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Chebyshev wavelets method (CWM) is applied to find numerical solutions of fifth and sixth order 
boundary value problems. Computational work is fully supportive of compatibility of proposed 
algorithm and hence the same may be extended to other physical problems also.  A very high level of 
accuracy explicitly reflects the reliability of this scheme for such problems. 
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INTRODUCTION 
 
Wavelet theory (Babolian and Fattah, 2007; Cattani and 
Kudreyko, 2010; Dehghan and Saadatmandi, 2008; 
Mohammadi et al., 2011; Maleknejad and Mirzaee, 2005; 
Rawashdeh, 2011; Razzaghi and Yousefi, 2002; Yousefi 
and Banifatemi, 2006) is one of the relatively new 
techniques which is being utilized for solving wide range 
of physical problems related to various branches of 
engineering and applied sciences. With the passage of 
time, lot of rapid developments is taking place which are 
helpful in increasing the accuracy of this scheme. The 
most common related schemes are Haar wavelets 
(Maleknejad and Mirzaee, 2005), harmonic wavelets of 
successive approximation (Cattani and Kudreyko, 2010), 
CAS wavelets (Yousefi and Banifatemi, 2006), Legendre 
Wavelets (Mohammadi et al., 2011; Rawashdeh, 2011; 
Razzaghi and Yousefi, 2002; Mohammadi and Hosseini, 
2010) and Chebyshev wavelets (Babolian and Fattah, 
2007; Dehghan and Saadatmandi, 2008). In the similar 
context, we merge Chebyshev polynomials with the 
traditional wavelet technique. The modified version which 
is called Chebyshev wavelets method (CWM) proves to 
be fully compatible with the complexity of the given 
problems and obtained results are extremely accurate. In 
particular, we apply CWM on linear and nonlinear 
boundary value problems of  fifth  and  sixth  orders.  It  is 

worth mentioning that such fifth order equations arise in 
the mathematical modeling of viscoelastic flows (Davis et 
al., 1988a; Davis et al., 1988b) and sixth order equations 
(Boutayeb and Twizell, 1992; Wazwaz, 2000) are known 
to arise in astrophysics (Toomore et al., 1976); the 
narrow convecting layers bounded by stable layers which 
are believed to surround A-type stars (Siddique and 
Ghazala, 2008; Twizell and Boutayeb, 1990). It is 
observed that CWM is very user friendly but is extremely 
accurate. The error estimates explicitly reveal the very 
high accuracy level of the suggested technique. It is to be 
highlighted that, recently, Yang presented local fractional 
wavelet transform method (Yang, 2011) which is 
extremely useful for linear and nonlinear problems of 
fractional order. 
 
 
PROPERTIES OF SECOND CHEBYSHEV WAVELETS 
 
Wavelets constitute a family of functions constructed from 

dilation and translation of a single function  x called 

the mother wavelet. When the dilation parameter a and 

the translation parameter b vary continuously we have the 

following family of continuous wavelets as 
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If we restrict the parameters a  and b to discrete values 

as 
0 0 0 0 0, , 1, 0,k ka a b nb a a b      we have the 

following family of discrete wavelets 
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where 
,k n form a wavelet basis for  2L R . In particular, 

when 0 2a  and 0 1b  , then  ,k n x form an 

orthonormal basis. 
The second Chebyshev wavelets 

   , , , ,n m x k n m x  involve four arguments 

11,2, ,2 ,kn k
 
is assumed any positive integer, m is 

the degree of the second Chebyshev polynomials and it 
is the normalized time. They are defined on the interval 

[0,1)  as 

 

 

 

   2
1 1

,

1
2 2 2 1 , ,

2 2

0, otherwise

k

k

m k k
n m

n n
T x n x

x  

 
   

 

   (1) 

 

where    
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0,1,2, , 1m M  . In Equation (2) the coefficients are 

used for orthonormality. Here  mT x are the second 

Chebyshev polynomials of degree m with respect to the 

weight function   21w x x  on the interval[ 1,1] , 

and satisfy the following recursive formula 

 

    

     

0 1

1 1

1, 2 ,

2 , 1,2,3, .m m m

T x T x x

T x xT x T x m 

 

  
 

 
 
Chebyshev wavelet method (CWM)  

 
In the present paper, we consider the fifth order boundary 
value problems of the form  

 

     ( ) , 0 ,vy x g x f y x b                 (3) 

 
 
 
 
with boundary conditions 

         0 1 2 0 10 , 0 , 0 , , ,y y y y b y b          

 where  g x  is a source term function,  f y is a given 

continuous linear or nonlinear function and , 0,1,2i i   

and , 0,1i i 
 
are real finite constants. The solution of 

the Equation (3) can be expanded as a Chebyshev 
wavelets series as follows: 
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where  ,n m x  is given by Equation (1). We 

approximate  y x by the truncated series 
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Then a total number of 
12k M

 conditions should exist for 

determination of 12k M  coefficients 
 

1 1 110, 11 1 1 20, 21 2 1 2 0, 2 1 2 1
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Since five conditions are furnished by the boundary 
conditions, namely 
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We see that there should be 
12 5k M   extra conditions 

to recover the unknown coefficients nmc . These 

conditions can be obtained by substituting Equation (4) in 
Equation (3); 
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Table 1. Numerical results of example 1. 
 

x Exact solution Approximate solution Error in CWM 

0.0 0.000000000000000 0.000000000000000 1.91621E-1001 

0.1 0.099465382626808 0.099465382626808 5.04606E-69 

0.2 0.195424441305627 0.195424441305627 3.58487E-68 

0.3 0.283470349590961 0.283470349590961 1.05735E-67 

0.4 0.358037927433905 0.358037927433905 2.14472E-67 

0.5 0.412180317675032 0.412180317675032 3.48270E-67 

0.6 0.437308512093722 0.437308512093722 4.79781E-67 

0.7 0.422888068568800 0.422888068568800 5.68103E-67 

0.8 0.356086548558795 0.356086548558795 5.58785E-67 

0.9 0.221364280004125 0.221364280004125 3.83830E-67 

1.0 0.000000000000000 -0.000000000000000 3.26144E-1001 
 
 
 

 
 

Figure 1.  The plot of exact solution and solution obtained by 
CWM when M=50, k=1 for Example 1. 

 
 
 

We, now assume Equation (6) is exact at 12 5k M  points 

ix as follows: 
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The best choice of the ix  points are the zeros of the 

shifted Chebyshev polynomials of degree  12 5k M  in 

the interval  0,1 that is 1
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Combine Equations (5) and (7) to obtain 
12k M

linear 
equations from which we can compute values for the 

unknown coefficients, nmc . Same procedure is repeated 

for sixth order boundary value problems also. 
 
 

SOLUTION PROCEDURE 
 

Example 1 
 

Consider the following linear boundary value problem 
 

    15 10 , 1,
v x xy x y e xe o x      

 
subject to the boundary conditions 
 

         0 0, 0 1, 0 0, 1 0, 1 .y y y y y e         

 
The theoretical solution for this problem 

is    1 .xy x x x e  Table 1 shows the comparison of the 

absolute error between exact solution and approximate 
solution for M=50 and k=1 by CWM (Figure 1). 
 
 

Example 2  
 

Consider the following nonlinear boundary value problem 
 

     2 , 1,
v xy x e y x o x    

 
Subject to the boundary conditions 
 

          0 1, 0 1, 0 1, 1 , 1 .y y y y e y e      
 

 

The theoretical solution for this problem is   xy x e . 

Table 2 shows the comparison of the absolute error 
between   exact   solution  and  approximate  solution  for
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Table 2. Numerical results of Example 2. 
 

x Exact solution Approximate solution Error in CWM 

0.0 1.000000000000000 1.000000000000000 2.00000E-1000 

0.1 0.994653826268083 0.994653826268047 3.53979E-14 

0.2 0.977122206528136 0.977122206528068 6.77387E-14 

0.3 0.944901165303202 0.944901165303108 9.41554E-14 

0.4 0.895094818584762 0.895094818584650 1.12161E-13 

0.5 0.824360635350064 0.824360635349944 1.19840E-13 

0.6 0.728847520156204 0.728847520156088 1.16035E-13 

0.7 0.604125812241143 0.604125812241042 1.00544E-13 

0.8 0.445108185698494 0.445108185698419 7.43001E-14 

0.9 0.245960311115695 0.245960311115655 3.95604E-14 

1.0 0.000000000000000 -0.000000000000000 4.20000E-999 

 
 
 

 
 

Figure 2.  The plot of exact solution and solution obtained by CWM when M=20, k=1 
for Example 2. 

 
 
 

M=20 and k=1 by CWM (Figure 2). 
 
 
Example 3 
 

Consider the following linear boundary value problem 
     6 , 0 1,
vi xy x e y x x      

Subject to the boundary conditions 

 
               0 1, 0 1, 0 3, 1 0, 1 2 , 0 4 .

iv iv
y y y y y e y e          

 
The theoretical solution for this problem is 

   1 xy x x e  . Table 3 shows the comparison  of  the
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Table 3. Numerical results of Example 3. 
 

x Exact solution Approximate solution Error in CWM 

0.0 1.000000000000000 1.000000000000000 0.00000E+00 

0.1 1.105170918075648 1.105170918075648 2.66320E-20 

0.2 1.221402758160170 1.221402758160170 1.88103E-19 

0.3 1.349858807576003 1.349858807576003 5.50637E-19 

0.4 1.491824697641270 1.491824697641270 1.10563E-18 

0.5 1.648721270700128 1.648721270700128 1.76961E-18 

0.6 1.822118800390509 1.822118800390509 2.38429E-18 

0.7 2.013752707470477 2.013752707470477 2.71668E-18 

0.8 2.225540928492468 2.225540928492468 2.45949E-18 

0.9 2.459603111156950 2.459603111156950 1.31212E-18 

1.0 2.718281828459045 2.718281828459045 2.00000E-999 
 
 
 

 
 

Figure 3.  The plot of exact solution and solution obtained by CWM when 
M=20, k=1 for Example 3. 

 
 
 

absolute error between exact solution and approximate 
solution for M=20 and k=1 by CWM (Figure 3). 
 
 
Example 4  

 
Consider the following nonlinear boundary value problem 
 

     2 , 1,
vi xy x e y x o x   Subject to the 

boundary conditions 

               0 1, 0 1, 0 1, 1 , 1 , 1 .
iv iv

y y y y e y e y e      

 

The theoretical solution for this problem is   .xy x e  

Table 4 shows the comparison of the absolute error 
between exact solution and approximate solution for 
M=20 and k=1 by CWM (Figure 4). 
 
 

CONCULSION 
 

Linear and  nonlinear  boundary  value  problems  of  fifth
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Table 4. Numerical results of Example 4. 
 

       x Exact solution Approximate solution Error in CWM 

     0.0 1.000000000000000 1.000000000000000 1.00000E-999 

     0.1 1.105170918075648 1.105170918075650 1.88721E-15 

     0.2 1.221402758160170 1.221402758160173 3.61146E-15 

     0.3 1.349858807576003 1.349858807576008 5.01991E-15 

     0.4 1.491824697641270 1.491824697641276 5.97998E-15 

     0.5 1.648721270700128 1.648721270700135 6.38947E-15 

     0.6 1.822118800390509 1.822118800390515 6.18674E-15 

     0.7 2.013752707470477 2.013752707470482 5.36084E-15 

     0.8 2.225540928492468 2.225540928492472 3.96164E-15 

     0.9 2.459603111156950 2.459603111156952 2.10936E-15 

     1.0 2.718281828459045 2.718281828459045 1.00000E-999 
 
 
 

 
 

Figure 4.  The plot of exact solution and solution obtained by CWM 
when M=20, k=1 for Example 4. 

 
 
 
and sixth order are successfully handled by using CWM. 
Computational work and numerical results explicitly 
reflect that CWM is very user-friendly but extremely 
accurate. It is also concluded that the same CWM may 
be extended to other linear and nonlinear diversified 
physical problems of complex nature. 
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