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This paper described the application of the generalized solution for transverse vibration to detect crack 
damages in reinforced concrete beams. A single crack was induced in a full-scale reinforced concrete 
beam by application of a point load. The load was increased in stages to obtain different crack heights 
to represent the extent and severity of the defect. Experimental modal analysis was performed on the 
beam prior to application of the load and after each load stage. The mode shape equation for the beams 
was obtained by using nonlinear regression. Global flexural stiffness was derived by utilizing the 

regressed variable  into the equation for transverse vibration of a Bernoulli-Euler prismatic beam. 
Local flexural stiffness at each coordinate point was derived by substituting the regressed data at that 
point and by using the centered-finite-divided-difference formula. The global stiffness decreased with 
increased severity of the crack in the beam. The results were compared with values computed using the 
secant modulus from the load-deflection plot obtained upon loading at each load stage and the trend 
was similar. The proposed algorithm could form the basis of a technique for structural health 
monitoring of load induced damaged reinforced concrete structures. 
 
Key words: Crack damage, defect severity, local stiffness indicator, reinforced concrete beam, structural health 
monitoring. 

 
 
INTRODUCTION 
 
Periodic structural condition monitoring of reinforced 
concrete structures is necessary to ensure that they 
provide a continued safe service condition. Conventional 
assessment procedures usually rely on visual inspection 
and location-dependent methods. This study proposed 
the application of experimental modal analysis to locate 
crack damage in reinforced concrete beams. The 
presence of a crack can cause localized changes to 
flexural stiffness which is dependent on the severity of 
the crack. There have been several significant studies 
carried out to determine the existence and the severity of 
defects in structures using one or more of their modal 
properties. Examples are work by Kam and Lee (1992) 
and Lim (1991) on damage detection in  structures  using  
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modal testing, Penny et al. (1993) on determination of 
damage location using vibration data, Sezer (2010) on 
non-linear analysis and Yildiz and Uğur (2009) on effect 
of corrosion on durability. Some research on beams was 
conducted by Dong et al. (1994), Maeck et al. (1999), 
Önal (2009), Yang et al. (2009), Yilmaz (2010), Zhang 
and Ma (2010), and  Zhu and Law (2007). Specific 
researches on cracked beams were conducted by Chen 
et al. (2004), Law and Zhu (2006), Narkis (1994), and 
Nwosu et al. (1995). Some work on cantilevers was 
conducted by Rizos et al. (1990), and damage detection 
of strusses was done by Liu (1995). Dynamic 
characteristics of a plate with a growing surface crack 
were conducted by Chen and Swamidas (1994). Most of 
the dynamic tests conducted on actual structures utilized 
the fundamental natural frequencies which had been 
found to be the most convenient parameter to be studied 
(Javor, 1991; Konig and Giegerich, 1989). It was found 
that the most easily observable change was the reduction  
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in natural frequencies, and most investigators used this 
feature in one way or another (Cawley and Adams, 1979; 
Friswell et al., 1994; Gudmundson, 1982; Morassi and 
Rovere, 1997). Casas (1994) proposed a method of 
surveillance of concrete structures through monitoring the 
characteristics of the natural frequencies and mode 
shapes. Varying success has been reported where the 
change in modal damping have been utilized. Salawu 
and Williams (1994) used change of mode shape to 
detect damage. West (1994) presented a systematic use 
of mode shape data in the location of structural damage 
without the use of a prior finite element model. The modal 
assurance criteria (MAC) was used to determine the level 
of correlation between modes from the test of an 
undamaged body flap and the modes from the test of the 
flap after it had been exposed to loading. The mode 
shapes were partitioned using various schemes, and the 
change in MAC across the different partitioning 
techniques was used to locate the structural damage. It 
was shown that shape changes such as the MAC were 
relatively insensitive to damage in a beam with a saw cut. 
Graphical comparisons of relative changes in mode 
shapes are shown to be the best way of detecting the 
damage location when only resonant frequencies and 
mode shapes are examined. A method of scaling-up the 
relative changes in mode shape to improve the process 
of identifying the location of the damage have also been 
presented (Fox, 1992). 

A technique for locating damage in a beam that used a 
finite difference approximation of a Laplacian operator on 
mode shape data was presented by Ratcliffe (1997). In 
the case of a damage which is not so severe, further 
processing of the Laplacian output is necessary before 
damage location can be determined. The procedure is 
found to be best suited for the mode shape obtained from 
fundamental natural frequency. The mode shapes 
obtained from higher natural frequencies may be used to 
verify the damage location, but they are not as sensitive 
as the lower modes.  

An alternative method to using mode shapes in 
obtaining spatial information about sources of vibration 
changes is by using the mode shape derivatives, such as 
curvature. It is noted that for beams, plates, and shells 
there is a direct relationship between curvature and 
bending strain. Pandey et al. (1991) demonstrated that 
absolute changes in mode shape curvature could be a 
good indicator of damage for the cantilever and simply 
supported analytical beam structures which they 
considered. The changes in the curvature increase with 
increase in damage. The curvature values are computed 
from the displacement mode shape using the central 
difference approximation. Stubbs et al. (1992) presented 
a method based on the decrease in the curvature of the 
measured mode shapes or the modal strain energy 
between two structural degrees of freedom. Topole and 
Stubbs (1995a, 1995b) further showed that using a 
limited set  of  modal  parameters  for  structural  damage  
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detection was feasible. Stubbs and Kim (1996) also 
showed that localizing damage using this technique 
without baseline modal parameters is also possible. This 
approach was confirmed by Chance et al. (1994) who 
found that numerically calculating curvature from mode 
shapes resulted in unacceptable errors. As a 
consequence measured strains were instead used to 
measure curvature directly, and this improved results 
significantly. Shahrivar and Bouwkamp (1986) who 
presented the finite element and experimental data for a 
scale model of an offshore platform found that the 
fundamental mode shape is more sensitive to damage 
than the fundamental vibration frequency, further 
confirming the sensitivity of the mode-shape method. In 
this current study a local stiffness indicator was used to 
confirm the location of damage. 
 
 
MATERIALS AND METHODS  

 

Real structures are complex systems which are difficult to analyze 
and monitor. A beam with damage like a small crack represents a 
non-linear system. A simple but reliable algorithm which applies 
easily obtainable modal data would be a useful tool. The objective 
of this study is to develop such a tool. For simplification it is 
assumed that the beam under consideration satisfies the conditions 
for a Bernoulli-Euler type beam. The transverse forced vibration of 

such a beam can thus be simply derived from Newton’s Law of 
Motion represented by the following equation: 
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Where, EI = flexural stiffness; ρ = density; A = area. 

 
The beam is also relatively long and thin. For the case of free 
vibration this equation reduces to: 
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Assuming harmonic motion given by the equation: 

 

)cos()(),(   txVtxv                (3) 

 
and substituting this into Equation 2 the eigenvalue equation is 
obtained: 
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For variable coefficients, closed-form solutions are not available for 
this equation. This restricts the case to only free vibration of uniform 
beams where the coefficients are constants, Equation 4 reduces to: 
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ω = frequency 

The general solution of Equation 4 may be written in the form: 
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Two useful alternative forms are: 
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         (7b) 

 
And 
 

xCxCxCxCxV  4321 sincoshsinh)(          (7c) 

 
There are five constants in the general solution, namely, four 

amplitude constants and the eigenvalue,, which is the natural 
frequency. The boundary conditions are used in evaluating these 
constants. For free vibration of uniform beams, Equation 3 can be 
substituted into the end condition equations to give, for the case of 
a simply supported beam: 
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Utilization of these boundary conditions the values of  and the 
corresponding mode shapes of the beam can be evaluated. 

In the current study, natural frequencies and mode shapes are 
obtained from modal testing. The mode shape data derived have 
discrete values, and an equation is required to represent these 
discrete values. The data are thus curve-fitted into the generalized 
mode shape equation (Equation 7c) by the least-squares 
regression method. This produces estimates for the unknown 
coefficients. The aim of this approach is to derive a single curve 
that represents the general trend of the data because the data 
exhibit a significant degree of error or “noise”. A nonlinear 
regression technique, namely the Marquardt-Levenberg algorithm is 
then used for the curve fitting. It is a weighted average of Newton’s 
method and the Steepest Descent method for nonlinear systems of 
equations as defined in Transforms and Nonlinear Regression 
(1995) and SigmaStat (1995). An approximation is made which 

assumes that the generalized solution still applies for the beams 
with cracks which are not so severe. The next step is to derive the 
global flexural stiffness. This can be done by utilizing the estimated 

 and rearranging Equation 6. To derive the local flexural stiffness 

at each coordinate point  was derived by applying Equation 5 and 
the centered-finite-divided-difference formula, namely: 
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On the regressed data. 
 
Employing Equation 6 and rearranging Equation 5 into: 
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Produce a shape indicator for the flexural stiffness, EI. Equation 5 is 

 
 
 
 
an egienvalue problem. The graph for Equation 9 would be a 
constant straight line. Deviation from this line indicates stiffness 
change. This may be the result damage.  

For comparison, the RC beams are load-tested by applying a 
point load at point 0.5 L and 0.7 L where L is the length of the 
beam. The length to thickness ratio of the beam and the non-
severity of the crack damage ensure that the approximation to a 
Bernoulli-Euler type beam still holds. In the load test, the applied 
load and deflection are measured during loading. The graphs of 
load versus deflection are plotted. The gradient of the linear portion 
of the graph gives the bending characteristic of the test beams. 
Subsequently, the flexural stiffness of the beam is calculated from 
the load-deflection graph. 

 
For a Bernoulli-Euler type beam the theoretical mid-span 
deflections of a simply supported beam under point load, at mid 
span and a point L - b , where b < 0.5L, are given respectively by: 
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Where P = load, L = span (m). The bending stiffness of the beam, 
EI, can be calculated as; 
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Where (P/) is the gradient of the graph of load versus deflection. 

 
 
RESULTS AND DISCUSSION 

 
Crack at 0.5 L 
 
Table 1 show that the results for flexural stiffness 
obtained from modal tests range from 3.4366 x 10

6
 Nm

2
 

for an uncracked beam with zero load to 1.8997 x 10
6
 

Nm
2
 for a beam with 1.31 mm crack width and 43 kN 

loading. Corresponding results from static load tests 
range from 4.0398 x 10

6
 Nm

2
 to 2.8825 x 10

6
 Nm

2
 

respectively. This shows that the results obtained from 
the modal tests are comparable to those obtained from 
static load tests. In other words it shows that the 
algorithm proposed gives results which are in fair 
agreement with the results from static load tests. The 
results show that for a beam with an induced crack width 
of 1.31 mm. there is a corresponding loss of stiffness of 
up to 45% as indicated by the modal tests, and up to 29% 
as indicated by the load tests.  

Figure 1 shows that the shape indicator plot is a 
straight line indicating no loss of flexural stiffness for the 
datum beam. For Load 1 the curve decreases slightly 
below the datum case; while for Load 2 the loss of 
flexural stiffness is more significant as evidenced by a 
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Table 1. Comparison of EI values with crack at 0.5 L. 
 

Load Ave. crack EI X 10
6
 (Nm

2
)  Relative stiffness 

(kN) Width (mm) Modal test Load test  Modal test Load test 

       

0 Uncracked 3.4366 4.0398  1 1 

25 0.08 2.7009 3.4666  0.79 0.86 

43 1.31 1.8997 2.8825  0.55 0.71 

 
 
 

 
  
 Figure 1. Normalized shape indicator for EI with crack at 0.5 L. 

 
 
 
much lower decrease in the curve below the datum 
curve. This shows that the results for global flexural 
stiffness are consistent with the results of local flexural 
stiffness. 
 
Crack at 0.7L 
 
Table 2 shows that the results for flexural stiffness 
obtained from modal tests range from 4.7537 × 10

6
 Nm

2
 

for an uncracked beam with zero load to 4.5634 × 10
6
 

Nm
2
 for a beam with 0.7 mm crack width and 43 kN 

loading. Corresponding results from static load tests 

range from 4.5367 × 10
6
 to 4.2482 × 10

6
 Nm

2
 

respectively. This shows that the results obtained from 
the modal tests are almost similar to those obtained from 
static load tests. This shows that the algorithm proposed 
gives results which are in good agreement with the 
results from static load tests. The results shows that for a 
beam with an applied load of 41 kN corresponding to a 
crack width of 0.38 mm there is a corresponding loss of 
stiffness of up to 4% as indicated by the modal tests, and 
up to 6% as indicated by the load tests. The loss in 
stiffness is apparently very small compared to the beam 
with a crack at 0.5 L.  
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Table 2. Comparison of EI values with crack at 0.7L. 
 

Load Ave. crack EI X 10
6
 (Nm

2
)  Relative stiffness 

(kN) Width (mm) Modal test Load test  Modal Test Load test 

0 Uncracked 4.7537 4.5367  1 1 

25 0.073 5.2884 4.4502  1.10 0.98 

41 0.383 4.8520 4.5695  1.02 1.01 

43 0.7 4.5634 4.2842  0.96 0.94 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2. Normalized shape indicator for EI with crack at 0.7 L. 

 
 
 
Figure 2 also shows that the shape indicator plot is a 
straight line indicating no loss of flexural stiffness for the 
datum beam. For Load 1 the curve rises slightly above 
the datum case. The increase, however, is not significant, 
indicating that there is very little change in the flexural 
stiffness due to the damage. For Load 2, Load 3 and 
Load 4 there are indications of increasing losses of local 
flexural stiffness with increasing loads and crack widths. 
The global flexural stiffness results obtained above show 
very little change from the datum for Load 1, Load 2 and 
Load 3; although the plot of local flexural stiffness did 
show a decrease in stiffness with increasing loads and 
crack widths. The overall effect on the stiffness remains 
insignificant.   There   are  also  inflexions  shown  on  the  

curves followed by further loss of stiffness. 
From the values of relative stiffness obtained, it is 

observed that for the same level of severity induced the 
crack in the middle causes a greater loss of stiffness 
compared to a crack on the right side of mid-span. The 
algorithm has proven to be a simple and reliable method 
to detect crack damage in a RC beam. 
 
 
Conclusion 
 
The procedure of applying curve fitting using the 
generalized solution model and fourth order centered 
finite-divided-difference to the  modal  data  produces  the 



 
 
 
 
global flexural stiffness for the control and defect 
reinforced concrete beams. The results using this method 
are in fairly good agreement with the results obtained 
from static load tests. The procedure is capable of 
indicating the presence of damage by showing a loss in 
the flexural stiffness. The loss of flexural stiffness is more 
pronounced in the case of damage in the middle than for 
similar extents of damage located outside the mid-span 
region.  
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