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In this study, finite elements method (FEM) was used for the nonlinear analysis of reinforced concrete 
(R/C) plates under incremental loading up to failure load. Layered composite material model (LCMM) 
was used for the modeling of reinforced concrete plates. This approach differs from the other 
approaches since it considers the effect of tensile stiffness of concrete between cracks and uses a 
criterion based on the fracture energy concept considering the effect of finite element mesh size. Load-
displacement relationships were determined according to the ‘layered composite material approach’. 
The results of the analyses were compared and found to be in agreement with the experimental results 
and the results of past studies. A computer program prepared with Fortran PowerStation 4.0 
programming language was used in this study. 
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INTRODUCTION 
 
The analysis of reinforced concrete structures using an 
analytical method is an advanced but complex process 
due to the following reasons: 1) Reinforced concrete 
structures are formed by the combination of two different 
materials that is concrete and steel, 2) the behavior due 
to tensile crack, biaxial rigidity, nonlinear stress-strain 
relationship of concrete and strain softening, 3) 
reinforcement slip and aggregate interlock, etc. In 
general, for the analysis of reinforced concrete plates and 
beams by FEM, two different approaches are used: a) 
modified stiffness approach, b) layered approach (is also 
used in this study). Some of the important studies carried 
out in the past for the nonlinear analysis of reinforced 
concrete plates are the following: Kupfer et al. (1969) 
examined the behavior of concrete under biaxial tensile 
stress experimentally. Jofriet et al. (1971) studied the 
finite elements method to determine the crack effect of 
concrete on the nonlinear analysis of reinforced concrete 
slabs. Hand et al. (1973) investigated the nonlinear 
analysis of  the  layered  models  of  reinforced  concrete  
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plates and shells. Jones (1975) described the mechanical 
modeling of the composite materials having layers of 
different characteristics. Lin and Scordelis (1975) 
researched the nonlinear analysis of reinforced concrete 
shells and plates of general form. Bashur and Darwin 
(1978) performed the nonlinear modeling of reinforced 
concrete plates using finite elements method. Gilbert and 
Warner (1978) analyzed the effect of tensile stiffness on 
reinforced concrete slabs. Bathe (1982) explained the 
nonlinear analysis of plates and shells in detail according 
to the finite elements method. Bazant and Oh (1983) 
studied the crack band model on the fracture mechanics 
of concrete. Choi and Kwak (1990) investigated the effect 
of finite element mesh dimension on the nonlinear 
analysis of reinforced concrete structures. Hu and 
Schnobrich (1991) carried out the nonlinear analysis of 
reinforced concrete plates and shells under gradually 
increasing loads by the aid of finite elements method. 

Sathurappan et al. (1992) studied the nonlinear 
analysis of the reinforced and prestressed concrete 
plates and shells by using the finite elements method. 
Sezer (1995) investigated the nonlinear analysis of 
reinforced concrete plates according to the finite 
elements method. Özer (2006) described the nonlinear 
analysis  of  structural  systems   in   detail   according  to 
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Figure 1. Layered system. 

 
 
 

0

σσσσ

1111

1111

E
s1

E
s2

εεεε

σσσσ

σσσσ

y

y

−ε−ε−ε−ε

εεεε

u

u

 
 
Figure 2. Idealized uniaxial stress-strain relationship of steel. 

 
 
 
various methods. Zhang et al. (2007) performed the 
nonlinear analysis of the reinforced concrete cylindrical 
shells and plates modeled with layered rectangular 
elements by using finite elements method. 
 
 
MATERIAL PROPERTIES AND ASSUMPTIONS 
 
In order to formulize the basic relationships of a 
reinforced concrete member of a layer, the following 
simplified assumptions were made: a) concrete and 
embedded steel reinforcement are divided into some 
imaginary layers (Figure 1); b) the bending of plates 
occurs according to the Mindlin plate theory, c) steel 
reinforcement resists only uniaxial stresses, and d) there 
is perfect bond between steel and concrete (Choi and 
Kwak, 1990). 

Steel 
 
Reinforcing steel with σy yield stress was assumed to be 
a material with linear strain hardening (Figure 2). Stress-
strain relationship of the steel can be expressed as in the 
following with reference to local axes oriented both 
parallel and perpendicular to the direction of the 
reinforcement. 
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Here, Es1 is the first modulus of elasticity  of  steel.  When 
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Figure 3. Biaxial strength envelops of concrete. 

 
 
 
steel yields the second modulus of elasticity Es2 is used in 
place of Es1 (Choi and Kwak, 1990). 
 
 
Concrete 
 
Concrete under biaxial stress was assumed to behave 
linearly elastic at the tension zone. As seen in Figure 3, 
feq is the end-point stress on the right. In this case the 
stress linearly decreases by equal amount increase in the 
uniaxial strain. If concrete is at the compression zone, it 
will be accepted as elasto-plastic hardening model. 
Similarly, a yielding criterion was defined in Equation 2 by 
Kupfer et al. (1969). 
 
F = [(σ1 + σ2)

2/(σ2 + 3.65σ1)] - Afc = 0           (2) 
 
Here, σ1 and σ2 are the principal stresses; fc represents 
the uniaxial compression strength and A is the parameter 
symbolizing plastic yielding from initial yielding surface (A 
= 0.6) to final loading surface (A = 1.0) (Kupfer et al., 
1969). In order to check the cracking condition of 
concrete continuously, similar to the yielding surface of 
Equation 2, a crack surface (Figure 4) was determined 
using strain terms and defined by the following equation: 
 
C = [(ε1 + ε2)

2/(ε2 + 3.65ε1)] - εcu = 0           (3) 
 
Here, ε1 and ε2 are the principal strains, and εcu is the 
maximum strain of concrete under compression (Choi 
and Kwak, 1990). 

Cracked stiffness of concrete 
 
When principal tensile strain is exceeded ε0 (Figure 5), 
cracks will develop in a direction perpendicular to the 
principal stress. Shear modulus should be reduced by 
cracking. However, intending to determine an effective 
shear modulus is more complex besides determining the 
lever effect and aggregate locking effects. Therefore, the 
value of cracked shear modulus was assumed to be 
continuously constant also after the cracking event; that 
is in Equation 4 λ = 0.4. Then the cracked stiffness will be 
accepted as the following: 
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Here, axes 1 and 2 are respectively parallel and 
perpendicular to the cracks. G and λ are the shear 
modulus of uncracked concrete and shear constant of the 
cracked concrete, respectively. If the cracking of concrete 
occurs biaxially, then E1 will be taken as zero (Choi and 
Kwak, 1990; Hu and Schnobrich, 1991). 
 
 
TENSION STIFFENING EFFECT 
 
The increase in tensile stiffness of concrete can be 
provided by using the stress-strain relationship of the 
decreasing section at the tensile zone (Lin and Scordelis,  



3284            Sci. Res. Essays 
 
 
 

 

ε

ε
ε

ε

0
1

2

Cracked

Crushed cu  
 
Figure 4. Failure surface of concrete. 
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Figure 5. Idealized uniaxial stress-strain relationship of concrete. 

 
 
 
1975; Gilbert and Warner, 1978). On the other hand, the 
nonlinear form of the cracking model should be used in 
order to estimate the displacements of the structure more 
precisely. About this subject, stress-controlled cracking 
model was firstly used by Rashid (Choi and Kwak, 1990) 
for the numerical analysis of the reinforced concrete 

structures. However, this model has some negative sides 
such as being independent from finite element network 
dimensions, etc. Many researchers most of which were 
interested in cracking mechanics suggested the “cracked 
band theory”, the simplest model of fictive cracking 
models on planar concrete panels. Two basic 
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Figure 6. Assumed distribution of microcracks in an element. 

 
 
 
assumptions of this model are: a) the deformation inside 
the band is uniform; b) the width of the cracking zone has 
a certain b value directly proportional to three times of the 
maximum aggregate size (3 x 25.4 mm). Then, the 
equation for finding ε0 is given in the following: 
 

 ε0

2
=

G

f b

f

t

               (5) 

 
This model can be successfully applied to the reinforced 
concrete problems, when relatively small finite element 
network dimension is used. However, Equation 5 will not 
be sufficient for the direct application of this model to the 
numerical analysis of reinforced concrete structures 
modeled with relatively large finite element network 
dimensions (Bazant and Oh, 1983; Choi and Kwak, 
1990). 
 
 
APPLIED CRACK MODEL 
 
A new criterion applicable to an extremely large finite 
element network dimension was used for the nonlinear 
analysis of the reinforced concrete structures. 
 
 
Microcrack distributions 
 
At first, in order to formulize the distribution of the 
microcracks  of  a  member, an  exponential   function   is  

given in the following (Figure 6): 
 
  f(x) = α eβx                 (6) 
 
Here, α and β are specifiable constants. If the boundary 
conditions, that is f(0) = 1.0 and f(b/2) = 3/b are 
substituted in Equation 6, the following equation will be 
determined. 
 
f(x) = e-2b ln (b/3) x               (7) 
 
Here, b is the width of the member. For the expressions 
of f(x) function defined in Equations 6 and 7: 1) the 
distribution of microcracks has a symmetrical 
characteristic as shown in Figure 6; 2) the typical 
dimension of microcrack at the end of the finite member 
network is 3/b. The second property proves that the 
microcrack distribution is uniform for the condition of a 
width less than 76 mm (Bazant and Oh, 1983; Choi and 
Kwak, 1990). 
 
 
Fracture energy 
 
The stress-strain relationship and cracking energy of 
concrete are given in the following: 
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Here, ft is the tensile strength of concrete, εo is  the  strain 
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Figure 7. A layered section. 

 
 
 
at the end of the decreasing strain zone and Gf is the 
consumed cracking energy of a crack with unit length 
through the unit thickness. If Gf and ft are known from 
measurements, then εo can be calculated as the 
following: 
 

 ε 0
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             (9) 

 
If finite element network dimension is changed, Εo can be 
calculated by using Equation 7. For f(x) = 1.0, the 
suggested criterion in Equations 5 and 9 gives the same 
result, that is finite element network dimension is equal to 
or less than 76 mm. When finite element network 
dimension is greater than 76 mm, the microcracks 
distribution of the member should be accepted according 
to the f(x) function in Equation 7 as applied in most of the 
practical conditions. 
 
 
REINFORCED CONCRETE APPLICATION OF FINITE 
ELEMENT METHOD 

 
As shown in Figure 7, a typical finite element is divided 
into imaginary concrete and composite (formed with 
concrete and steel) layers. It is assumed that the 
displacement area of the member is continuous and there 
are no gaps between layers. The material properties of 
each layer may differ but they present a homogeneous 
structure through the thickness of the layer. Then, the 
integration volume involving the material properties can 
be written as the following: 
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Here, [Dk]i and [Dc]i are  the  material  matrices  of  the  ith 

composite layer and jth concrete layer, and nk and nc are 
the number of composite and concrete layers 
respectively. The displacement area based on Mindlin 
hypothesis can be defined in matrix form as in the 
following: 
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Where n is the number of nodes and Nj is the 
interpolation function. The relationship between strain 
and displacements can be written as: 
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Or 
 
{εp} = [Bp]{u}            (13) 
 
The relationship between transversal shear strains and 
displacements can be given as: 
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Or 
 
{εt} = [Bt]{u}                                                            (15) 
 
 
After substituting the sub-equations of Equations  13  and 



 
 
 
 
15 into Equation 10, and rearranging the material matrix, 
the member stiffness matrix can be written as the 
following: 
 
[K] = ∫v [Bp]

 T [Dp] [Bp] dV + ∫v [Bt]
 T [Dt] [Bt] dV         (16) 

 
Here, [Dp] and [Dt] given in Equation 17 are the flexural 
and shear sections of the material matrix, respectively 
(Choi and Kwak, 1990): 
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Where zk is the height from the central surface to the 
center of the kth layer, hk is the thickness of the layer, Q-

ij 
represents the flexural rigidities of the kth layer which can 
be calculated by Equation 18 for the orthotropic plates. k 
(in the second equation) is the shear correction factor 
having the value of 5/6, E is the modulus of elasticity and 
ν is the Poisson’s ratio: 
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Here, G k

12  is the shear modulus parallel to surface 1. The 

calculation procedure of node displacement parameters 
and each layer’s strain members determined by 
Equations 13 and 15 are given in the following for both 
concrete and composite layers (Jones, 1975; Bathe, 
1982). 
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Here, dnx , dny and dnxy given to prevent the development 
of unwanted forces  on  the  plane  represent  the  neutral  
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axis depths (Figure 7) that can be calculated under the 
condition of ∫σx dz = ∫σy dz = ∫τxy dz = 0; where z is the 
depth measured from the central surface (Figure 7). 
Additionally, the simplified assumptions used here are: 1) 
Shear modulus G is constant through the depth, 2) dnxy 
value is nearly equal to h/2 where h is the thickness of 
the member, 3) dx and dy are the useful heights in x and y 
directions, 4) zj is the height measured from the central 
surface to the center of the concrete layer (Figure 7). 
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The stress-strain relationship in the local axes parallel 
and perpendicular to the reinforcement bar can be written 
as Equation 23 by using Equation 1. 
 

{ } [ ] { }σ εs i k i s i
Q= −

                       (23) 

 
Here, {σs}i ve {εs}i represent the stress and strain values 
at the center of the ith steel layer and {σc}j and {εc}j 
represent the stress and strain values at the center of the 
jth concrete layer, respectively (Jones, 1975; Choi and 
Kwak, 1990). In nonlinear problems, the calculated 
stresses do not agree with the real stresses due to 
unbalanced node forces. The equivalent node forces can 
be determined statically in the equivalent stress zone by 
Equation 24. 
 
{R}equivalent = ∫v [B]

T {σ}dV = ∫v [B]
T {σp}dV + ∫v [B]

T 
{σt}dV                                                            (24) 
 
Unbalanced node forces can be calculated by using 
Equation 25. 
 
{R}unbalanced = {R}applied = {R}equivalent          (25) 
 
In the solution, a load increase was applied to determine 
the unbalanced node forces that were iteratively 
recalculated to approach the convergence tolerance. 
 
 
NUMERICAL EXAMPLE 
 
A two-way slab supported by its four edges (Figure 8) 
and solved in the literature was resolved by the aid of the  
newly developed computer program. The  slab  subjected 
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Table 1. Load-displacement values at node 2 in Figure 8. 
 

Displacement (mm) 

Laod No Load (kN) Experiment Choi Bashur This study Jofriet Hand Lin 

1 2.7 0.25 0.48 0.48 0.47 0.48 0.48 0.48 
2 5.4 0.83 0.83 0.83 0.93 0.83 0.83 0.83 
3 8.1 2.33 2.25 2.00 1.69 1.83 2.83 1.33 
4 10.8 4.70 4.70 4.33 4.74 4.00 5.10 4.33 
5 13.5 7.54 7.52 7.54 7.30 7.00 - - 

 
 
 
to a single load at the center has a square shape with 
915 mm side length, 44.5 mm thickness and the ratio of 
reinforcement in isotropic network shape is 0.0085. The 
selected material properties are: concrete’s Poisson’s 
ratio νc = 0.167, tensile strength fctk = 2.15 N/mm2, 
compression strength fck = 38 N/mm2, modulus of 
elasticity Ec = 3.104 N/mm2, cracking energy Gf = 0.09 
N/mm and the number of concrete layers is nc = 8. The 
yield strength and modulus of elasticity of steel are 
respectively fyk = 276 N/mm2 and Es = 3.104 N/mm2. The 
useful height is d = 33.3 mm (Choi and Kwak, 1990). The 
finite element network used in this study is given in 
Figure 8. The displacement amounts at node 2 with 
respect to load increases were determined in agreement 
with the results of literature. The load-displacement 
values are given in Table 1. The graphical representation 
of load-displacement relationship at node 2 is given in 
Figure 9. The displacement at node 2 can be 

approximately calculated by making interpolation with the 
displacements of the adjacent nodes. 
 
 
CONCLUSION 
 
In this study, isoparametric members with four, eight and 
nine nodes were used to perform the finite element 
modeling by using Layered Approach. The reinforced 
concrete plate (Figure 8) supported by its four edges was 
solved with a newly developed finite element model 
program prepared with Fortran PowerStation 4.0 
computer programming language. The results are 
compared with the results of literature for the same plate 
in Table 2. After comparing the results of this study with 
the results of literature and experimental study for the 
same subject, the results of this study were in agreement 
with the results of both literature and experimental study. 
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Figure 9. Load-displacement relationship at node 2. 

 
 
 

Table 2. The comparison of test results determined by this study with the test results of literature (for the plate in Figure 
8). 
 

Average differences according to the test results of literature (%) 

Choi Bashur This study Hand Jofriet Lin 

10.2 14.0 17.8 18.2 18.5 24.8 
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