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In this paper, we present a hybrid approach combining two optimization techniques for solving 
economic emission load dispatch (EELD) optimization problem. The proposed approach integrates the 
merits of both genetic algorithm (GA) and local search (LS), where it employs the concept of co-
evolution and repair algorithm for handling nonlinear constraints, also, it maintains a finite-sized 
archive of non-dominated solutions which gets iteratively updated in the presence of new solutions 
based on the concept of  -dominance. The use of  -dominance also makes the algorithms practical 

by allowing a decision maker to control the resolution of the Pareto set approximation. To improve the 
solution quality, local search technique was implemented as neighborhood search engine where it 
intends to explore the less-crowded area in the current archive to possibly obtain more nondominated 
solutions. Several optimization runs of the proposed approach are carried out on the standard IEEE 30-
bus 6-genrator test system. Simulation results with the proposed approach have been compared to 
those reported in literature. The comparison demonstrates the superiority of the proposed approach 
and confirms its potential to solve the multiobjective EELD problem. 
 
Key words: Economic emission load dispatch, evolutionary algorithms, multiobjective optimization, local 
search. 

 
 
INTRODUCTION 
 
The purpose of economic emission load dispatch (EELD) 
problem is to figure out the optimal amount of the 
generated power for the fossil-based generating units in 
the system by minimizing the fuel cost and emission level 
simultaneously, subject to various equality and inequality 
constraints including the security measures of the power 
transmission/distribution. Various optimization techniques 
have been proposed by many researchers to deal with 
this multiobjective programming problem with varying 
degree of success. 

Different techniques have been reported in the 
literature  pertaining  to  economic emission load dispatch 
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problem. In Brodesky and Hahn (1986) and Granelli et al. 
(1992), the problem has been reduced to a single 
objective problem by treating the emission as a constraint 
with a permissible limit. This formulation, however, has a 
severe difficulty in getting the trade-off relations between 
cost and emission. Alternatively, minimizing the emission 
has been handled as another objective in addition to 
usual cost objective.  

A linear programming based optimization procedures in 
which the objectives are considered one at a time was 
presented in Farag et al. (1995). Unfortunately, the EELD 
problem is a highly nonlinear and a multimodal 
optimization problem. Therefore, conventional optima-
zation methods that make use of derivatives and 
gradients, in general, not able to locate or identify the 
global  optimum. On  the  other hand, many mathematical  



 
 
 
 
assumptions such as analytic and differential objective 
functions have to be given to simplify the problem. 
Furthermore, this approach does not give any information 
regarding the trade-offs involved. 

In other research direction, the multiobjective EELD 
problem was converted to a single objective problem by 
linear combination of different objectives as a weighted 
sum (Chang et al., 1995; Dhillon et al., 1993; Xu et al., 
1996; Zahavi and Eisenberg, 1985). The important 
aspect of this weighted sum method is that a set of 
Pareto-optimal solutions can be obtained by varying the 
weights. Unfortunately, this requires multiple runs as 
many times as the number of desired Pareto-optimal 
solutions. Furthermore, this method cannot be used to 
find Pareto-optimal solutions in problems having a 
nonconvex Pareto-optimal front.  

In addition, there is no rational basis of determining 
adequate weights and the objective function so formed 
may lose significance due to combining non-
commensurable objectives. To avoid this difficulty, the 
 -constraint method for multiobjective optimization was 

presented in (Hsiao et al., 1994; Osman et al., 2004). 
This method is based on optimization of the most 
preferred objective and considering the other objectives 
as constraints bounded by some allowable levels. These 
levels are then altered to generate the entire Pareto-
optimal set. The most obvious weaknesses of this 
approach are that it is time-consuming and tends to find 
weakly nondominated solutions.  

Goal programming method was also proposed for 
multiobjective EELD problem (Kermanshahi et al., 1990. 
In this method, a target or a goal to be achieved for each 
objective is assigned and the objective function will then 
try to minimize the distance from the targets to the 
objectives. Although the method is computationally 
efficient, it will yield an inferior solution rather than a 
noninferior one if the goal point is chosen in the feasible 
domain. Hence, the main drawback of this method is that 
it requires a priori knowledge about the shape of the 
problem search space. 

Heuristic algorithms such as genetic algorithm have 
been recently proposed for solving optimal power flow 
problem (Osman et al., 2004). The results reported were 
promising and encouraging for further research. 
Moreover the studies on heuristic algorithms over the 
past few years, have shown that these methods can be 
efficiently used to eliminate most of difficulties of classical 
methods (Abido, 2003a, Fonseca and Fleming, 1995). 
Since they are population–based techniques, multiple 
Pareto-optimal solutions can, in principle, be found in one 
single run. 

In this paper, a hybrid multiobjective approach is 
proposed, which was based on concept of co-evolution 
and repair algorithm for handing constraints.  -

Dominance concept was implemented to maintains a 
finite-sized archive of non-dominated solutions which 
gets  iteratively  updated   according   to  the  chosen   - 
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vector. Also, local search method was introduced as 
neighborhood search engine where it intends to explore 
the less-crowded area in the current archive to possibly 
obtain more nondominated solutions. 
 
 
MATERIALS AND METHODS  
 
Here, we present a new technique combining two optimization 
techniques for solving economic emission load dispatch 
optimization problem (EELD). 
 
 
Multiobjective optimization 
 
Multiobjective optimization differs from the single objective case in 
several ways:  
 
1. The usual meaning of the optimum makes no sense in the 
multiple objective case because the solution optimizing all 
objectives simultaneously is, in general, impractical; instead, a 
search is launched for a feasible solution yielding the best 
compromise among objectives on a set of, so called, efficient 
solutions;  
2. The identification of a best compromise solution requires taking 
into account the preferences expressed by the decision-maker;  
3. The multiple objectives encountered in real-life problems are 
often mathematical functions of contrasting forms.  
4. A key element of a goal programming model is the achievement 
function; that is, the function that measures the degree of 

minimization of the unwanted deviation variables of the goals 
considered in the model. A general multiobjective optimization 
problem is expressed by:  
 
Multiple objective programming (MOP):  
 

T

1 2 m

T

1 2 n

 Min  F(x)  ( f (x),f (x),...,f (x))

s.t.     x S

x  (x ,x ,..., x )







 

 

where 1 2( ( ), ( ),..., ( ))mf x f x f x are the m objectives 

functions, 1 2 n( , ,..., )x x x are the n optimization parameters, and 

nS R  is the solution or parameter space.  

 

Definition 1 (Pareto optimal solution): 
*x  is said to be a Pareto 

optimal solution of MOP if there exists no other feasible x  (that is, 

x S ) such that, 
*( ) ( )j jf x f x for all 1,2,...,j m  and 

*( ) ( )j jf x f x for at least one objective function jf . 

 

Definition 2 (Laumanns et al., 2002) (ε-dominance): Let 

: mf x R  and ,a b X . Then a  is said to ε-dominate b  for 

some ε > 0, denoted as a b , if and only if for 

{1,..., }i m (1 ) ( ) ( ) i if a f b  (Figure 1). Definition 3 (ε-

approximate Pareto set): Let X be a set of decision alternatives 

and 0  . Then a set x  is called an ε-approximate Pareto set of 

X ,  if   any   vector      a x  is ε-dominated   by   at   least   one 



2244          Sci. Res. Essays 
 
 
 

 
 
Figure 1. Graphs visualizing the concepts of dominance (left) and ε-dominance (right). 

 
 
 

vector b x  , that is, 

 

 
:    ba x b x such that a    

  
 

According to definition 2, the ε value stands for a relative 
“tolerance” allowed for the objective values which was declared in 

Figure 1. This is especially important in higher dimensional 
objective spaces, where the concept of ε-dominance can reduce 

the required number of solutions considerably. Also, the use of  -

dominance also makes the algorithms practical by allowing a 
decision maker to control the resolution of the Pareto set 
approximation by choosing an appropriate   value. 

 
 
Economic emission load dispatch (EELD) 
 
The economic emission load dispatch involves the simultaneous 
optimization of fuel cost and emission objectives which are 
conflicting ones. The deterministic problem is formulated as 
described subsequently. 

 
 
Objective functions 
 
Fuel cost objective: The classical economic dispatch problem of 

finding the optimal combination of power generation, which 
minimizes the total fuel cost while satisfying the total required 
demand can be mathematically stated as follows (Yokoyama et al., 
1988): 
 

2

1 1

( ) ( ) ( )$ /
n n

t i Gi i i Gi i Gi

i i

f C C P a b P c P hr
 

        

where, 

i

i i i

C: total fuel cost ($/hr),  C : is fuel cost of generator i

a ,b ,c : fuel cost coefficients of generator i,

 and 

GiP : power generated (p.u)by generator i,

n: number of generator.
 

Emission objective: The emission function can be presented as  

the sum of all types of emission considered, such as
xNO ,

2SO , 

thermal emission, etc., with suitable pricing or weighting on each 
pollutant emitted. In the present study, only one type of emission 

xNO  is taken into account without loss of generality. The amount 

of 
xNO emission is given as a function of generator output, that 

is, the sum of a quadratic and exponential function: 
 

2 2

2

1

( ) [10 ( ) exp( )] /
x

n

NO i i Gi i Gi i i Gi

i

f E P P P ton hr    



     
 

where, , , , ,i i i i i     : coefficients of the ith generator's 

xNO emission characteristic. 

 
 
Constraints 

 
The optimization problem is bounded by the following constraints: 

 
Power balance constraint: The total power generated must supply 
the total load demand and the transmission losses. 

 

1

0
n

Gi D Loss

i

P P P


    

 

where DP : total load demand (p.u.), and lossP : transmission 

losses (p.u.). 
The transmission losses are given by (Hazarika and Bordoloi, 

1991). 

 

1 1

[ ( ) ( ]
n n

Loss ij i j i j ij i j i j

i i
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where, n: number of buses, Rij: series resistance connecting buses i 



 
 
 
 

and j, Vi: voltage magnitude at bus I, i : voltage angle at bus I, Pi: 
 
real power injection at bus i. Qi: reactive power injection at bus i. 

 
Maximum and minimum limits of power generation: The power 

generated 
GiP  by each generator is constrained between its 

minimum and maximum limits, that is, 

 

 

 

 
min max min max min max,       ,     ,              1,......,Gi Gi Gi Gi Gi Gi i i iP P P Q Q Q V V V i n      

 
min max min max min max,       ,     ,              1,......,Gi Gi Gi Gi Gi Gi i i iP P P Q Q Q V V V i n      

 
 

where; 
minGiP : minimum power generated, and 

maxGiP : 

maximum power generated. 

 
Security constraints: A mathematical formulation of the security 

constrained EELD problem would require a very large number of 
constraints to be considered. However, for typical systems, the 

large proportion of lines has a rather small possibility of becoming 
overloaded. The EELD problem should consider only the small 
proportion of lines in violation, or near violation of their respective 
security limits which are identified as the critical lines. We consider 
only the critical lines that are binding in the optimal solution. The 
detection of the critical lines is assumed done by the experiences of 
the decision maker (DM). An improvement in the security can be 
obtained by minimizing the following objective function.  

 

max

1

( ) (| ( ) | / )
k

Gi j G j

j

S f P T P T


   

 

where, ( )j GT P  is the real power flow 
max

jT is the maximum 

limit of the real power flow of the j th line and k is the number of 

monitored lines. The line flow of the j th line is expressed in terms of 

the control variables
GsP , by utilizing the generalized generation 

distribution factors (GGDF) (Ng, 1981) and is as follows: 

 

1

( ) ( )
n

J G ji Gi

i

T P D P


  

 

where, jiD is the generalized GGDF for line j, due to generator i 

For secure operation, the transmission line loading lS is restricted 

by its upper limit as 

 

max , 1,....,S S n   

 

where n is the number of transmission line. 

 
 
Multiobjective formulation of EELD problem 

 
The multiobjective EELD optimization problem is therefore 
formulated as: 

Mousa and Kotb          2245 
 
 
 

2

1

1

2 2

2

1

1

max

   ( ) ( ) $ /

  ( ) [10 ( ) exp( )] /

. .        0,                          

             ,                

x

n

t i i Gi i Gi

i

n

NO i i Gi i Gi i i Gi

i

n

Gi D Loss

i

Min f x C a b P c P hr

Min f E P P P ton hr

s t P P P

S S

    









   

     

  









min max

min max

min max

           1,...., ,

                         1,......,             

                       1,......,

                             1,......,

Line

Gi Gi Gi

Gi Gi Gi

i i i

n

P P P i n

Q Q Q i n

V V V i n



  

  

  

 

 

 
The proposed algorithm 

 
Recently, the studies on evolutionary algorithms have shown that 
these algorithms can be efficiently used to eliminate most of the 
difficulties of classical methods which can be summarized as: 
 
1. An algorithm has to be applied many times to find multiple 
Pareto-optimal solutions. 
2. Most algorithms demand some knowledge about the problem 
being solved. 
3. Some algorithms are sensitive to the shape of the Pareto-optimal 
front. 
4. The spread of Pareto-optimal solutions depends on efficiency of 

the single objective optimizer. 
 
It is worth mentioning that the goal of a multiobjective optimization 
problem do not only guide the search towards Pareto-optimal front 
but also maintain population diversity. 

 
 
Initialization stage 

 
The algorithm uses two separate population, the first population 

( )t
P consists of the individuals which initialized randomly satisfying 
the search space (The lower and upper bounds), while the second 

population 
( )t

R consists of reference points which satisfying all 
constraints. However, in order to ensure convergence to the true 
Pareto-optimal solutions, we concentrated on how elitism could be 

introduced in the algorithm. So, we propose an archiving/selection 
(Laumanns et al., 2002) strategy that guarantees at the same time 
progress towards the Pareto-optimal set and a covering of the 
whole range of the non-dominated solutions. The algorithm 

maintains an externally finite-sized archive 
( )t

A  of non-dominated 
solutions which gets iteratively updated in the presence of new 
solutions based on the concept of  -dominance. 

 
 
Repair algorithm 

 
The idea of this technique is to separate any feasible individuals in 
a population from those that are infeasible by repairing infeasible 
individuals. This approach co-evolves the population of infeasible 
individuals until they become feasible. Repair process works as 

follows. Assume, there is a search point S (where S is the 

feasible space). In such a case, the algorithm selects one of the 
reference points (Better reference point has better chances to be 

selected),  say r S  and  creates  random  points   Z  from the  
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segment defined between ,r , but the segment may be extended 

equally on both sides determined by a user specified 

parameter [0,1] . Thus, a new feasible individual is expressed 

as: 
 

1 2. (1 ). ,    (1 ). .          z r z r  

 

where (1 2 )       and [0,1]  is a random 

generated number 
 
 
Local search (LS) stage 

 
In this stage, we present modified local search technique (MLS) to 
improve the solution quality and to explore the less-crowded area in 
the external archive to possibly obtain more nondominated 
solutions nearby. We propose a MLS, which is a modification of 
Hooke and Jeeves (1961) method to be suitable for MOP. The 
general procedure of the MLS techniques can be described by the 
following steps. 
 

Step1. Start with an arbitrary chosen point (  n t

nX R E  , 

and the prescribed step lengths ix in each of the coordinate 

directions u , 1,2,...., .i i n  Set m = 0, assume that m is the 

size of 
tE .  

Step 2. Set m = m + 1, and k = 1 where k is number of trial (s.t., 

max1,...,k k ) to obtain preferred solution than Xm .  

Step 3. The variable ix is perturbed about the current temporary 

base point Xm  to obtain the new temporary base point 
'

mX as: 

 

 

      

      

'

        if    

        if                               i=1,2,...,n          

                     if    



 

 

   



      


   

m

m i i

m i i

m

X x u f f

X X x u f f f

X f f f
 

 

Where,    mf f X  ,    m i if f X x u     , and 

   m i if f X x u     . Assume  f is the evaluation of 

the objective functions at a point.
 

Step 4. If the point mX  unchanged. While the number of trial k is 

not satisfied, reduce the step length ix . The following dynamic 

equation is presented to reduce ix , 

 

  max1 ,      [0,1]
 

     
 

k

k
i ix x r r  

 

and go to step 3.  

Step 5. Else, if 
'

mX  is preferred than mX (that is, 

   '

m mf X f X ), The new base point is 
'

mX  . 

Step 6. With the help of the base points mX and 
'

mX , establish a 

 
 
 
 
pattern direction S as; 
 

'

m mS X X   

 

and find a point 
mX as 

' λS  m mX X  ,Where λ is the step 

length, (taken as 1). 

Step 7. If    '' '

m mf X f X
 

set 
'

m mX X , 

' ''

m mX X , and go to 6. 

Step 8. If    '' '

m mf X f X
 
set 

'

m mX X  , and go to 4. 

 

These steps is implemented on all nondominated solutions in 
tA  

to get the true Pareto optimal solution and to explore the less-
crowded area in the external archive. The following shows the 
pseudo code of the MLS algorithm. 
 

MLS technique 

Start with t

mX E  

Generate '

mX  

While (    '

m mf X f X stopped criterion 

satisfied ) DO 

If '

m mX X  

Reduce ix   Generate '

mX  

End 

Establish a pattern direction S   Generate ''

mX  

If    '' '

m mf X f X , set '

m mX X , ' ''

m mX X  

Set S   Generate ''

mX  

Else if    '' '

m mf X f X  

'

m mX X  

End 

End 

 

 
 
 
Basic algorithm  

 

It uses two separate population, the first population 
( 0)t

P (where t 
is the iteration counter) consists of the individuals which initialized 
randomly satisfying the search space, while the second population 

( )t
R consists of reference points which satisfying all constraints. 
Also, it stores initially the Pareto-optimal solutions externally in a 

finite sized archive of non-dominated solutions
(0)

A . We use 

cluster algorithm (Das and Patvardhan, 1998) to create the next 

population   
( 1)t

P ,  if  
( ) ( )| | | |t t

P A    (that   is,   the  size   of  the 



 
 
 
 

population 
( )t

P  greater than the size of archive 
( )t

A ) then new 

population
( 1)t

P consists of all individual from 
( )t

A and the 

population 
( )t

P are considered for the clustering procedure to 

complete 
( 1)t

P , if 
( ) ( )| | | |t t

P A  then | |P  solutions are 

picked up at random from 
( )tA and directly copied to the new 

population 
( 1)tP 

. 
Since our goal is to find new nondominated solutions, one simple 
way to combine multiple objective functions into a scalar fitness 
function is the following weighted sum approach: 
 

1 1

1

( ) ( ) ... ( ) ... ( ) ( )
m

i i m m j j

j

f x w f x w f x w f x w f x


       

 

where x is a string (that is, individual), ( )f x  is a combined fitness 

function, ( )if x  is the ith objective function. When a pair of strings 

is selected for a crossover operation, we assign a random number 

to each weight as follows. 
 

1

(.)
,     1,2,..,

(.)

i
i m

j

j

random
w i m

random


 



 

 

Calculate the fitness value of each string using the random weights 

iw . Select a pair of strings from the current population according 

to he following selection probability ( )x of a string x in the 

population 
( )tP . 

 

 

 

 

( )

( )
( ) ( )min

min( )

min

( ) ( )
( ) ,   where ( ) min{ ( ) | }

{ ( ) ( )}
t

t
t t

t

x P

f x f P
x f P f x x P

f x f P





  



 

( )

( )
( ) ( )min

min( )

min

( ) ( )
( ) ,   where ( ) min{ ( ) | }

{ ( ) ( )}
t

t
t t

t

x P

f x f P
x f P f x x P

f x f P





  

  
 

This step is repeated for selecting | | / 2P  Paris of strings from 

the current populations. For each selected pair apply crossover 
operation to generate two new strings, for each strings generated 
by crossover operation, apply a mutation operator with a 
prespecified mutation probability. The system also includes the 

survival of some of the good individuals without crossover or 
selection. This method seems to be better than the others if applied 
constantly. 
The proposed algorithm is shown as follows:  

 

(0) (0)

(0) (0)

(t)

( ) ( 1) ( 1)

( ) ( 1) ( )

1. t 0

2. Create P ,

3. nondominated( )

3.  terminate (A , )  do

4. 1

5. P generate( , ) {generate new point}

6. update( , )     {update archive }

7. 

t t t

t t t

R

A P

while t false

t t

A P

A A P

e

 







 





( ) ( )

( )

 

8. ( )

9. Output :

t t

t

nd while

A LS A

A
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The purpose of the function generate is to generate a new 
population in each iteration t, possibly using the contents of the old 

population 
( 1)tP 

and the old archive set 
( 1)tA  in associated 

with variation (recombination and mutation). The function update 

gets the new population 
( )tP  and the old archive set 

( 1)tA and 

determines the updated one, namely 
( )tA as indicated as shown 

as follows (Algorithm of select operator): 
  

1.  A,x

2. D={x A:box(x) box(x ))

3. if D  

4. { } \

5. : ( ( ) ( ) )

6. { } \{ }

7. : ( ( ) ( ))

8. { }

9. 

10. 

11. 

12.  

INPUT

then

A A x D

else if x box x box x x x then

A A x x

else if x box x box x then

A A x

else

A A

endif

OUTPUT



 



 

    

 

 

 

 

A

 

 
The function Ls is to explore the less-crowded area in the current 
archive to possibly obtain more nondominated solutions which is 
declared in pseudo code of the MLS algorithm. 

The algorithm maintains a finite-sized archive of non-dominated 
solutions which gets iteratively updated in the presence of a new 

solutions based on the concept of  -dominance, such that new 

solutions are only accepted in the archive if they are not  -

dominated by any other element in the current archive (Algorithm of 
select operator). The use of  -dominance also makes the 

algorithms practical by allowing a decision maker to control the 
resolution of the Pareto set approximation by choosing an 

appropriate   value. 

 
 
Implementation of the proposed approach 

 
The described methodology is applied to the standard IEEE 30-bus 
6-generator test system to investigate the effectiveness of the 
proposed approach. The values of fuel cost and emission 

coefficients are given in Table 1. For comparison purposes with the 
reported results, the system is considered as losses and the 
security constraint is released. The techniques used in this study 
were developed and implemented on 1.7-MHz PC using MATLAB 
environment. Table 2 lists the parameter setting used in the 
algorithm for all runs.  

 
 
RESULTS  
 
Figure 2 shows well-distributed Pareto optimal 
nondominated solutions obtained by the proposed 
algorithm after 200 generations after and before applying 
local search technique. Tables 3 and 4 show the best fuel 

cost and best xNO emission obtained by proposed 

algorithm as compared to nondominated sorting genetic 
algorithm (NSGA) (Abido, 2003a), niched pareto genetic 
algorithm  (NPGA)  (Abido, 2003b)  and  strength   pareto 



2248          Sci. Res. Essays 
 
 
 

Table 1. Generator cost and emission coefficients. 
 

Parameter G1 G2 G3 G4 G5 G6 

Cost 

a 10 10 20 10 20 10 

b 200 150 180 100 180 150 

c 100 120 40 60 40 100 

        

Emission 

 4.091 2.543 4.258 5.426 4.258 6.131 

 -5.554 -6.047 -5.094 -3.550 -5.094 -5.555 

 6.490 4.638 4.586 3.380 4.586 5.151 

 2.0E-4 5.0E-4 1.0E-6 2.0E-3 1.0E-6 1.0E-5 

 2.857 3.333 8.000 2.000 8.000 6.667 

 
 

 
Table 2. GA parameters. 

 

Population size (N) 60 

No. of generation 200  

Crossover probability 0.98 

Mutation probability 0.02 

Selection operator Roulette wheel  

Crossover operator BLX-α 

Mutation operator Polynomial mutation 

Relative tolerance   10e-6 

 
 
 
evolutionary algorithm (SPEA) (Abido, 2003c). 
 
 

DISCUSSION 
 

The results declare that, implementing local search 
improve the solution quality for the same approach Also, 
for different approaches. Also, it can be deduced that the 
proposed algorithm finds comparable minimum fuel cost 

and comparable minimum xNO emission to the three 

evolutionary algorithms.  
In this part of the study a comparative study has been 

carried out to assess the proposed approach concerning 
large size problem of the Pareto-set, DM preference and 
computational time. On the first hand, evolutionary 
techniques suffer from the large size problem of the 
Pareto-set. Therefore the proposed approach has been 
used to reduce the Pareto-set to a manageable size. 
However, the goal is not only to prune a given set, but 
also to generate a representative subset, which maintains 
the characteristics of the general set and take the DM 
preference into consideration. Some proposed 
approaches have been developed using cluster analysis 
to reduce the size of the Pareto-set, but unfortunately it 
does not concern the DM preference.  

On the other hand, evolutionary techniques suffer from 
the quality of the Pareto set. Therefore the proposed 
approach  has  been used to increase the solution quality 

by combing the two merits of two heuristic algorithms, 
genetic algorithm and local search techniques. Where, 
the proposed algorithm implements local search (LS) 
technique as neighborhood search engine such that it 
intends to explore the less-crowded area in the current 
archive to possibly obtain more nondominated solutions 
to improve the solution quality.  

Another advantage is that the simulation results prove 
superiority of the proposed approach to those reported in 
the literature, where it completely covers and dominates 
all Pareto-set found by the other approaches. Finally, the 
reality of using the proposed approach to handle on-line 
problems of realistic dimensions has been approved due 
to small computational time. 
 
 

Conclusions 
 

The approach presented in this paper was applied to 
economic emission load dispatch optimization problem 
formulated as multiobjective optimization problem with 
competing fuel cost, and emission. The algorithm 
maintains a finite-sized archive of non-dominated 
solutions which gets iteratively updated in the presence 
of new solutions based on the concept of  -dominance. 

Moreover, local search is employed to explore the less-
crowded area in the current archive to possibly obtain 
more nondominated solutions. The following are the 
significant contributions of this paper: 
 
(a) The proposed technique has been effectively applied  
to solve the EELD considering two objectives 
simultaneously, with no limitation in handing more than 
two objectives. 
(b) Allowing a decision maker to control the resolution of 
the Pareto set approximation by choosing an appropriate 
  value.  

(c) The proposed approach is efficient for solving 
nonconvex multiobjective optimization problems where 
multiple Pareto-optimal solutions can be found in one 
simulation run.  
(d) Local  search method is employed to explore the less- 
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Figure 2. Pareto-optimal front of the proposed approach (before and after applying local search). 

 
 
 

Table 3. Best fuel cost. 
 

Parameter NSGA NPGA SPEA Proposed  

PG1 0.1168 0.1245 0.1086 0.1737 

PG2 0.3165 0.2792 0.3056 0.3568 

PG3 0.5441 0.6284 0.5818 0.5411 

PG4 0.9447 1.0264 0.9846 0.9890 

PG5 0.5498 0.4693 0.5288 0.4529 

PG6 0.3964 0.39993 0.3584 0.3705 

Best cost 608.245 608.147 607.807 606.012 

Corresponding emission 0.21664 0.22364 0.22015 0.20080 
 
 
 

Table 4. Best xNO Emission. 

 

Parameter NSGA NPGA SPEA Proposed 

PG1 0.4113 0.3923 0.4043 0.3675 

PG2 0.4591 0.4700 0.4525 0.4904 

PG3 0.5117 0.5565 0.5525 0.5177 

PG4 0.3724 0.3695 0.4079 0.4512 

PG5 0.5810 0.5599 0.5468 0.5215 

PG6 0.5304 0.5163 0.5005 0.5304 

Best cost 0.19432 0.19424 0.19422 0.1880 

Corresponding emission 647.251 645.984 642.603 644.5346 
 
 
 

crowded area in the current archive to possibly obtain 
more nondominated solutions. 
(e) This work may be very valuable for on-line operation 
of power systems when environmental constraints are 
also needed to be considered. In addition to on-line 
operation,  this  work  can be a part of an off-line planning 

tool when there are hard limits on how much emission is 
acceptable by a utility over a period of a month or a year. 
 
For further work, we intend to solve large scale EELD 
problem with multiple dimension in a different vision using 
energy market which changes the role of dispatcher. 
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