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INTRODUCTION 
 
The pioneering study of fluid flow due to a rotating disk in 
a fluid of infinite extent was carried out by von Karman 
(1921) who introduced transformations that reduced the 
governing partial differential equations to ordinary 
differential equations. Follow up studies were made by 
Cochran (1934) who improved von Karman's results by 
using a Taylor series expansion near the disk and a 
series solution involving exponentially decaying functions 
far from the disk and by Benton (1966) who solved the 
unsteady problem. 

  In the last few decades, studies by Attia (2004, 2006, 
2007) considered the effects of (1) ion slip (2) 
temperature depend viscosity, and (3) ohmic heating on 
rotating disk flow. Chen (2004) investigated the effects of 
ohmic and viscous heating, while Eldabe and Ouaf 
(2006) presented a study of the rotating disk problem with 
heat and mass transfer in an incompressible, magneto-
micropolar fluid flow with ohmic heating, and viscous 
dissipation. They indicated that an increase in the 
magnetic parameter gives a decrease in the values of the 
velocity,  Nusselt  and  Sherwood  numbers. Other recent 
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studies of the rotating disk flow that provide a suitable 
framework for this work include those by Osalusi and 
Sibanda (2006) who considered variable property laminar 
convective flow due to a porous disk and Frusteri and 
Osalusi (2007) who considered ion slip effects and 
variable fluid properties. Osalusi et al. (2007, 2008) 
considered, respectively ohmic heating and viscous 
dissipation for flow over a porous rotating disk and the 
combined effects of viscous dissipation and Joule heating 
on unsteady hydromagnetic flow of a viscous fluid on a 
rotating cone in a rotating fluid in the presence of Hall 
and ion-slip currents taking into account the variable 
properties of the fluid. Sahoo (2009) studied the effects of 
partial slip, viscous dissipation and Joule heating on Von 
Karman flow and heat transfer of an electrically 
conducting non-Newtonian fluid. 

Turkyilmazoglu (2009) extended the classical von 
Karman problem of flow over a rotating disk to account 
for the compressibility effects with insulated and 
isothermal wall conditions. Turkyilmazoglu (2010) used 
an exponentially decaying series method to find the 
solution of the steady laminar flow of an incompressible 
viscous electrically conducting fluid over a rotating disk in 
the presence of a uniform transverse magnetic field, 
while   Sibanda   and   Makinde   (2010)   studied    ohmic 



 
 
 
 
heating, viscous dissipation, Hall current and ion slip 
currents in magnetohydrodynamic (MHD) flow over a 
porous rotating disk. 

A wide variety of problems in science and engineering 
can be modeled using coupled systems of differential 
equations. Finding analytical solutions of these systems 
of nonlinear equations on finite or semi-infinite domains is 
one of the most challenging problems in nonlinear 
mechanics. The importance of analytical solutions also 
lies in their use in the validation of new numerical and 
perturbation techniques. In recent years, homotopy 
analysis method has become a popular method for 
finding semi-analytical solutions of nonlinear differential 
equations. Xu and Liao (2006) used the homotopy 
analysis method to find series solutions of unsteady flows 
of a viscous incompressible electrically conducting fluid 
caused by an impulsively rotating infinite disk. Dinarvand 
et al. (2010) employed the homotopy analysis method to 
study the unsteady laminar incompressible boundary 
layer flow of a viscous electrically conducting fluid at the 
stagnation point region of an impulsively rotating and 
translating sphere with a magnetic field and a buoyancy 
force. Rashidi and Dinarvand (2009) used the homotopy 
analysis method for finding the totally analytic solutions of 
the system of nonlinear ordinary differential equations 
derived from similarity transform for the steady three-
dimensional problem of fluid deposition on an inclined 
rotating disk. They showed that homotopy analysis 
method (HAM) is valid for both weakly and strongly 
nonlinear problems. 

The extended homotopy perturbation method (HPM) 
was used by Ariel (2009) to find analytical solutions of the 
rotating disk problem. He showed that the extended HPM 
is highly accurate and the solution converges rapidly to 
the true solution. However, as pointed out by Liao (2005) 
and others, the homotopy perturbation method is only a 
special case of homotopy analysis method, valid when 

the auxiliary parameter 1= . Recent studies by Motsa 
et al. (2010a, b) have however cast the spotlight on the 
limitations of the homotopy analysis method. They 
suggested a modification that combines the proven 
strengths of the HAM with the Chebyshev spectral 
method. It has been claimed that this modification 
produces an algorithm that has none of the restrictive 
assumptions associated with the HAM (such as the 
requirement that the solution sought ought to conform to 
the so-called rule of solution expression and the rule of 
coefficient ergodicity), is computationally efficient, 
converges faster, and is more accurate than the 
homotopy analysis method. 
 
 

SPECTRAL-HOMOTOPY ANALYSIS METHOD 
 
The spectral-homotopy analysis method (Motsa et al., 
2010a, b; Sibanda et al., 2012), seeks to remove some 
restrictive assumptions associated with the standard 
homotopy  analysis  method. In this method, the selected 
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linear operator is defined in terms of the Chebyshev 
spectral differentiation matrix. Using this method, any 
selected initial guess may be used as long as it satisfies 
the boundary conditions. In the standard HAM, one is 
restricted to choosing a simple initial guess and linear 
operator so that the solution of higher order deformation 
equations is possible. 

In this study, we use SHAM to solve coupled nonlinear 
partial differential equations that describe the motion of 
an electrically conducting fluid past a rotating porous 
disk. The present study incorporates the effects of ohmic 
heating and viscous heat dissipation, Hall currents and 
an applied magnetic field on a rotating disk flow with 
constant properties. We test the accuracy, computational 
efficiency, and robustness of this method by comparing 
the present results with the numerical results in the 
literature. 
 
 
GOVERNING EQUATIONS 
 
We consider the flow due to a rotating disk in a viscous 
incompressible electrically conducting Newtonian fluid in 
a porous medium. We consider non-rotating cylindrical 

polar coordinates ),,( zr  where z  is the vertical axis 

with r  and  as the radial and tangential axes, 

respectively. The disk rotates with constant angular 

velocity  about the z -axis in a viscous incompressible 
electrically conducting Newtonian fluid in a porous 
medium. The components of the flow velocity are vu,  

and w  in the directions of increasing ,r  and z , 

respectively. An external uniform magnetic field with 

constant flux density 0B  is applied perpendicular to the 

surface of the disk. The induced magnetic field is 
assumed to be small in comparison with the applied 
magnetic field. The surface of rotating disk is maintained 

at a uniform temperature wT  while the temperature of the 

fluid is T . Under the Boussinesq approximation, the 

basic equations governing the flow of the fluid in the 
presence of the porous medium and the energy equation 
describing the temperature distribution are (Sibanda and 
Makinde, 2010): 
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where p  is the pressure,  is the density of the fluid,  

is the kinematic viscosity of the fluid, T  is the fluid 

temperature, 
pC  is the specific heat at constant 

pressure, s is the Hall current,  is the thermal 

conductivity of the fluid, and k  is the Darcy permeability 

parameter. 
The appropriate boundary conditions of the 

aforementioned system are: 
 

ppTTvuz

TTrvWwuz

,0,,:

,=,=,=0,:0=
          (6) 

 
where the subscript “ '' denotes ambient conditions. 
Following Sibanda and Makinde (2010), we introduce the 

von Karman similarity variable z1/2)/(=  and 

transformations: 
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where  is a non-dimensional distance along the axis of 

rotation, F , G , and H  are the non-dimensional radial, 

tangential, and axial velocities, and  is the temperature. 

Using the aforementioned transformations, Equations 1 
to 5 reduce to the second order nonlinear differential 
equations: 
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The physical parameters appearing in Equations 8 to 11 
are: 
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where Da  is the local Darcy number, M  is the 

magnetic  interaction  parameter,   Gr   is   the   modified 

 
 
 
 

Grashof number, Pr  is Prandtl number, Re  is the 

Reynolds number, and Ec  is the Eckert number. 

The primes in Equations 8 to 11 denote differentiation 
with respect to . The system of the aforementioned 

equations are solved subject to the boundary conditions: 
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where /= WH w
 is the suction ( 0<wH ) or injection 

( 0>wH ) velocity at the disk surface. In this study, we use 

the spectral-homotopy analysis method to find the 
solutions to Equations 8 to 11. 
 
 
METHOD OF SOLUTION 
 

The spectral-homotopy analysis method is applied to solve the 
system of differential Equations 8 to 11 subject to the boundary 
conditions (Equation 13). We first use the domain truncation 
method to approximate the domain of the problem from )[0,  to 

][0, L , where L  is chosen to be sufficiently large. We then 

transform ][0, L  to the domain 1,1][  on which the Chebyshev 

spectral method can be applied by using the transformations: 
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For convenience, we introduce the transformations: 
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are initial approximations that are chosen to satisfy the boundary 

conditions. To find the functions f , h , g , and , we proceed as 

follows. Substituting Equations 14 to 16 into Equations 8 to 11 
gives: 
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subject to the boundary conditions: 
 

0,=(1)=1)(=(1)=1)(=(1)=1)(=(1)=1)( gghhff                    (22) 
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The primes in Equations 18 to 21 now denote differentiation with 

respect to x  and 
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We select the linear operators: 
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where (0,1)q  is the embedding parameter. We also demand 

that the initial approximations be the solutions of the linear 
equations: 
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subject to the boundary conditions: 
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Equations 25 to 28 are to be solved, subject to the boundary 
conditions (Equation 29). If an exact solution cannot be found, we 
use the Chebyshev pseudospectral method to solve the equations. 

The derivatives of the functions )(xfi , )(xhi , )(xg i , and 

)(xi  at the collocation points 
jx  are given by: 

 

)(=
)(

),(=
)(

)(=
)(

),(=
)(

)(=
)(

),(=
)(

)(=
)(

),(=
)(

2

0=
2

2

0=

2

0=
2

2

0=

2

0=
2

2

0=

2

0=
2

2

0=

jikj

N

k

ji

jikj

N

k

ji

jikj

N

k

ji

jikj

N

k

ji

jikj

N

k

ji

jikj

N

k

ji

jikj

N

k

ji

jikj

N

k

ji

xD
dx

xd
xD

dx

xd

xgD
dx

xgd
xgD

dx

xdg

xhD
dx

xhd
xhD

dx

xdh

xfD
dx

xfd
xfD

dx

xdf

                    

(30) 

 

The collocation points 
jx  are given by: 
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and D  is the Chebyshev spectral differentiation matrix whose 
entries (Canuto et al., 1988; Trefethen, 2000) are: 
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Here, 2==0 Ncc  and 1=jc  with 11 Nj . 

Substituting Equations 30 and 31 in 25 to 28 gives a system of 
equations of the form: 
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where matrix A  has dimensions 1)4(1)4( NN , while 

matrices B  and Y  have dimensions 11)4(N . 

The zeroth deformation equation is given by: 
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where N  is the nonlinear differential operator: 
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The m th order deformation equations are given by: 
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Now we use the Chebyshev pseudospectral transformation on 

equations (40)-(47) to get: 
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subject to the boundary conditions (Equation 42) and 
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Then, we obtain the following recursive formula for 1m :  
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Starting from initial approximation obtained from Equation 33, we 
can calculate the mth order approximations using the iteration 
formula (Equation 54). 
 
 
Convergence of SHAM solution 
 

As in the case of the standard homotopy analysis method, the 
convergence of SHAM depends on a careful selection of the 

auxiliary parameter   which controls the convergence of the series 

solutions. The standard way of choosing admissible values of   
that  ensure  convergence  of  the approximate series solution is to
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Figure 1. The -curves for the solution series of F(0), H(0), G(0), and - (0) at 2nd order, 3rd order and 4th order of approximations 

when s=1, M=1, Gr=0.1, Pr=0.71, Re=1, Ec=0.1, Da=1, and Hw=0.1. 

 
 
 

select a value of   on the horizontal segment of the so-called  -

curves. Sibanda et al. (2012) suggested that the optimal value of   

to use corresponds to the turning point of the second order  -

curve. In Figures 1, we show the   curves for different orders of 

SHAM approximation. The optimal value of   that gave the most 
accurate results is the value at which the maximum or minimum of 

the second order SHAM  -curve is located. We also observe that 
for higher order approximations, the length of the horizontal 

segment of the  -curve is larger, giving a wider range of valid  -
values for which the method will converge. The optimum value used 

in subsequent calculations is 1.1=  at 30=L  and 40=N . 

The results below have been generated for 71.0Pr  and 

1.0Gr . 

Figures 2 show the convergence of the method solutions for 
different orders. We note that there is a good convergence to the 
solutions series starting from the second order approximation. 

 
 
RESULTS AND DISCUSSION 
 

The effect of the various values parameters M , EcDa, , 

and s  on the radial and tangential skin frictions and the 

heat transfer coefficients are given in Table 1. We 
observe  that both the radial and tangential skin friction 

coefficients increases with increases in M  (which is in 
line with the findings in Sibanda and Makinde (2010), 
while  the  heat transfer rate decreases. An increase in s
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Figure 2. Comparison of the convergence of the SHAM solution of  and  at 2nd order, 3rd order and 

4th order of approximations when 

. 

 
 
 
enhances both the radial skin friction and the rate of heat 
transfer coefficient while reducing the tangential skin 
friction. These results are in line with the findings of 
Osalusi et al. (2007) and Sibanda and Makinde (2010). 
Furthermore, the radial skin friction increases with 
increasing Darcy numbers. In Table 1, we notice that as 

Ec  increases, the rate of heat transfer and the radial 

skin friction increase. 
Figure 3 shows the effect of the magnetic interaction 

parameter M  on velocity and temperature profiles when 
the other parameters are held constant. The results show 
that the radial velocity achieves a maximum within the 
boundary layer. The radial, axial, tangential, and the 
temperature profiles decrease with increasing magnetic 
field parameters. These findings are in line with the 

findings in Osalusi et al. (2007) and Sibanda and 
Makinde (2010). 

Figure 4 shows the effects of the Hall current 
parameter s  on the radial and the axial velocity 

components when all other parameters were held 
constant. We note that both the radial and the axial 
velocity components decrease with the Hall current 
parameter. Back flow in the radial direction is observed 
for negative values of the Hall parameter. 

The effect of fluid suction or injection on the radial and 
axial velocity components is as shown in Figure 5, it is 
shown that flow reversal is possible for negative values of 
s  and back flow in the radial direction is observed for 

suction negative values (Sibanda and Makinde, 2010; 
Attia and Aboul-Hassan, 2004).
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Table 1. Numerical values of F’(0), -G’(0), and - ’(0) for various values of M, Da, Ec, and s with Gr=0.1, Pr=0.71, Re=1, and Hw-0.1. 
 

M Da Ec s F’(0) -G’(0) - ’(0) 

0.5 1.0 1.0 0.60 0.38193992 1.15609096 1.25432699 

1.0 1.0 1.0 0.60 0.44200996 1.27438802 1.14142328 

1.5 1.0 1.0 0.60 0.49551577 1.38289745 1.02258803 

2.0 1.0 1.0 0.60 0.54417681 1.48370053 0.90106264 

1.0 1.5 1.0 0.10 0.49359166 1.13938449 0.19921691 

1.0 2.0 1.0 0.10 0.52127588 1.07586299 0.16932975 

1.0 3.0 1.0 0.10 0.55365292 1.00937000 0.12482465 

1.0 5.0 1.0 0.10 0.58555160 0.94812814 0.00650942 

1.0 1.0 1.0 0.40 0.44416242 1.27100369 0.95906528 

1.0 1.0 1.0 0.45 0.44349154 1.27273594 1.07018270 

1.0 1.0 1.0 0.50 0.44286507 1.27417329 1.15914434 

1.0 1.0 1.0 0.55 0.44233745 1.27495095 1.19939908 

1.0 1.0 0.1 0.60 0.26364221 1.40317393 1.05024492 

1.0 1.0 0.2 0.60 0.29651926 1.40022055 1.07234583 

1.0 1.0 0.3 0.60 0.32712875 1.39202391 1.09041404 

1.0 1.0 0.4 0.60 0.35447826 1.37960554 1.10477955 
 
 
 

 
 
Figure 3. The effect of magnetic field variation on (a) radial, (b) axial (c) tangential  velocity components and (d) 

temperature profile when s=1 

 at the 6th order SHAM 

approximation. 



2778          Sci. Res. Essays 
 
 
 

 
 
Figure 4. The effect of Hall current variation on (a) the radial and (b) the axial velocity components when M=1, 

 at the 6th order SHAM 

approximation. 
 

 
 

 
 

Figure 5. The effect  variation on (a) the radial and (b) the axial velocity components when M=1, 

 at the 6th order SHAM 

approximation. 
 

 

 
The effect of increasing the Darcy number Da  is to 

enhance both the boundary-layer velocity and the 
temperature distribution (Figure 6). Figures 7 illustrates 
the effect of the Eckert number Ec  on axial and tangential 

velocity components. 
 
 
Conclusion 
 

In this work, we investigated the steady MHD flow of a 
viscous incompressible and electrically conducting fluid 
past a rotating disk in porous medium. A similarity 
transformation reduced the governing partial differential 
equations into ordinary differential equations which were 

then solved using the spectral-homotopy analysis 
method. SHAM transforms the solution of differential 
equations to that of a system of algebraic equations 
which are easier to solve as compared to the differential 
equations obtained when using the standard HAM. We 
found high convergence of the series solution for the 
second order, and we have shown that SHAM gives good 
accuracy and is computationally efficient. 

The results indicate that an increases in the magnetic 
parameter reduces the radial, axial, tangential, and the 
temperature profiles. They further show that the effect of 
the Hall current parameter is to reduce the radial and the 
axial velocity components. Increasing suction or injection 
reduces  the  radial  and  axial  velocity  components with
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Figure 6. The effect of Darcy number variation on (a) radial, (b) axial (c) tangential velocity components, and (d) 

temperature profile when  at the 6th 

order SHAM approximation. 
 
 

 

 
 
Figure 7. The effect of Eckert number variation on (a) radial and (b) tangential velocity components when 

 at the 6th order SHAM approximation.
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back flow in the radial direction realized for suction 
negative values. We also showed that the friction 
coefficient, the magnetic interaction parameter, the Hall 
parameter, and the Eckert number all combine to 
increase the skin friction, while increasing the Darcy 
number reduces the skin friction thereby increasing the 
fluid velocity" 
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