

Scientific Research and Essays Vol. 7(30), pp. 2744-2753, 2 August, 2012
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE12.351
ISSN 1992-2248 ©2012 Academic Journals

Full Length Research Paper

Improved Bug algorithm for online path planning:
Utilization of vision sensor

Weria Khaksar1*, S. H. Tang1 and Mansoor Khaksar2

1
Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, University Putra Malaysia, Malaysia.

2
Department of Industrial Engineering, Faculty of Engineering, Islamic Azad University, Sanandaj, Iran.

Accepted 16 July, 2012

The area of robot path planning and navigation has been studied by various researchers over the last
decades, resulting in a large number of works. One of the most challenging fields in motion planning is
dealing with unknown environment, which is known as online path planning. This paper aims to
improve one of the most famous methods for online navigation, that is, Bug algorithm, which has been
introduced by V. J. Lumelsky. An improved Bug algorithm was provided in our research and the
simulation result for several cases shows its advantage in terms of path shortening. Also the justified
Bug algorithm was compared with Bug algorithm and some of the well-known approaches in the field of
robotic motion planning.

Key words: Bug algorithm, robotic motion planning, path shortening, online path planning.

INTRODUCTION

Some of the most significant challenges confronting
autonomous robotics lie in the area of autonomous
motion planning. The prototypical task is to find a path for
a robot, whether it is a robot arm, a mobile robot, or a
magically free-flying piano, from one configuration to
another while avoiding collision with obstacles. From this
early piano mover’s problem, motion planning has
evolved to address a huge number of variations on the
problem, allowing application in areas such as animation
of digital characters, surgical planning, automatic
verification of factory layout, mapping of unexplored
environments, navigation of changing environments,
assembly sequencing, and drug design (Choset et al.,
2005).

During the past few decades, one of the most attractive
and useful fields in robot motion planning is robot
navigation in unknown environment. This kind of problem
is known as online, sensor-based, local, real-time, or

*Corresponding author. E-mail:
GS22153@mutiara.upm.edu.my. Tel: +601 266 77160. Fax:
603 8656 7122.

reactive motion planning (Masehian and Amin-Naseri,
2008). In sensor-based motion planning, there are two
different varieties of sensors, namely Touch and Vision. A
touch sensor detects when the robot touches an
obstacle. A vision sensor typically provides the informa-
tion visible to the robot (Rao et al., 1993). One of the first
researches in the field of online motion planning is the
Bug algorithm presented by V. J. Lumelsky for a point
robot to traverse from a start point to a goal point in which
the robot is equipped with a touch sensor in an
environment with different shaped obstacles (Lumelsky
and Stepanov, 1986). A survey on preliminary researches
for online motion planning is presented in Rao et al.
(1993). One of the most important methods for solving
the online motion planning problem is Potential Fields
(PFs) introduced by Khatib (1986). This approach treats
robot as a point which is influenced by an artificial
potential field. This function can be defined over free
space as the sum of an attractive potential which is
pulling the robot toward the goal configuration, and a
repulsive potential that is pushing the robot away from
the obstacles. A real-time motion planner is presented by
Lengyel et al. (1990), which uses standard graphics
hardware to rasterize configuration space obstacles into

a series of bitmap slices, and then uses dynamic
programming to create a navigation function and to
calculate paths in this rasterized space. Moreover,
another method is presented in Masehian et al. (2003) for
online motion planning through incremental construction
of medial axis. Gabriely and Rimon (2009) introduced a
notion of competiveness suitable for online mobile robot
navigation in general planar environment. They described
CBUG, an online navigation algorithm for a size D disc
robot moving in general planar environment. Most
collision avoidance methods do not consider the vehicle
shape and its kinematic and dynamic constraints,
assuming the robot to be point-like with no acceleration
constraints. In this paper, Minguez and Montano (2009)
methodology is used to consider the exact shape and
kinematics, as well as the effects of dynamics in the
collision avoidance layer, since the original avoidance
method does not address them. In Erfanian and
Kabganian (2009), an adaptive trajectory tracking con-
troller is proposed for a single flexile-link manipulator with
presence of friction in the joint and parameter uncertainty.
They employed a distributed-parameter dynamic
modelling approach to design the controller.

In addition to the classic motion planning methods,
other optimization approaches which are known as
heuristic approaches have been increasingly employed
for planning and optimization of robot motions. This group
of approaches do not guarantee finding a solution, but if
they do, they are likely to do so much faster than the
other approaches (Khaksar et al., 2012). Most important
heuristic approaches in the field of motion planning are
Neural Network, Genetic Algorithms, Fuzzy Logic and
Tabu Search. In Ghatee and Mohades (2009), an
approach for motion planning is presented in order to
optimize the length and clearance, applying a Hopfield
neural network. A hybrid genetic algorithm based
optimum path planning approach for mobile robots is
proposed by Li et al. (2006). A fuzzy logic-based
approach for mobile robot path tracking is presented in
Antonelli et al. (2007). The proposed model is a path
following approach based on a fuzzy-logic set of rules
which emulates the human driving behaviour. An
algorithm for reactive navigation of mobile robots was
proposed in 2008 by Motlagh et al. (2009) using fuzzy
artificial potential field. A novel target switching technique
was included for local minimum avoidance. In Masehian
and Amin-Naseri (2008), a new online motion planner
was developed, based on the Tabu search approach.
Various components of the classic Tabu search have
been remodelled and integrated in a single algorithm to

craft a motion planner capable of solving varieties of
exploration and goal-finding problems. A real time object
tracking approach is proposed by Uzer and Yilmaz (2011)
based on robot vision. Their robotic system is based on a
fuzzy controller and image-based controller. A neuro-

Khaksar et al. 2745

genetic approach to increase the kinematics solution of
robotic manipulators is presented by Koker (2011).

In this research we focus on the Bug algorithm and aim
to improve the drawbacks of this approach. In the
following parts of this paper, after a brief introduction
about Bug algorithm, the deficiencies of this approach are
mentioned. Then our improved Bug algorithm is
presented and compared with classic Bug algorithms and
some other approaches.

MATERIALS AND METHODS

Bug Algorithm

Perhaps the most straight forward path planning approach is to
move toward the goal, unless an obstacle is encountered, in which

case, circumnavigate the obstacle until motion toward the goal is
once again allowable. In this point of view, the robot is equipped
with some touch sensors on its perimeter which can detect the
obstacle just when the robot reaches one. This is the main idea of
Bug algorithm. Essentially, the Bug algorithm formulates the
“common sense” idea of moving toward the goal and going around
obstacles. The robot is assumed to be a point with perfect
positioning with a contact sensor that can detect an obstacle
boundary if the robot touches it. The robot can also measure the

distance between any two points and . Finally,

assume that the work space is bounded. The start and goal points

are labelled and , respectively. Let = and

the m-line be the line segment that connects to . Initially,

i=0.
The Bug I algorithm exhibits two behaviours: motion-to-goal and

boundary-following. During motion- to-goal, the robot moves along

the m-line toward until it either encounters the goal or an

obstacle. If the robot encounters an obstacle, let be the point

where the robot first encounters an obstacle and call it a hit point.
The robot then circumnavigates the obstacle until it returns to

.“Then, the robot determines the closest point to the goal on the

perimeter of the obstacle and traverses to this point. This point is

called a leave point and is labelled . From , the robot heads

straight toward the goal again. If the line that connect and the

goal intersect the current obstacles, then there is no path to the
goal. Otherwise, the index “i” is incremented and this procedure is

then repeated for and until the goal is reached or the

planner determines that the robot cannot reach the goal.
Like its Bug I sibling, the Bug II algorithm exhibits two

behaviours; motion-to-goal and boundary-following. During motion-
to-goal, the robot moves toward the goal on the m-line; however, in

Bug II the m-line connects and , and thus remains

fixed. The boundary following behavior in invoked if the robot
encounters an obstacle, but this behavior is invoked if the robot
encounters an obstacle; however this behaviour is different from

that of Bug I. For Bug II, the robot circumnavigates the obstacle
until it reaches a new point on the m-line closer to the goal than the
initial point of contact with the obstacle. At this time, the robot

2746 Sci. Res. Essays

Figure 1. The performance of Bug algorithms. (a) A path by using the Bug I and (b) A path from Bug II algorithm.

Figure 2. Bug I & II performance in a maze-like space. Blue and

green lines correspond to Bug I and Bug II paths respectively.

proceeds toward the goal, repeating this process if it encounters an
object. If the robot re-encounters the original departure point from
the m-line, then there is no path to the goal.

At first glance, it seems that Bug II is a more effective algorithm
than Bug I because the robot does not have to entirely
circumnavigate the obstacles; however this is not always the case.
The following formulations provide a comparison between these
two algorithms (Rao et al., 1993):

(1)

(2)

Where is the perimeter of the th obstacle. The line through

and intersects the th obstacle times. Naturally

(2) is an upper-bound because the summation is over all of the

obstacles as opposed to over the set of obstacles that are
encountered by the robot.

Figure 1 present two paths that are obtained from Bug I and Bug
II algorithms. As can be observed in Figure 1, the Bugs Algorithms
does not try to reduce the length of the paths; rather, they try to
circumnavigate the obstacles in order to reach the goal. This is the
main problem of these approaches, especially when we are dealing
with concave and maze-like obstacles.

Figure 2 provide an example of a maze-like environment in which
the paths of the Bug algorithm are not effective enough.

Several extensions of Bug algorithms have been proposed in the
literature with different advantages and drawbacks and also
different objectives. The μNav algorithm was presented in
Mastrogiovanni et al. (2009) that is, a novel approach to navigation
which, with minimal requirements in terms of on-board sensory,
memory and computational power, exhibits way-finding behaviours
in very complex environments. The algorithm is intrinsically robust,
since it does not require any internal geometrical representation or
self-localization capabilities. In Zhu et al. (2012), a new bug-type
algorithm termed Distance Histogram Bug (DH-Bug) is proposed for
overcoming the existing limitations in previous works such as
generating long path, limited to static environments as well as
ignoring implementation issues.

We focus on the quality of the generated paths by the bug
planner and design an improved bug algorithm which guides the

robot to reach the goal position through shorter paths.

Justified Bug Algorithm

One of the most challenging fields in motion planning is to find
shorter paths in less time. Although the first objective of a motion
planner is to find a free path to the goal, that is, avoiding obstacle
collision, the second objective will be to decrease the length of the

path and the time which the planner finds the path. A considerable
amount of researchers in the field of motion planning are trying to
improve the existing algorithms in terms of time and length of the

Figure 3: The algorithm cannot determine which course is better.

B

Figure 3. The algorithm cannot determine which course is better.

Figure 4. Unnecessary segment which can be omitted.

Figure 5. Checking goal access.

path.

As mentioned before, Bug I and Bug II algorithms just try to reach
the goal by circumnavigating around the obstacles as there is
nothing about path shortening. There are three deficiencies in Bug

Khaksar et al. 2747

algorithms which results in generating long paths.

Firstly, when the robot should circumnavigate an obstacle, there

is no regulation to guide the robot which course is better for going
around the obstacle, that is, clockwise or counter clockwise. This
drawback more happens in Bug II. In some cases with complex
shaped obstacles, choosing the right course for navigation around
the obstacle is a critical factor and can increase the length of the
path intensively. In Figure 3, when the robot arrives in point A, there
is no component in the algorithm which determines which path is
better for going from point A to point B, that is, which path is better;

1 or 2.
Because of the online nature of bug algorithms, that is, there is

no previous knowledge about the position and the shapes of the
obstacles, and also because of the performance of touch and vision
sensors; this problem seems hard to be solved. Until the robot
receives enough information about the shape of an obstacle, it
could not find the best course. This research is not going to improve
this drawback, but it is one of the suggested subjects for future
researches.

Secondly, there is no component in the algorithm that omits the
unnecessary segments of the path. Figure 4 shows a case where
there are unnecessary segments in the path which can be omitted.

As shown in Figure 4, according to the Bug algorithm, the robot
navigates from point A to B and then to C (the green lines). But if
the robot moves directly from A to C (the blue line), then it can omit
two unnecessary segments, that is, AB and BC.

Thirdly, there is no goal access checker which in each step of the

algorithm, checks whether there is a direct path to the goal without
obstacles collision or not. In Figure 5, when the robot arrives in
point A, there is a free path to the goal but in order to follow the
algorithm’s roles, the robot should first move to the new point on the
m-line B, and then traverse to the goal point.

In this paper, we introduce a justifier component which improves
the Bug algorithm in terms of its deficiencies. In our method,
instead of the touch sensors, the robot is supposed to be equipped
with enough number of range sensors which are located on its

perimeter. Each sensor is qualified to project a ray to find out its
distance from any visible obstacle. Figure 6 shows a robot which is
equipped by these sensors.

The adjunct component provides two corrective steps. The first
step will be added to the algorithm in order to omit unnecessary
segments of the path. Second step is for checking the access to the
goal.

First step: This step acts simultaneously with the algorithm. As
explained before, in the Bug algorithm, the robot moves directly to
the goal through the m-line till it reaches a hit point. There, the robot
uses its touch sensors to determine the obstacle’s boundary and
then circumnavigate around it. In this step of the justifier
component, from the start point, the robot uses the vision sensors
and detects the visible obstacle’s perimeter which interests the m-
line. Before any movement through the m-line, the robot detects the
hit point and the most far visible points on the perimeter of the

obstacle. A visible point is a point which could be detected by the
vision sensors. In Figure 6, the end point of each ray is a visible
point. If there are more than one alternative point, the robot
chooses the point which minimizes a cost function. The cost
function is defined as follows:

(3)

“Which is the distance between current position of the robot and

2748 Sci. Res. Essays

 (a) (b)

Figure 6. (a) Performance of a vision sensor (b) Visible regions for the robot.

Figure 7. A case with two alternative points.

the th alternative point, and is the direct distance between the

th alternative point and the goal point. and are justifier

coefficients which help this cost function to be justified for different
cases. Figure 8 shows an example of an obstacle with two
alternative points.

According to Figure 7, when the robot arrives in point A, instead
of using the previous algorithm and moving through the green lines,
it determines two alternative points, 1 and 2. For each point, the

robot measures and and by comparing and ,

decides which alternative point is better. This procedure will be
repeated in each point until the robot reaches the goal.

Second step: Like the first step, this step performs in the same

time with the Bug algorithm. In this step, for each point, the robot
uses its vision sensors to check whether there is a collision free
path directly to the goal point or not. If such path is available, the

robot moves directly to the goal and terminates the rest of the
algorithm. As shown in Figure 6, when the robot arrives in point A, it
finds a free path to the goal point so there is no need to continue to

the algorithm. A general scheme of the justified Bug algorithm is
presented below.

Check whether the goal point is reachable or not, and if it is,
move directly to the goal and terminate the rest of the algorithm.
Detect the hit point through the m-line. Find the most far points in
the perimeter of the current obstacle. If there are more than one
alternative point, use the cost function to choose the best point.
Repeat these steps until you reach the goal or find that there is no
way to the goal.

RESULTS AND DISCUSSION

The algorithm was run for several problems ranging from
simple convex to highly concave polygons and mazes
and succeeded in performing effectively. Some of the
simulations are shown in Figure 9(a)–(h). The running
times were within a few seconds using a 2 GHz Intel
Core 2 Duo processor. All the studies were simulated
with MATLAB 7.7.0.471 (R2008b).

The simulation results show that the justified algorithm
performs successfully in different configuration spaces,
especially in maze-like and uncluttered areas. In Figure
9(d), the space is an uncluttered one with several
obstacles scattered about the space and the algorithm
could guide the robot to navigate among them
productively. The performance of the justified algorithm in
maze-like spaces is remarkable since it can find a free
and relatively short path without being impressed by the
confusing shape of the obstacles. Figure 9(h) shows a
configuration which is a prepared case for trapping in
local minima. The powerful ability of the justified
algorithm in such a case is that the algorithm does not
insist on moving directly to the goal which is one of the
most important reasons for trapping in local minima.

Khaksar et al. 2749

Figure 8. The flowchart of our proposed algorithm.

The performance of this algorithm was compared with
several algorithms as shown in Figure 8. Since on-line
method acquire their knowledge of environment by
sensors and plan their path locally, it would be incorrect
to compare off-line and on-line methods in term of
processing time.

In the comparison studies, the off-line methods have
been used just to show the path generated by each
algorithm (Figures 10 and 11). According to Figure 10,
the performance of the justified Bug algorithm seems to
be more effective than Bug I and Bug II. By comparing
the processing time and length of the path which is
provided in Table 1, some interesting results become
clear.

Among the abovementioned approaches, the only
approach which is better in term of processing time is
potential fields and the justified Bug algorithm requires
less time than the rest of the algorithms. The length of the

path in justified Bug algorithm is the shortest one and the
percentage of improvement in term of length of the path
is 25.69% for Bug I, 31.23% for Bug II, and 16.43% for
the average length.

Conclusion

This paper is a research in one of the most challenging
fields of motion planning which is online robot navigation.
One of the important approaches in this field is Bug
algorithm. In this algorithm, the robot move directly to the
path until it reaches an obstacle. Then it tries to
circumnavigate around the obstacle using its touch
sensors. This algorithm suffers many drawbacks. The
first drawback is that the algorithm cannot omit the
unnecessary segment of the path. The second is ability of
the robot to move to the goal directly when there is no

2750 Sci. Res. Essays

Figure 9. Simulation results for the Justified Bug algorithm in different configuration spaces.

obstacle between the robot and the goal point. In order to
improve the Bug algorithm in terms of its deficiencies, this
research provides a justifier component which contains
two major steps, but the key concept of this justified

algorithm is using vision sensors instead of the touch
sensors.

In the first step, the robot uses its vision sensors which
is located on its perimeter and finds the first hit point on

Khaksar et al. 2751

Figure 10. The comparison of our method with different approaches: (a) Visibility Graph (b) Potential f ields (c)

Voronoi Diagram (d) Bug I (e) Bug II and (f) Justified Bug.

the m-line. After that, instead of moving through the m-
line, the robot finds the most far visible points and uses a
cost function to choose the best one. The robot then

navigates directly to this locally best point. This
procedure will continue till the robot reaches the goal
point. In the second step the robot checks each point to

2752 Sci. Res. Essays

Figure 11. Comparing the path length for different algorithms.

Table 1. Time and length of the path for compared approaches.

Approach Time (second) Length

a Visibility graph 5.4 27.7

b Potential fields 2.6 33.1

c Voronoi diagram 6.1 37.3

d Bug I 6.4 39.7

e Bug II 4.4 42.9

f Justified Bug 4.8 29.5

 Average 4.95 35.3

find out whether the goal point is reachable or not, and if
it is, moves directly to the goal and terminates the rest of
the algorithm.

These two steps act simultaneously with the Bug
algorithm. The performance of the justified Bug algorithm
checked with simulation study. The performance seems
to be much faster and provides shorter path than the old
Bug algorithm. Also the processing time and the length of
the path were compared with some important approaches
in the field of motion planning. The results show that the
justified Bug algorithm remarkably provides better paths.

One of the important deficiencies of the Bug algorithm
that was not attended to in this study is what happens
when the robot should decide which course is better to
circumnavigate around the obstacle, that is, clockwise or
counter clockwise. This problem may be solved by using
a special kind of vision sensors which is called

continuous vision sensor. As the robot navigates along a
path, a continuous vision sensor can detect all parts of
the terrain that are visible. If this kind of sensor could
provide enough information about the complete shape of
each obstacle, the robot can choose the best course.

REFERENCES

Antonelli G, ChiaveriniS, Fusco A (2007). A Fuzzy-Logic-Based

Approach for Mobile Robot Path Tracking. IEEE T FuzzySyst.
15(2):211-221.

Choset H, Lynch K, Hutchinson S, Kantor G, Burgard W, Kavraki LE,

Thrun S (2005), Principles of Robot Navigation Theory, Algorithms,
and Implementation. Cambridge, Massachusetts: MIT Press.

Erfanian V, Kabganian M (2009).Adaptive trajectory control and friction

compensationof a flexible-link robot.Sci Res Essays 4(4):239-248.
Gabriely Y, Rimon E (2008). CBUG: A Quadratically Competitive Mobile

Robot Navigation Algorithm. IEEE T Robot 24(6):1451-1457.

Ghatee M, Mohades A (2009). Motion Planning in Order to Optimize the

Length and Clearance applying a Hopfield Neural Network. Expert

Syst. Appl. 36(3):4688-4695.
Khaksar W, Tang SH, Ismail NB, Arrifin MKA (2012). A Review on

Robot Motion Planning Approaches. Pertanika J. Sci. Technol.

20(1):15-29.
Khatib O (1986). Real-Time Obstacle Avoidance for Manipulators and

Mobile Robots.Int J Robot Res. 7(1):90-98.

Koker R (2011). A neuro-genetic approach to the inverse kinematics
solution of robotic manipulators.Sci. Res. Essays 6(13):2748-2794.

Lengyel J, Reichert M, Donald BR, Greenberg DP (1990). Real-time

robot motion planning using rasterizing computer graphics hardware.
In Computer Graphics (Proceedings of ACM SIGGRAPH 1990),
24:327-335.

Li Q, Tong X, Xie S, Zhang Y (2006). Optimum Path Planning for Mobile
Robots Based on a Hybrid Genetic Algorithm. Sixth Int. Confer.
Hybrid Intell. Syst. pp. 53-56.

Lumelsky VJ, Stepanov AA (1986). Dynamic Path Planning for a Mobile
Automation with Limited Information on the Environment. IEEE Trans.
Autom. Control 31(11):1058-1063.

Masehian E, Amin-Naseri MR (2008). Sensor-Based Robot Motion
Planning: A Tabu Search Approach. IEEE Robot Autom. Mag.
15(2):48-57.

Masehian E, Amin-Naseri MR, Khadem ES (2003).Online Motion
Planning Using Incremental Construction of Medial Axis. In
Proceedings of IEEE International Conference on Robotics and

Autom. 3:2928-2933.
Mastrogiovanni F, Sgorbissa A, Zaccaria R (2009). Robot Navigation in

an Unknown Environment With Minimal Sensing and Representation.

IEEE T Syst. ManCyB 39(1):212-229.
Minguez J, Montano L (2009). Extending Collision Avoidance Methods

to Consider the Vehicle Shape, Kinematics, and Dynamics of a

Mobile Robot. IEEE T Robot 25(2):367-381.

Khaksar et al. 2753

Motlagh ORS, Tang SH, Napsiah I (2009).Development of a new

minimum avoidance system for abehaviour-based mobile robot.
Fuzzy Set Syst. 160(13):1929-1946.

Rao NSV, Kareti S,Shi W, Iyenagar SS (1993). Robot Navigation in

Unknown Terrains: Introductory Survey of Non-Heuristic Algorithms,
Oakridge National Lab., Tech. Rep. ORNL/TM-12410.

Uzer MS, Yilmaz N (2011).A real-time object tracking by using fuzzy

controller for vision-based mobile robot.Sci Res Essays 6(22):4808-
4820.

Zhu Y, Zhang T, Song J, Li X (2012). A new bug-type navigation

algorithm for mobile robots inunknown environments containing
moving obstacles. Ind Robot 39(1):27-39.

