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The identification of nonlinear systems operating in a stochastic environment is an important problem 
in various discipline science and engineering. Fuzzy modeling and especially the T-S fuzzy model draw 
the attention of several researchers in recent decades this is due to their potential to approximate 
highly nonlinear behavior. An algorithm allowing the identification of the premise and consequent 
parameters intervening in the T-S fuzzy model at the same time and this starting from the minimization 
of four optimization criteria is used. A modification on both last optimization criterion is considered. 
Then an optimization method using the Particle Swarm Optimization method (PSO) is presented in this 
paper. Particle Swarm Optimization algorithm combined with the proposed algorithm is also presented. 
Simulation results on a nonlinear system and on a level control system shows that the proposed 
algorithm combined with the PSO algorithm gives results more effective than the proposed algorithm 
only more particularly to the level convergence and time computing.   
 
Key words: Fuzzy identification, fuzzy clustering, Particle Swarm Optimization (PSO), nonlinear system, 
nonlinear identification, optimization problem. 

 
 
INTRODUCTION 
 
The development of a mathematical model making it 
possible to represent ˝ as well as possible ˝ the dynamic 
behavior of a complex real process represents a very 
important problem in the real world. In recent years, and 
with the evolution of technology, a significant effort has 
been given to modeling, identification and control of such 
systems. The T-S fuzzy model (Takagi and Sugeno, 
1985; Grisales, 2007) is one of the best approaches to 
the representation of such a process. Indeed, the T-S 
fuzzy model can approximate highly nonlinear system 
into several locally linear subsystems. The identification 
problem in T-S fuzzy model can be summarized in two 
steps: structure identification and parameter estimation. 
On the other, T-S fuzzy model is composed of a premise-
part and a consequent-part. The premise parameter 
identification consists determined the fuzzy partition 
matrix   and   the  number  of  clusters  (rules)  needed  to  
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approximate the nonlinear system. While the consequent 
part identification, consists of estimated the parameters 
intervening in the conclusion of the rules of the T-S fuzzy 
model. Several techniques exist in the literature to 
identify the parameters involved in the T-S fuzzy model 
namely, the neuro-fuzzy technique (Babuska, 1998) and 
the clustering technique (Ahmed et al., 2008; Ahmed et 
al., 2011; Chen et al., 1998; Jang et al., 2007; Pingli et 
al., 2006; Xu et al., 2009; Zahid et al., 2003). In this work 
the clustering technique is used. In this context, several 
clustering algorithms have been proposed in the literature 
having to estimate the parameters of the T-S fuzzy 
model, we can quote as an example the Fuzzy C-Mean 
algorithm (FCM) (Dunn, 1974), the Gustafson  Kessel 
algorithm (GK) (Gustafson et al., 1979) and the (GG) 
algorithm (Gath and Geva, 1989). Moreover, these 
algorithms are sensitive to noises or outliers. To 
overcome these disadvantages Krishnapuram and Keller 
have proposed the Possibilistic C-Means algorithm 
(PCM) (Krishnapuram and Keller, 1996) by abandoning 
the constraint of FCM and constructing a  novel  objective  
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function. The PCM can deal with noisy data better than 
FCM, GK and GG. However, FCM, GK, and PCM are all 
only allowed the identification of the premise parameters 
while the consequent parameters are estimated using the 
least squares methods. In 1998 J.Q. Chen proposed 
another clustering algorithm allowing the identification of 
the premise and consequent parameters at the same 
time and this by using an iterative optimization method 
and starting from the minimization of four optimization 
criterion.  This algorithm has many drawbacks such as 
convergence to local optima, sensitivity to noise and the 
aberrant point, also the computation time is very slow. In 
this paper we propose a new clustering algorithm to 
overcome this problem. This algorithm consists to 
introduce some modification to the optimization criteria 
and more particularly the last two criteria. Inspired by 
krishnapuram and Keller algorithm, we introduce two new 
objective functions into J.Q. Chen algorithm to replace 
the last two objective functions J3 and J4 in it.  The 
algorithm which we have proposed overcomes the 
problems of sensitivity to noise and aberrant point better 
than FCM, GK, PCM and J.Q. Chen algorithms. 
However, FCM, GK, PCM and J.Q. Chen algorithm are 
all based on Euclidian distance in their objective function. 
In real world, the Euclidian distance is not complex 
enough to deal with more sophisticated problem. In order 
to introduce more robustness to the algorithm, Wu and 
Yang (2002) have proposed a non-Euclidean distance to 
replace the Euclidean distance in FCM algorithm. 
Inspired by Wu and Yang’s algorithm, we introduce the 
new distance into J3 objective function to replace the 
Euclidean distance in it when calculating the fuzzy 
partition matrix. The new fuzzy clustering algorithm 
proposed becomes more robust; however, this algorithm 
does not solve the problems of convergence and the 
computation time. To overcome this problem, several 
solutions have been proposed in the literature. The idea 
of these techniques is to combine the clustering 
algorithms with other optimization techniques such as 
genetic algorithm (Goldberg, 1989) and particle swarm 
optimization (Adonyi et al., 2002; Biswal et al., 2009; 
Coelho and Herrera, 2007). Furthermore, we are 
presenting in this paper another approach for the 
identification of highly nonlinear systems and operating in 
a stochastic environment. This approach makes it 
possible to combine the algorithm which one proposed 
with the particle swarm optimization (PSO) algorithm. 
Indeed the particle swarm optimization is a global 
optimization technique. Thus the incorporation of local 
research capacity of clustering algorithms and the global 
optimization ability of PSO algorithm can give very good 
results. The effectiveness of this algorithm is tested on a 
nonlinear system and on a level control system. This 
paper is organized as follows: Next section gives a brief 
overview of the T-S fuzzy model. The criteria for fuzzy 
identification are presented in section 3. The proposed 
algorithm   is   introduced   in   section  4.  The  PSO   for 

 
 
 
 
optimization of the T-S fuzzy model is presented in 
section 5. The simulations results are introduced in 
section 6. The validation model is presented in section 7. 
The application of the proposed algorithm to a level 
control system is described in section 8. And finally 
section 9 concludes the paper.        
 
 

TAKAGI-SUGENO FUZZY MODEL 
 

The implementation of a mathematical model for a 
complex real process operating in a stochastic 
environment draw the attention of many researchers in 
various disciplines of science and technology (Favier, 
1982). In this context the use of traditional methods of 
modeling and identification in order to estimate the 
parameters of such a type of process can not satisfy the 
desired performance indices (speed, accuracy and 
stability). However, other techniques such as fuzzy logic 
and more particularly the T-S fuzzy fuzzy model showed 
a very good result for the identification of these types of 
processes. The T-S fuzzy model is based on a set of 
rules in which the consequent use of numeric variable 
rather than linguistic variables such as the Mamdani 
model. The consequent can be expressed as a constant, 
a polynomial or differential equation depending on the 
antecedent variables. The T-S fuzzy model makes it 
possible to approximate the nonlinear system into several 
locally linear subsystems. The identification of a T-S 
fuzzy model is made in two stages: adjustment of the 
parameters and structure optimization. The procedure of 
adjustment of the parameters is devoted to the estimation 
of a feasible set of parameters for a given structure. The 
optimization procedure aims at finding the optimal 
structure of all local models, the relevant premise 
variables and the suitable partition of the data space. The 
T-S fuzzy model consists of several fuzzy if-then rules 
that can be represented as follows: 
 

:   is  then TR if x A y a x bi k i i k ii                                   (1) 
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of fulfillment of the antecedent 
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The estimated output of the Takagi-Sugeno fuzzy model 
can be expressed by: 
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CRITERIAS FOR FUZZY IDENTIFICATION 
 
Unlike to the other clustering algorithms which have been 
proposed in the literature, named the Fuzzy C-Means 
algorithm (FCM) (Dunn, 1974), the Gustafson and Kessel 
algorithm (GK) (Gustafson et al., 1979) and the 
Possibilistic C-Means algorithm (PCM) (Krishnapuram 
and Keller, 1996), which only allow that the premise 
Parameters identification intervening in the T-S fuzzy 
model. Chen et al. (1998) proposes another algorithm 
that allows the identification of premise and consequent 
parameters simultaneously. It is composed of fuzzy c-
linear functions and Fuzzy C-Means clustering algorithm. 
Its obtaining requires the minimization of four optimization 
criteria. However, this algorithm has some disadvantages 
including: convergence to local optima, sensitivity with 
respect to noise these are due to the normalization 

constraint ( 1
1

c

iki
 


) as well as the  arbitrary  choice  of 
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the third and fourth optimization criterion. To address this 
problem and in order to improve more robustness of the 
algorithm we tried to introduce modification to the 
optimization criteria which has been proposed, and more 
particularly on the last two criterions J3 and J4. Moreover 
we replaced the Euclidean distance by another non-
Euclidean distance. This modification makes it possible to 
guarantee the robustness of the algorithm with respect to 
the noise and the aberrant points.  
 
 
Optimization criteria 
 

The minimization of the criterion 
1

J  allows the 

determination of the consequent parameters:   
 

2( ( ) ( ))
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                                          (6)      

  

The determination of the cluster centers v
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by minimizing the 
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J  criterion: 
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The degree of membership
ik

  can be obtained by 

minimizing the following criterion:  
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Where N is the total number of observations, 
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Thus 
1

J and 
2

J  can be, respectively rewritten as follows: 
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Where (10) used on several occasions, equation (11) can 
be replaced by:    
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Thus the vector of the consequent parameters 

( 1,..., )i ci   can be obtained by minimization of the 

following criterion:   
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  and f

ik
 are calculated by minimizing 

3
J  and 

4
J criterion respectively 

Similarly 
2

J can be expressed by the following form: 
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Identification algorithm for premise and consequence 
parameters 
 
The parameters identification intervening in the T-S fuzzy 
model is obtained by minimization of four optimization 

criteria ,  ,  
1 2 3

J J J and 
4

J expressed by Equations (14), 

(15), (8) and (9) respectively. 
Their minimization is complete in an iterative way and by 
using the following theorems:   
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Theorem 2: Assume that ( 1,..., )i c
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Theorem 3: Assume that 
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 are fixed, then 

coefficients 
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ik

  and f
ik

are fixed, then the 

cluster centers of the prototypes v
i

are obtained from the 

minimization of the 2
J  criterion:  

 

2 2( ) ( )
1 ;       1,...,  

2 2( ) ( )
1

N
f x

ik ik k
kv i ci N

f
ik ik

k






 




                            (19)  



 
 
 
 
Based on the optimization conditions Equations (16) (17), 
(18) and (19), the identification algorithm of the premise 
and consequent parameters is obtained from an iterative 
optimization algorithm described later. 
 
 
PROPOSED ALGORITHM 
 

Given a data set  ,x y
k k

, the new clustering algorithm 

is given by the following steps: 
 
Step 1: Initialization 
• Choose the number of clusters 

•Choose the weighting exponent 
1

m  and 
2

m  

•Let err (0) be a large number 
 

Step 2:  initialize consequence parameter
i
  at random  

• compute the fuzzy partition matrix U and the cluster 

centers v
i

by the FCM algorithm   
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Step 4: compute the new clustering distance d
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:  

2
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Step 5: Update the fuzzy partition matrix: 
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Step 7: Compute the cluster centers  vi : 
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Step 8: compute the err = (0)    

Where     , , ...,
1 2 c
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Step 9: if err <
1
  then turn to step10; else (0)  , turn 

to step 6. 
 
Step 10: compute the estimated output and the sum of 
squared errors between the estimated output and the 
actual output by: 
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Step 11: if  
2

error   or 
3

rate   then stop; else 

1c c  , (0)error error , and turn to step 2  

 
 
PSO FOR OPTIMIZATION OF THE T-S FUZZY MODEL  
 
Fundamentals of the PSO approach 
 
The Particle Swarm Optimization (PSO) is a stochastic 
optimization technique, it was originally developed by 
Kennedy and Eberhart (1995), it uses a population of 
candidates solution to develop an optimal solution of the 
problem. The degree of optimality is measured by a 
fitness function (Eberhart and Kennedy, 1995). Similar to 
genetic algorithm (Goldberg, 1989) the Particle Swarm 
Optimization (PSO) is an optimization technique based 
on a population where each member of population is 
considered as a particle, and each particle represents a 
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Figure 1. Geometric view for PSO algorithm. 

 
 
 
solution of the current problem (Araujo and Coelho, 2008;  
Pan et al., 2006; Jang et al., 2007; Xu et al., 2009). Each 
particle in the algorithm is associated to a randomized 
velocity which enables it to move in the research space.  
The PSO algorithm does not have operators, such as 
crossover and mutation as in the genetic algorithm, in 
fact the PSO algorithm does not implement the survival of 
the suited individual, but it implements the simulation of 
social behavior individuals. From the algorithm, a swarm 
is randomly distributed in the search space, each particle 
also having a position and a random velocity (Figure1). 
Then, at each time instant, each particle is able to 
evaluate the quality of its position and to keep in memory 
its best performance. That is to say the best position it 
has achieved so far.  Each particle in the PSO is able to  
query with a number of these neighbors. And get each of 
them its own best solution noted pbest, and then chose 
the best of the best performances in its possession noted 
gbest. The optimization procedure of PSO consists of 
each time instant to change the velocity of each particle 
flying the values of pbest and   gbest. Acceleration is 
weighted by random terms, with separate random 
numbers being generated by acceleration toward of pbest 
and   gbest locations, respectively.  The implementation 
procedure of the PSO algorithm is summarized by the 
following steps (Araujo and Coelho, 2008; Jang et al., 
2007). 
Step 1: Initialize a population of particles with random 
positions and velocities using a uniform probability 
distribution.  

 
Step 2: Compute the fitness value of each particle. 
 
Step 3: Compare the fitness of each particle’s with pbest, 
if the current value is better than  pbest, then set the 
pbest value equal to the current value.  
 
Step 4: Compare the fitness of each particle’s with gbest, 
if the current value is better than  gbest, then set the 
gbest value equal to the current value.  
 
Step 5: update the position and velocity of the particle 
according to the Equations (21) and (20)  
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1 2
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Where k is the current iteration number, 
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, represents the best previous 
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value) of the i

th
 particle. Index g: represents the index of 

the best particle in the population who can provide the 

best solution to the problem.  and 
1 2
   : represents two 

random variables defined as follows: 
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1r  and  2r  are two random variables   between 0 and 1, 

1c and 
2c are two positive constants satisfying the 

following relationship:
 

  4
2 1

c c
         

w : represents the factor of inertia proposed by Shi and 

Eberhart. This factor sets the ability to explore each 
particle which aims at improving the convergence of the 
method. Note that the size of this factor directly 
influences the size of the search space. Shi and Eberhart 

have shown that for  0.8,1.2w  , can have a better 

convergence of the problem. The chosen of this factor 
also depends on the type of the intended application and 
the desired performance. 
Step 6: until reaching the stopping criterion of the 
problem. It should be noted that the convergence of the 
algorithm towards the global optimal solution is not 
always guaranteed. For this reason it is necessary to 
define a stopping criterion for the algorithm. The stopping 
criteria used in most literature is the following: 
  

i. The maximum number of iterations maxnbIter  is 

reached. 
ii. The change of speed is very low. 
iii. The value of the fitness function is reached. 
 
The position of particle, and its initial velocity must be 
chosen randomly following the uniform law, but to avoid 
the rapid movement of particle from one region to another 

in the search space, we fix a maximum speed
 maxv  and 

we assume that the velocity of particle dp  at time k is 

equal ( )dv k , so that these two velocities satisfying the 

following conditions: 
 

( )         v ( )   max max

( )      v ( )     max max

v k v si k v
d d

v k v si k v
d d

 


   
                            (22)

  

 
In a subsequent a combination between the particle 
swarm optimization algorithm (PSO) and the modified 
clustering algorithm is used to build another approach 
called modified_algorithm-PSO to identify the premise 
and consequence parameters involved in the Takagi - 
Sugeno fuzzy model.
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PSO combined with modified clustering algorithm 
 
The optimal position is measured with said fitness 
function which defines the following optimization problem. 
This according to the following fitness function: 
 

21 1( ) + (1 )  
3 11 1

mc c N m
J d iik ik ikii k

     
 

                           (3)  

M  : is a positive constant. 

 

12 (1 )
1 1

1(U,V)
3

cN c Nm m
J = (μ ) d μiik ik iki=1 ik=1 k

    
 

 : is the 

objective function of the modified algorithm. 

 Where , , , ,
1 2

V v v v vci
 
 

 : represents the clusters 

vector,  U
ik

 
   

: represents the Fuzzy partition matrix. 

 
 
Modified algorithm-PSO 
 

Given a data set  ,x y
k k

, the new clustering algorithm  

 
is given by the following steps: 
 
Step 1: Initialization 
• Choose the number of clusters 

• Choose the weighting exponent 
1

m  and 
2

m  

• Let err (0) be a large number 
• Give   and  1 2   

• Set the weight of inertia:  

• Set the size of the search space: D 

• Initialize the 1
st

 particle generation. 
• Initialize the position and velocity of each particle. 

• Initialize the fitness function
 

( )f xk  

 

Step 2:  initialize consequence parameter
i
  at random  

• compute the fuzzy partition matrix U and the cluster 

centers v
i

by the FCM algorithm   

 

Step 3: compute
i

 :      

21

1

1

1

mN
D

ik ikk
i mN

ikk













 

Where 2D x vikik
    

Compute
i

  :      

2 ( ( ) )
1    

2

1

k

mN
f y k x
ik ik

i mN
f
ikk










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Step 4: compute the new clustering distance d
ik

:  

 

2
1 exp( )d x viik k

     

 
Step 5: Update the fuzzy partition matrix: 
 

1
1

2 1
11 exp

1

m
x vik

ik
i







 

   
     

    
  
   

  
   

 
Step 6: Compute the new value of the fitness function for 
each particle. 
  

( )  
( , )

3

M
f x

k J U V
  

 
Step 7: Update the velocity and the position of each 
particle with.  
 

   ( 1)  ( ) + ( ) ( ) ( )
1 2

v k w v k p k x k p x kgd d d d d
       

( 1) ( ) ( 1) x k x k v k
d d d

                                                                                                                            

 

Step 8: Update the matrix f
ik

 by: 

 

1

1
( ) 1

21 ( )

f
ik

y k xk mi

i







 


 

 

Step 9: compute the cluster centersv
i

 : 

 

2 2( ) ( )
1 ;       1,...,  

2 2( ) ( )
1

N
f x

ik ik k
kv i ci N

f
ik ik

k






 




   

 
Compute 

i
 by:    

2 2 1 2 2
( ) ( );    ( 1, ..., )

T T
U F U F Y i ckk ki i i i i k

X X X


   

 

Step 10: compute the err = (0)    

Where     , , ...,
1 2 c

     

 
 
 
 

Step 11: if err <
1
  then turn to step10; else (0)  , turn 

to step 6. 
 
Step 12: compute the estimated output and the sum of 
squared errors between the estimated output and the 
actual output by: 
 

( ) ( )
1

c
y k y kiiki

 


 

  

1
2( ( ) ( ))

1

N
y k y ki

kerror
N

 
 
   
 
 
 

 

  
(0)error error

rate
error


  

 

Step 13: if  
2

error   or 
3

rate   then stop; 

else 1c c  , (0)error error , and turn to step 2. 

 
 
SIMULATION RESULTS 
 
In this section, we will present two examples. All 
examples are nonlinear and difficult to be described by 
the ordinary method, so the fuzzy model presented in this 
paper is adopted.      
 
Example 1: in the literature, there are several types of 
nonlinear systems described by different equations. In 
this paper, we are going to study a nonlinear system 
described by the following equation (Sastry et al., 1994): 
 

 ( ) ( 1) ( 2) ( -1) ( 2) 1 ( )
( 1) ( )

2 21 ( 1)  ( 2)

y k y k y k u k y k u k
y k e k

y k y k

    
  

   

   (24)
 

Where ( ),  ( )y k u k  are the output and the input of the 

system respectively.

 ( )e k  is a linear noise given by the recurrent equation.  

 
( 1) cos( ) ( ) sin( ) ( )

1 1 2

( 1) sin( ) ( ) cos( ) ( )     
2 1 2

( ) 0.5 ( )
1

6

e k e k e k

e k e k e k

e k e k

 

 




  

   





                         (25)

 

 
This system was proposed by Narendra and 
Parthasarathy (1990) in the context of neural networks 
modeling. Boukhirs (1998) and more recently Verdult 
(2002) used this same system to show the capabilities of 
approximation of a Takagi-Sugeno multiple models. 

In this case, we present the simulation results concerning 
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Figure 2.  Input sequences. 
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Figure 3.  Identification result for the proposed algorithm. 

 
 
 

the identification of the algorithms we have introduced 
previously.  

 
i. There exists the system by a random binary signal 
given in Figure 2. 
ii. For another input, the simulation results given by the 
proposed algorithm is given in Figures 3 and 4. 

 
Examples 2: this system is described by the following  
equation:  

 

( ) ( ( 1) 2) ( ( ) 2.5) 
( 1) ( ) ( )

2 28.5 ( )  ( 1)

y k y k y k
y k u k e k

y k y k

  
   

  
 

The simulation results concerning the identification of the  
algorithms we have introduced previously have been 
presented as follows; 
 

i. There exit the system by a random binary signal shown 
in Figure 5. proposed algorithm is given in Figures 6 and 
7. 
 
 

VALIDATION MODEL 
 

Therefore, to ensure that the model obtained from the 
estimation it is compatible with other forms of inputs to 
correctly represent the system operating to identify it. It 
we present, in this paragraph, statistical tests to validate
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Figure 4.  Identification result for the proposed algorithm-PSO. 
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Figure 5.  Input sequences. 
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Figure 6.  Identification result for the proposed algorithm. 
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Figure 7.  Identification result for the proposed algorithm-PSO. 

 

 
 

a prediction model based on the residues autocorrelation 

function and on the cross-correlation between residues 

and other inputs in the system. Moreover one will present  

other validation tests named the RMSE test and the VAF 

test. 

   A)  RMSE (Root Mean Square Error) 

This test calculates the mean squared error between the 

measured output and model output. 

 

 
21

( ) ( )
1

N
RMSE y k y k

N k
 


                                     (23)                                                                  

 

When the model output and actual output are very near, 

the test tends to zero.  

B)   VAF (Variance Accounting For) 

Introduced by Babuska (1998), this criterion makes it 

possible to evaluate expressed as a percentage, quality  

of a model by measuring the standardized variation of the 

variance between two signals.  Its optimal value is 100% 

when the two signals are equal, more they are different, 

plus its value becomes weak.  Criteria VAF is given by 

the expression (24)  
 

 var ( ) ( )
100% 1

var( ( ))

y k y k
VAF

y k

 
  
 
  

                                    (24) 

 

Example 1 

 

C) Residue auto-correlation function: 

  

 

ˆ ˆ( , ) ( , )
1ˆ ( )

2
ˆ( , )

1

N
k k

kr
N

k
k


      


  


  






                             (25)

                         
 

(D) Cross-correlation function between residues and 
previous input 
 

 

  

   

ˆ( ) ( , )
1ˆ ( )

22 ˆ( ) ( , )
1 1

N
u k u k

kru
N N

u k u k
k k


   



  


  



  
 

                       (26)

                       
 

  is the prediction error and u is the system input. 
The validity of model requires the following results: 

1     0
ˆ ( )

0     0

si
r

si


 


 


        and    ˆ ( ) 0ru   ,   

In general, the correlation functions r̂  are zero when   

is the interval
 
 20,20  with a confidence interval of 95%,  

 

i.e:  
1.96 1.96

r̂
N N


       

 

The simulation results show that the proposed algorithm-
PSO can effectively solve the problem of the other 
algorithm (FCM, GK and PCM). The validation tests used  
(Table 1) have shown good performance of these  
algorithms. However, their RMSE and VAF show a better 
behavior of the proposed algorithm- PSO compared to 
the FCM-PSO algorithm, the GK-PSO algorithm and the 
PCM-PSO algorithm (Figures 8 and 9). 
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Table 1. Validation results. 
 

 FCM GK PCM Proposed algorithm 

RMSE  2.3527 10
-5
 2.3713 10

-5
 2.3341 10

-5
 1.24 x 10

-10 

VAF (%) 99.9987 99.9986 99.9992 99.78 

Computation time 16.21 18.54 21.68 32.05 

     

 FCM-PSO GK-PSO PCM-PSO Proposed algorithm-PSO 

RMSE (10-5) 2.1283 10
-5
 1.4087 10

-5
 1.2201 3.4772

-16
 

VAF (%) 99.9987 99.9995 99.9997 99.9999 

Computation time 7.86 10.21 17.56 24,17 

 
 
 

0 5 10 15 20 25
-0.5

0

0.5

1
Auto-correlation between the residuals

-25 -20 -15 -10 -5 0 5 10 15 20 25
-0.2

0

0.2
Cross-correlation betwen the residuals and previous outputs

 

 
 
Figure 8. Validation result for the proposed algorithm. 
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Figure 9. Validation result for the proposed algorithm-PSO. 

 
 
 
Example 2 
 
The simulation results (Table 2) show  that  the  proposed        

 
algorithm-PSO can effectively solve the problem of the 
other algorithm (FCM, GK and PCM). The validation tests 
used have shown good performance of these algorithms 
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Table 2. Validation results.  
 

 FCM GK PCM Proposed algorithm 

RMSE 2.9080 10
-5
 5.837010

-5
 2.119110

-5
 1.831410

-13 

VAF (%) 100 100 100 100 
Computation time 9.76 5,99 15.48 25.37 
     

 FCM-PSO GK-PSO PCM-PSO Proposed algorithm-PSO 

RMSE (10-5) 4.0209 10
-7
 5.4891 10

-7
 1.1357 10

-6
 5.422310

-14
 

VAF (%) 100 100 100 100 
Computation time 1.71 2.05 7.22 19.45 
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Figure 10. Validation result for the proposed algorithm. 
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Figure 11. Validation result for the proposed algorithm-PSO. 

 
 
 
(Figures 10 and 11).  
 
 
APPLICATION TO AN ELECTRO-HYDRAULIC 
SYSTEM 
 
The   effectiveness   of   the   identification   algorithm  we  

proposed in this paper is tested on an electro-hydraulic 
system described by the schematic diagram in Figure 12. 
Filling the tank 1 is achieved through a centrifugal pump 
unidirectional. The latter is driven by a DC motor 
controlled by a variable speed operating in a single 
quadrant. The tank 1 is located at an elevation difference  

ha compared to the container 2. The direction of flow of 
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Figure 12. bloc diagram. 1: Ultrasonic level sensor;  2: Tank 1; 3: Tank 2; 4: Centrifugal 
pump; 5: DC motor; 6: Variable speed; 7: Manual valve v1; 8: manual valve v2; 9: Pipe 1; 10: 
Pipe 2; qe: felling flow; qs: outgoing flow of tank 1; P1: pressure at the button of tank; P2: 
pressure at the button of tank 2; Pp: exit pressure of centrifugal pump; h1: water level in tank 
1; h2: water level in tank 2; ha: difference in altitude between the sites of the two tanks; u: 
supply voltage of the engine. 
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Figure 13. Sequence of input-output. 

 
 
 

liquid depends mainly on the pressure Pp in the output 

of the pump pressure at the bottom of two tanks  P1 

and P2 and the pressure due to the difference in the 
elevation between the two reservoirs. The manual valve 

v2 is always kept open. In contrast, the valve v1 is 
used as body perturbation dump tank 1. The fluid level in  
the reservoir 1 is measured using an analog ultrasonic 
sensor. 

Identification of system parameters 

 
To identify the parameters of this system, we applied a 
proposed clustering algorithm. The set of observations 
we have taken is illustrated in Figure 13. 

For another sequence of input-output, the simulation 
results given by the proposed algorithm is given in 
Figures 14 and 15. 
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Figure 14. Identification result for the proposed algorithm. 
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Figure 15. Identification result for the proposed algorithm-PSO. 

 
 
 

Table 3. Validation results. 

 

 FCM GK PCM Proposed algorithm 

 RMSE (10
-5

) 1.4766 10
-5
 1.2074 10

-5
 1.2096 10

-5
 1.4780 10

-8 

VAF(%) 99.9956 99.9983 99.9981 98.9999 
Computation time 8.61 15.51 14.64 28.79 
     

 FCM-PSO GK-PSO PCM-PSO Proposed algorithm-PSO 

RMSE (10-5) 1.2388 10
-5
 1.1883 10

-5
 1.1976 10

-5
 5.0911 10

-11 

VAF (%) 99.9979 99.9987 99.9974 99.98 
Computation time 4.77 7.22 6.88 21.18 

 
 
 
Validation results 
 
The validations results as well as their RMSE and VAM 

tests ( Table 3) show well the effectiveness of the 
proposed algorithm (modified algorithm and modified 
algorithm-PSO) compared to the other algorithms, 
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Figure 16. Validation result for the proposed algorithm. 
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Figure 17. Validation result for the proposed algorithm-PSO. 

 
 
 
however the modified algorithm combined with the PSO 
algorithm has the best result (Figures 16 and 17). 
 
 
Conclusion 
 
In this paper, another approach of the identification of 
nonlinear stochastic systems is used. Unlike to the other 
clustering algorithms which has been proposed, that only 
allows the identification of premise parameters, the 
proposed algorithm can estimate simultaneously the 
premise and consequence parameters by using an 
iterative optimization method. It is starting from the 
minimization of four optimization criterion. In fact this 
algorithm is an extension of the algorithm proposed by J.  
Q.     Chen.    In    this    paper    we    introduced    some 

modifications in the last two criterion and we replaced the 
Euclidean distance by another non Euclidean distance. 
The proposed algorithm overcome the problems of 
sensitivity to noise and aberrant points, however, it 
cannot solve the problems of convergences and the time 
computing.  

The particle swarm optimization method combined with 
the proposed algorithm can solve these problems. The 
experimental results on a nonlinear system as well as on 
a level control system showed that the proposed 
algorithm and the proposed algorithm combined with the 
PSO presented successful results.  

But it is interesting to note that the proposed algorithm 
combined with the PSO algorithm present the best 
convergence results and computing time compared the 
proposed algorithm only.   
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