the failure or stoppage of 
machine(s) for unknown reason(s) and a representation 
of interruption in the process (Koh and Saad, 2003). It 
wield a reduction of capacity level and delay the release 
of products or subassemblies (Wazed et al., 2010). In this 
study, the authors assumed that no alternative machines 
are available if the existing machines fail and no 
alternative routing can be executed if an order needs to 
be expedited. Short manufacturing cycle time is accepted 
as the central underlying factor for successfully 
accomplishing the world-class manufacturing goals such 
as on-time delivery (Blackburn, 1985), quality 
(Schmenner, 1991; Schonberger, 1986), flexibility (Stalk, 
1988) and productivity (Wacker, 1987). Manufacturing 
cycle time is now often used as a measure of a firm’s 
competitiveness.  

In the operations management literature, two concepts 
of quality are stand out. One defines it as the degree of 
conformance to design specification. This corresponds to 
the view of the quality control technicians. The second 
view considers quality of the design itself. Quality defines 
as the degree to which a system, component, or process 
meets specified requirements or meets customers’ 
expectations (Aas et al., 1992). Quality of a product is a 
measure of perfection. A quality uncertainty of the 
unacceptable material condition not only affects the 
change of finished products, but also creates an 
additional time required at a resource to rework the parts. 
Such additional time spent at a resource, delays the 
planned work to be released to the resource. The factors 
of quality variation are Found in Wazed et al. (2008). 

In the quality literature, the quality of a product may fail 
due to variations called chance (common or random) 
cause variations and assignable cause variations. 
Assignable cause variation can occur at any stage of 
production process and once a defective part is produced, 
all subsequent parts will be bad (Kim and Gershwin, 
2005). Some of the assignable cause variations are 
defective raw material, improper machine setup, worn 
equipment, man power expertise and skill, the product 
design and specification, and poor quality of machine. In 
this article, the inspection is performed at the final stages 
only and the defective product(s) is simply rejected. 

The effects of the reworking of defective items on the 
economic production quantity (EPQ) model with 
backlogging have been studied by Peter (2003). In his 
study, a random defective rate is considered, and when 
regular production ends, the reworking of defective items 
starts immediately. Ouyang et al. (2007) have 
investigated the integrated vendor-buyer inventory 
problem. In their model, it is assumed that an arrival 
order lot may contain some defective items, and the 
defective rate is a random variable. Also, shortage is 
allowed and the production cycle time is controllable and 
reducible by adding extra  crashing  cost.  Yang  and  Pan  
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(2004) have developed an integrated inventory model 
that minimizes the sum of the ordering/ setup cost, 
holding cost, quality improvement investment and 
crashing cost. They simultaneously optimize the order 
quantity, lead time, process quality and number of 
deliveries while the probability distribution of the lead time 
demand is normal. But, they did not think of common 
component. 

Porteus (1986) has developed the earliest EOQ model. 
It has shown a relationship between lot size and quality. 
Porteus research has encouraged many researchers to 
deal with modeling of the quality improvement problems. 
Zhang and Gerchak (1990) have considered a joint lot 
sizing and inspection policy studied under an EOQ model 
where a random proportion of units are defective. Makis 
and Fung (1998) have studied the effect of machine 
failures on the optimal lot size and on the optimal number 
of inspections in a production cycle. Ouyang et al. (2002) 
have investigated the lot size, reorder point inventory 
model involving variable lead time with partial backorders, 
where the production process is imperfect. Chan et al. 
(2003) provide a framework to integrate lower pricing, 
rework and reject situations into a single EPQ model. To 
identify the amount of good quality items, imperfect 
quality items and defective items in each lot, a 100% 
inspection is performed. Ben-Daya and Rahim (2003) 
developed a multistage lot-sizing model for imperfect 
production processes. The effect of inspection errors in 
screening non-conforming items at each stage has been 
incorporated. These writings unfortunately neglect the 
event of resource breakdown and component 
commonality. There are few batch sizing models that 
explicitly take production cycle time into account in a 
stochastic manufacturing system. In these researches, 
the manufacturing facility is usually modeled by a 
queuing system. Karmarkar (1987) has examined the 
relationships between manufacturing cycle times, WIP 
inventories and batch size. Karmarker et al. (1992) have 
presented a multi-item batching heuristic with the 
objective of minimizing the queuing delays. They 
developed upper and lower bounds on the optimal batch 
size. Based on the bounds, three batch sizing heuristics 
are presented and tested. These studies have ignored 
the uncertainties and commonality. 

Hong (1995) has developed a mathematical model to 
study the effect of reduction in manufacturing cycle time 
and increase in process quality on lot size computation 
and total relevant cost. Kuik and Tielemans (1999) have 
present a batch sizing model that minimizes the average 
queuing delay for a multi-item, single-machine work-
centre. Later, they investigated the relationship between 
batch size and lead time variability. Machine breakdown 
and common components are not considered for 
conclusions. The major limitations of the earlier studies 
are: (1) the combined effects of quality and machine 
breakdown in a multistage production system are 
ignored;   (2)   none   of  the  studies  have  considered  a  
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Table 1. The products details for XDF. 
 
Photograph Details 
 Single layer rim (SL), 26 inch diameter, 32 holes, Triple butted spokes (2.3/1.8/2.0 mm) 
 Double layer rim (DL), 26 inch diameter, 28 holes, Double butted spokes (2.0/1.8/2.0 mm) 

 
 
 

 
 
Figure 1. Existing production layout of XDE. 

 
 
 

 
 
Figure 2. Proposed/modified production layout of XDE. 

 
 
 
multistage production problem in determining the optimal 
lot size in a bottleneck facility; (3) none of the 
models/studies have included common component and 
brought out live case. Under such circumstances, the 
authors studied the effects of component commonalities 
and two uncertain factors, namely machine breakdown 
and quality variation in a multistage production system. 
The main objective of this study is to analyze the 
throughput and average production cycle time of the 
assembly lines in a company, consisting of two products 
under component commonality in a disturbed 
environment. 
 
 
MATERIALS AND METHODS 
 
The production system 
 
The company namely XDE (a given name) located in Malaysia 
produces bicycle wheels. This research deals with the production 
and assembly line of bicycle wheel only. There are two different end 
products, product SL (line 1) and product DL (line 2) of this system. 
The products details are in Table 1. Parts initially processed in same 

sawing machine, are then placed in two separate production lines. 
Each production line contains 3 (three) different processing (viz. 
assembly, inspection and packing operation) and ended up with 
single end products after the assembly operation. Figure 1 is shows 
the existing production layout of the company. 

Presently, the company use the conventional production 
processes with known lead time. They exercise event trigger policy 
for any stoppage/break down of the lines. The historical records 
show that the number of defective parts produced by the company 
varies from 3 - 7%. It is seen that the setup and cycle time for 
lancing stations are higher than the others. Setup requires with 
each batch change. It is the bottleneck of the system. 
 
 
Experimental design 
 
This study developed few simulation models based on the existing 
production layout (Figure 1) of the company. The existing layout 
was modified to introduce common component(s) in the system. 
Figure 2 shows the proposed layout that incorporates commonality 
dimension. Two models, namely the base model (Figure 3a) and 
the commonality model (Figures 3b and c) were developed in 
WITNESS simulation package. The prominent uncertainty factors; 
machine breakdown and quality variability were applied separately 
and   in    combined   form     in  simulation   exercises  with/ without 
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Figure 3. Base (a) and Commonality (b and c) Models in WITNESS. 

 
 
 

Table 2. Cycle, setup and repair time for each station of XDE. 
 

Machine/Station Description 
Cycle time (min)  

(Min, Max, average) 
Setup time 

(min) 
Repair time 

(min) 

Sawing Process 
Single layer 55/60, 57/60, 56.2/60 

3±1/1 15±2/20 
Double layer 62/60, 64/60, 62.8/60 

     

Butted Process 
Single layer 66/60, 70/60, 68/60 

34±1/10 58±2/50 
Double layer 58/60, 62/60, 60/60 

     

Drilling Process 
32-Hole 144/60, 148/60, 145/60 

48±1/10 185±5/54 
28-Hole 166/60, 170/60, 168/60 

     

Lancing Process 
32-Spoke 191/60, 199/60, 195/60 

62±2/1 25±2/40 
28-Spoke 172/60, 180/60, 174/60 

     
Inspection Process (for SL and DL) 20±2/60   
Packaging Process (for SL and DL) 15±2/60 4±1/50  

 
 
 
the inclusion of common components for analysis. 

In this study, two factors were considered and the effects of these 
factors on the system performance were tested. The levels of 
commonality and production batch size at blockage station were 
considered as control factor or decision variable. The machine 
breakdown and fraction of non-conforming items were considered 
as noise factor. Analysis of mean value, signal to noise ratio and 
ANOVA were used to analyze the effect of batch size and common 
component on production cycle time and throughput quantity. 
Interaction effects were observed to make sure that the 
characteristic of the control factors are additive. 

Data collection and validation 
 
In order to build the simulation models, and to set the initial level of 
various factors in the model, data were collected. The data includes 
processing time at each stages, setup time, average defective 
proportion, machine breakdown, etc. The time required to position 
each part into fixed place before operation that is carried out is 
setup time per piece. Setup time per batch is the time to load the 
batch material and prepare the machine. Processing time is the 
period during which a part is actually worked on. The historical data 
under deterministic condition are shown in Table 2.  The  cycle  time 
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Table 3. Comparison between the existing system and simulation model. 
 
Response Existing system Simulation model 
Mean yearly throughput for SL 114 116 
Mean yearly throughput for DL 133 135 
Mean cycle time for SL (min) 143.28 146.22 
Mean cycle time for DL (min) 137.56 139.68 

 
 
 

Table 4. Control factors and their levels for Taguchi method. 
 

Control Factors Level 1 Level 2 Level 3 
Batch size at the bottleneck station (Lancing), A 2 6 12 
Common component, B 0 1 2 

 
 
 
and setup time for lancing station are much higher than the others. 
It is the bottleneck of the system. Therefore, in this article, different 
levels of batch size are considered to analyze the effects of 
production quantity and cycle time. Data are needed for building the 
simulation model, validating the model and to serve as guideline in 
determining the level of the noise factor. Validation of data are 
performed to ensure that these are for the right issue and use. The 
recorded data were scrutinized by the production engineers who  
are familiar with the specific processes. 
 
 
Model validation 
 
The simulation models were validated by comparing the simulated 
output with historical data collected from the floor and also by face 
validity. The models ran for 5 days after a warm-up period of 2 × 5 
days and then the simulated results were generated. The run time 
for a 9 h shift for 5 days is 9 × 60 × 5 min, which is same with the 
operation schedule of the lines. The warm-up period is used to 
assure the accurate result. Throughput quantity for the real system 
and simulation model are shown in Table 3. The authors have 
authenticated the models by an expert and authorized WITNESS 
trainer for face validity. As the variation in the throughputs between 
the real system and simulation model is not large and also the face 
validation permitted with good recommendations, hence the 
simulation models are acceptable for analyzing the system. After 
validating the base model, various uncertainties were imposed to 
the models to investigate the case wise impacts. 
 
 
Simulation parameters 
 
In this study, the decision variables are the production batch sizes 
of the bottleneck resource (lancing stations in this study) and level 
of common component and the noise or uncertain factors are 
machine breakdown and defective proportion of items. The effects 
of these factors will give a more realistic and mimic the real system 
because system is normally subject to these uncertainties. By 
varying the common component and batch sizes in bottleneck 
station, the production quantity and the production cycle time are 
adjusted for an optimized total cost and reasonable machine 
productivity. Three levels of the factors are expected for the batch 
sizes to have better chance of identifying the influence of both 
linear and nonlinear behaviours. The ranges of factor levels are 
selected based on capacity limitation and in consultation with the 
engineers in the company (Table 4). Based on the historical data, 
three defective rates are considered: 3, 5 and 7% and the machine 
breakdown are taken as 40, 20 and 10 operations. 

Orthogonal array 
 
Since this study contains two control factors of three levels and two 

noise factors of three levels for each, thus ( ) 8133 22 =× design 
points are required in case of full (or complete) factorial design. 
Each experiment was simulated with nine replications (two noise 
factors of three levels each) and the average value and its signal to 
noise ratio were obtained and analyzed. In order to evaluate the 
experimental results statistically, analysis of variance (ANOVA) was 
applied. The same are used to see the effect of the interaction. 
Statistical significance tests of effects were made at 5% significance 
level.  
 
 
DATA ANALYSIS AND DISCUSSION 
 
The authors have conducted a total of 81 experiments. 
Table 5 shows the summary of experimental results for 
the WIP level and production cycle times for both of the 
lines with corresponding S/N ratio for each exercise. The 
smaller the better characteristic is used for WIP and cycle 
times and in calculating the corresponding S/N ratios. 
Since the experiment design is orthogonal, the effect of 
batch size and common component for different levels 
are separated out. Table 6 shows the response for mean 
and S/N ratio for WIP level and for production cycle times 
of production lines. Since the characteristic of these 
factors are the smaller the better, they are chosen based 
on smaller mean and larger S/N ratio. Because the larger 
the S/N ratio, the smaller the variance are around the 
desired value. Thus, based on response table (Table 6), 
the batch size and commonality are chosen as 16 and 2, 
respectively.  

Figure 4 show the main effects of variation in levels of 
control factors for (a) mean value and (b) S/N ratio of WIP. 
The same for cycle times are shown in Figure 5 and 
Figure 6 for production lines 1 and 2, respectively. It is 
pellucid that an increase in the batch size and common 
commonality yield a decrease in WIP level in the system 
(Figure 3a). The production cycle time also decreases 
with the batch size and common component(s) (Figures 
5a and 6a). These are supported by the corresponding S/N   
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Table 5. Experimental result for each experiment. 
 

Experiment 
No. 

Batch 
size 

Common 
component 

WIP level 
Cycle time 

Line 1 Line 2 
S/N ratio 
smaller Mean S/N ratio 

Smaller Mean S/N ratio 
Smaller Mean 

1 1 1 -49.6194 302.6667 -27.0731 22.5756 -27.0849 22.6056 
2 1 2 -46.1358 202.6667 -22.9643 14.0656 -23.0822 14.2567 
3 1 3 -46.3895 208.6667 -22.9753 14.0833 -23.0517 14.2067 
4 2 1 -46.2211 204.6667 -20.8778 11.0622 -20.9726 11.1833 
5 2 2 -40.3968 104.6667 -14.8383 5.5189 -14.8832 5.5467 
6 2 3 -46.3895 208.6667 -14.7910 5.4889 -14.7412 5.4567 
7 3 1 -46.2211 204.6667 -18.1118 8.0456 -18.1538 8.0844 
8 3 2 -40.3968 104.6667 -13.0514 4.4933 -13.1102 4.5233 
9 3 3 -49.6194 302.6667 -12.4857 4.2100 -12.8106 4.3700 

 
 
 
Table 6. Response table for WIP and cycle time (the smaller the better). 
 

Level 

WIP 
Cycle time 

Line 1 Line 2 
Mean S/N ratio Mean S/N ratio Mean S/N ratio 
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Level 1 276.6 247.2 -48.66 -47.67 17.023 13.958 -24.41 -22.07 16.908 13.894 -24.34 -22.02 
Level 2 172.7 237.3 -44.34 -47.35 7.396 8.109 -16.87 -17.03 7.357 8.026 -16.84 -16.95 
Level 3 172.7 137.3 -44.34 -42.31 5.659 8.011 -14.69 -6.87 5.583 7.927 -14.55 -16.75 
Max 276.6 247.2 -44.34 -42.31 17.023 13.958 -14.69 -6.87 16.908 13.894 -14.55 -16.75 
Min 172.7 137.3 -48.66 -47.67 5.659 8.011 -24.41 -22.07 5.583 7.927 -24.34 -22.02 
Diff 103.9 109.9 4.32 5.36 11.364 5.947 9.71 5.20 11.325 5.967 9.79 5.27 
Rank 2 1 2 1 1 2 1 2 1 2 1 2 
Opt 3 3 2 or 3 3 3 3 3 3 3 3 2 or 3 3 

 
 
 
ratio plots (Figures 4b, 5b and 6b). The WIP level is least 
when batch size is 6 or 12 and the system uses 2 
common components. The minimum cycle times for each 
of production lines are achieved when the batch size with 
12 and 2 common components are introduced.  

Figures 7 to 9 show the interaction effects of variation 
in levels of control factors for (a) mean value and (b) S/N 
ratio of WIP and cycle times for the lines (1 and 2), 
respectively. The figures show that there is an interaction 
between the batch size and number of common 
component used in the system. The interaction graphs 
between commonality (factor B) and batch size (factor A) 
shows that the effect of batch size on production level 
and cycle time at different levels of common component 
is not the same. This implies that, there is an interaction 
between these two factors. The WIP is least when the 
batch size (factor A) is at level 2 and common component 
(factor B) is at the highest level. However, the cycle times 
for both of the lines (1 and 2) are least when  both  of  the 

factors (A and B) are at high levels. It implies that, 
inclusion of common components accelerate to achieve 
WIP target earlier than the cycle time.  

Tables 7 to 9 shows the ANOVA for WIP level and cycle 
times of both of the lines (1 and 2) in mean and S/N ratio, 
respectively. These tables show the relative importance of 
the control factors affecting the WIP and cycle time. Both 
mean and signal to noise ANOVA indicates that batch 
sizes in lancing station (factor A) and use of common 
component (factor B) is statistically significant. The 
factors have very strong impacts on WIP and cycle times. 
Based on ANOVA (Tables 7 to 9) and response table 
(Table 6), it is obvious that batch size of 12 in the lancing 
station and 2 common components yield the lowest cycle 
time and WIP level in the system. 
 
 
Conclusion 
 

The authors have developed the simulation models of the  
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Figure 4. Response graph for (a) mean value and (b) S/N ratio of WIP level. 
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Figure 5. Response graph for (a) mean value and (b) S/N ratio of cycle time of line 1. 
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Figure 6. Response graph for (a) mean value and (b) S/N ratio of cycle time of line 2. 

 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
  

 
(b)  

 
Figure 7. Interaction plot for (a) mean value and (b) S/N ratio of WIP level. 
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Figure 8. Interaction plot for (a) mean value and (b) S/N ratio of cycle time for Line 1. 

 
 
 

  
 
Figure 9. Interaction plot for (a) mean value and (b) S/N ratio of cycle time for Line 2.  
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Table 7. ANOVA for mean value and S/N ratio of WIP. 
 

Source 
Mean value  S/N ratio 

DF SS MS F P  SS MS F P 
A 2 21585.8 10792.9 311.22 0.000  37.3694 18.6847 36.13 0.003 
B 2 22173.4 11086.7 319.69 0.000  54.2324 27.1162 52.43 0.001 
Error 4 138.7 34.7    2.0686 0.5171   
Total 8 43897.9     93.6703    

S = 5.889; R-Sq = 99.68%; R-Sq (adj) = 99.37%  S = 0.7191; R-Sq = 97.79%; R-Sq(adj) = 95.58% 
 

DF, Degree of freedom; SS, sum of squares; MS, mean of squares; F; calculated frequency; P, probability; S/N, signal to noise ratio. 
 
 
 
Table 8. ANOVA for mean value and S/N ratio of cycle time of Line 1. 
 

Source 
Mean value  S/N ratio 

DF SS MS F P  SS MS F P 
A 2 222.637 111.318 56.66 0.001  157.308 78.6541 222.95 0.000 
B 2 70.055 35.027 17.83 0.010  53.517 26.7583 75.85 0.001 
Error 4 7.859 1.965    1.411 0.3528   
Total 8 300.550     212.236    

S = 1.402; R-Sq = 97.39%; R-Sq (adj) = 94.77%  S = 0.5940; R-Sq = 99.34%; R-Sq(adj) = 98.67% 
 

DF, Degree of freedom; SS, sum of squares; MS, mean of squares; F; calculated frequency; P, probability; S/N, signal to noise ratio. 
 
 
 

Table 9. ANOVA for mean value and S/N ratio of cycle time of Line 2. 
 

Source 
Mean value  S/N ratio 

DF SS MS F P  SS MS F P 
A 2 224.835 112.418 59.75 0.001  155.964 77.9822 200.84 0.000 
B 2 69.582 34.791 18.49 0.010  52.547 26.2733 67.66 0.001 
Error 4 7.526 1.882    1.553 0.3883   
Total 8 301.944     210.064    

S = 1.372; R-Sq = 97.51%; R-Sq(adj) = 95.01%   S = 0.6231; R-Sq = 99.26%; R-Sq(adj) = 98.52% 
 

DF, Degree of freedom; SS, sum of squares; MS, mean of squares; F; calculated frequency; P, probability; S/N, signal to noise ratio. 
 
 
 
production line of a Malaysian company producing 
various bicycle wheels under the machine breakdown 
and quality uncertainties. The models have been run for a 
reasonable warm-up period. The necessary data and 
information has been collected from the floor and face-to-
face conversations. The data and models have been 
verified and validated. Intensive investigations have been 
carried out. From the experiences of the analysis and 
from the outcomes of the models, the authors would like 
to conclude that: 
  
(1) The developed simulation models for the production 
system of the company under consideration are verified 
and validated with the historical data and by face validity. 
The comparison shows that simulated deliveries are 
acceptable for further investigations.  
(2) The lancing stations process a batch of parts at a time 
and they are bottleneck of the system. Based on the least 

manufacturing cycle time and WIP level, the optimum 
batch size of 12 in lancing stations and two common 
components could ensure the best outcomes of the 
system. 
(3) Batch sizes in lancing stations, using two common 
components, makes the system outcomes improve 
significantly. ANOVA for mean and S/N ratio for cycle time 
and WIP indicate that no important factor is omitted from 
experiments.  
(4) There is an interaction among the common 
component and the batch sizes in lancing stations. The 
WIP and cycle time is least when the batch size and 
common component are at high levels. 
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