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The area of robot path planning and navigation has been studied by various researchers over the last 
decades, resulting in a large number of works. One of the most challenging fields in motion planning is 
dealing with unknown environment, which is known as online path planning. This paper aims to 
improve one of the most famous methods for online navigation, that is, Bug algorithm, which has been 
introduced by V. J. Lumelsky. An improved Bug algorithm was provided in our research and the 
simulation result for several cases shows its advantage in terms of path shortening. Also the justified 
Bug algorithm was compared with Bug algorithm and some of the well-known approaches in the field of 
robotic motion planning. 
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INTRODUCTION 
 
Some of the most significant challenges confronting 
autonomous robotics lie in the area of autonomous 
motion planning. The prototypical task is to find a path for 
a robot, whether it is a robot arm, a mobile robot, or a 
magically free-flying piano, from one configuration to 
another while avoiding collision with obstacles. From this 
early piano mover’s problem, motion planning has 
evolved to address a huge number of variations on the 
problem, allowing application in areas such as animation 
of digital characters, surgical planning, automatic 
verification of factory layout, mapping of unexplored 
environments, navigation of changing environments, 
assembly sequencing, and drug design (Choset et al., 
2005). 

During the past few decades, one of the most attractive 
and useful fields in robot motion planning is robot 
navigation in unknown environment. This kind of problem 
is  known  as  online,  sensor-based,  local,  real-time,   or  
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reactive motion planning (Masehian and Amin-Naseri, 
2008). In sensor-based motion planning, there are two 
different varieties of sensors, namely Touch and Vision. A 
touch sensor detects when the robot touches an 
obstacle. A vision sensor typically provides the informa-
tion visible to the robot (Rao et al., 1993). One of the first 
researches in the field of online motion planning is the 
Bug algorithm presented by V. J. Lumelsky for a point 
robot to traverse from a start point to a goal point in which 
the robot is equipped with a touch sensor in an 
environment with different shaped obstacles (Lumelsky 
and Stepanov, 1986). A survey on preliminary researches 
for online motion planning is presented in Rao et al. 
(1993). One of the most important methods for solving 
the online motion planning problem is Potential Fields 
(PFs) introduced by Khatib (1986). This approach treats 
robot as a point which is influenced by an artificial 
potential field. This function can be defined over free 
space as the sum of an attractive potential which is 
pulling the robot toward the goal configuration, and a 
repulsive potential that is pushing the robot away from 
the obstacles. A real-time motion planner is presented by 
Lengyel et al. (1990), which uses standard graphics 
hardware to rasterize configuration space  obstacles  into  



 
 

 

 
 
 
 
a series of bitmap slices, and then uses dynamic 
programming to create a navigation function and to 
calculate paths in this rasterized space. Moreover, 
another method is presented in Masehian et al. (2003) for 
online motion planning through incremental construction 
of medial axis. Gabriely and Rimon (2009) introduced a 
notion of competiveness suitable for online mobile robot 
navigation in general planar environment. They described 
CBUG, an online navigation algorithm for a size D disc 
robot moving in general planar environment. Most 
collision avoidance methods do not consider the vehicle 
shape and its kinematic and dynamic constraints, 
assuming the robot to be point-like with no acceleration 
constraints. In this paper, Minguez and Montano (2009) 
methodology is used to consider the exact shape and 
kinematics, as well as the effects of dynamics in the 
collision avoidance layer, since the original avoidance 
method does not address them. In Erfanian and 
Kabganian (2009), an adaptive trajectory tracking con-
troller is proposed for a single flexile-link manipulator with 
presence of friction in the joint and parameter uncertainty. 
They employed a distributed-parameter dynamic 
modelling approach to design the controller. 

In addition to the classic motion planning methods, 
other optimization approaches which are known as 
heuristic approaches have been increasingly employed 
for planning and optimization of robot motions. This group 
of approaches do not guarantee finding a solution, but if 
they do, they are likely to do so much faster than the 
other approaches (Khaksar et al., 2012). Most important 
heuristic approaches in the field of motion planning are 
Neural Network, Genetic Algorithms, Fuzzy Logic and 
Tabu Search. In Ghatee and Mohades (2009), an 
approach for motion planning is presented in order to 
optimize the length and clearance, applying a Hopfield 
neural network. A hybrid genetic algorithm based 
optimum path planning approach for mobile robots is 
proposed by Li et al. (2006). A fuzzy logic-based 
approach for mobile robot path tracking is presented in 
Antonelli et al. (2007). The proposed model is a path 
following approach based on a fuzzy-logic set of rules 
which emulates the human driving behaviour. An 
algorithm for reactive navigation of mobile robots was 
proposed in 2008 by Motlagh et al. (2009) using fuzzy 
artificial potential field. A novel target switching technique 
was included for local minimum avoidance. In Masehian 
and Amin-Naseri (2008), a new online motion planner 
was developed, based on the Tabu search approach. 
Various components of the classic Tabu search have 
been remodelled and integrated in a single algorithm to  

craft a motion planner capable of solving varieties of 
exploration and goal-finding problems. A real time object 
tracking approach is proposed by Uzer and Yilmaz (2011) 
based on robot vision. Their robotic system is based on a 
fuzzy  controller  and  image-based  controller.  A   neuro- 
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genetic approach to increase the kinematics solution of 
robotic manipulators is presented by Koker (2011). 

In this research we focus on the Bug algorithm and aim 
to improve the drawbacks of this approach. In the 
following parts of this paper, after a brief introduction 
about Bug algorithm, the deficiencies of this approach are 
mentioned. Then our improved Bug algorithm is 
presented and compared with classic Bug algorithms and 
some other approaches. 
 
 
MATERIALS AND METHODS 
 
Bug Algorithm 

 
Perhaps the most straight forward path planning approach is to 
move toward the goal, unless an obstacle is encountered, in which 

case, circumnavigate the obstacle until motion toward the goal is 
once again allowable. In this point of view, the robot is equipped 
with some touch sensors on its perimeter which can detect the 
obstacle just when the robot reaches one. This is the main idea of 
Bug algorithm. Essentially, the Bug algorithm formulates the 
“common sense” idea of moving toward the goal and going around 
obstacles. The robot is assumed to be a point with perfect 
positioning with a contact sensor that can detect an obstacle 
boundary if the robot touches it. The robot can also measure the 

distance  between any two points  and . Finally, 

assume that the work space is bounded. The start and goal points 

are labelled and , respectively. Let  =  and 

the m-line be the line segment that connects  to . Initially, 

i=0. 
The Bug I algorithm exhibits two behaviours: motion-to-goal and 

boundary-following. During motion- to-goal, the robot moves along 

the m-line toward  until it either encounters the goal or an 

obstacle. If the robot encounters an obstacle, let  be the point 

where the robot first encounters an obstacle and call it a hit point. 
The robot then circumnavigates the obstacle until it returns to 

.“Then, the robot determines the closest point to the goal on the 

perimeter of the obstacle and traverses to this point. This point is 

called a leave point and is labelled . From , the robot heads 

straight toward the goal again. If the line that connect  and the 

goal intersect the current obstacles, then there is no path to the 
goal. Otherwise, the index “i” is incremented and this procedure is 

then repeated for  and  until the goal is reached or the 

planner determines that the robot cannot reach the goal. 
Like its Bug I sibling, the Bug II algorithm exhibits two 

behaviours; motion-to-goal and boundary-following. During motion- 
to-goal, the robot moves toward the goal on the m-line; however, in 

Bug II the m-line connects  and , and thus remains 

fixed. The boundary following behavior in invoked if the robot 
encounters an obstacle, but this behavior is invoked if the robot 
encounters an obstacle; however this behaviour is different from 

that of Bug I. For Bug II, the robot circumnavigates the obstacle 
until it reaches a new point on the m-line closer to the goal than the 
initial point  of  contact  with  the  obstacle.  At  this  time,  the  robot
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Figure 1. The performance of Bug algorithms. (a) A path by using the Bug I and (b) A path from Bug II algorithm. 

 
 
 

 
 

Figure 2. Bug I & II performance in a maze-like space. Blue and 

green lines correspond to Bug I and Bug II paths respectively. 

 
 
 
proceeds toward the goal, repeating this process if it encounters an 
object. If the robot re-encounters the original departure point from 
the m-line, then there is no path to the goal. 

At first glance, it seems that Bug II is a more effective algorithm 
than Bug I because the robot does not have to entirely 
circumnavigate the obstacles; however this is not always the case. 
The following formulations provide a comparison between these 
two algorithms (Rao et al., 1993): 

 

(1)  

(2)   

Where  is the perimeter of the th obstacle. The line through 

and  intersects the th obstacle times. Naturally 

(2) is an upper-bound because the summation is over all of the 

obstacles as opposed to over the set of obstacles that are 
encountered by the robot. 

Figure 1 present two paths that are obtained from Bug I and Bug 
II algorithms. As can be observed in Figure 1, the Bugs Algorithms 
does not try to reduce the length of the paths; rather, they try to 
circumnavigate the obstacles in order to reach the goal. This is the 
main problem of these approaches, especially when we are dealing 
with concave and maze-like obstacles. 

Figure 2 provide an example of a maze-like environment in which 
the paths of the Bug algorithm are not effective enough. 

Several extensions of Bug algorithms have been proposed in the 
literature with different advantages and drawbacks and also 
different objectives. The μNav algorithm was presented in 
Mastrogiovanni et al. (2009) that is, a novel approach to navigation 
which, with minimal requirements in terms of on-board sensory, 
memory and computational power, exhibits way-finding behaviours 
in very complex environments. The algorithm is intrinsically robust, 
since it does not require any internal geometrical representation or 
self-localization capabilities. In Zhu et al. (2012), a new bug-type 
algorithm termed Distance Histogram Bug (DH-Bug) is proposed for 
overcoming the existing limitations in previous works such as 
generating long path, limited to static environments as well as 
ignoring implementation issues. 

We focus on the quality of the generated paths by the bug 
planner and design an improved bug algorithm which guides the 

robot to reach the goal position through shorter paths. 
 
 
Justified Bug Algorithm 

 
One of the most challenging fields in motion planning is to find 
shorter paths in less time. Although the first objective of a motion 
planner is to find a free path to the goal, that is, avoiding obstacle 
collision, the second objective will be to decrease the length of the 

path and the time which the planner finds the path. A considerable 
amount of researchers in the field of motion planning are trying to 
improve the existing algorithms in terms of  time  and  length  of  the 



 
 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 3: The algorithm cannot determine which course is better.  
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Figure 3. The algorithm cannot determine which course is better. 

 
 

 

 
 

Figure 4. Unnecessary segment which can be omitted. 
 

 
 

 
 

Figure 5. Checking goal access. 

 
 
 
path. 

As mentioned before, Bug I and Bug II algorithms just try to reach 
the goal by circumnavigating around the obstacles as there is 
nothing about path shortening. There are three deficiencies  in  Bug 
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algorithms which results in generating long paths. 

Firstly, when the robot should circumnavigate an obstacle, there 

is no regulation to guide the robot which course is better for going 
around the obstacle, that is, clockwise or counter clockwise. This 
drawback more happens in Bug II. In some cases with complex 
shaped obstacles, choosing the right course for navigation around 
the obstacle is a critical factor and can increase the length of the 
path intensively. In Figure 3, when the robot arrives in point A, there 
is no component in the algorithm which determines which path is 
better for going from point A to point B, that is, which path is better; 

1 or 2. 
Because of the online nature of bug algorithms, that is, there is 

no previous knowledge about the position and the shapes of the 
obstacles, and also because of the performance of touch and vision 
sensors; this problem seems hard to be solved. Until the robot 
receives enough information about the shape of an obstacle, it 
could not find the best course. This research is not going to improve 
this drawback, but it is one of the suggested subjects for future 
researches. 

Secondly, there is no component in the algorithm that omits the 
unnecessary segments of the path. Figure 4 shows a case where 
there are unnecessary segments in the path which can be omitted. 

As shown in Figure 4, according to the Bug algorithm, the robot 
navigates from point A to B and then to C (the green lines). But if 
the robot moves directly from A to C (the blue line), then it can omit 
two unnecessary segments, that is, AB and BC. 

Thirdly, there is no goal access checker which in each step of the 

algorithm, checks whether there is a direct path to the goal without 
obstacles collision or not. In Figure 5, when the robot arrives in 
point A, there is a free path to the goal but in order to follow the 
algorithm’s roles, the robot should first move to the new point on the 
m-line B, and then traverse to the goal point. 

In this paper, we introduce a justifier component which improves 
the Bug algorithm in terms of its deficiencies. In our method, 
instead of the touch sensors, the robot is supposed to be equipped 
with enough number of range sensors which are located on its 

perimeter. Each sensor is qualified to project a ray to find out its 
distance from any visible obstacle. Figure 6 shows a robot which is 
equipped by these sensors. 

The adjunct component provides two corrective steps. The first 
step will be added to the algorithm in order to omit unnecessary 
segments of the path. Second step is for checking the access to the 
goal. 

 
First step: This step acts simultaneously with the algorithm. As 
explained before, in the Bug algorithm, the robot moves directly to 
the goal through the m-line till it reaches a hit point. There, the robot 
uses its touch sensors to determine the obstacle’s boundary and 
then circumnavigate around it. In this step of the justifier 
component, from the start point, the robot uses the vision sensors 
and detects the visible obstacle’s perimeter which interests the m-
line. Before any movement through the m-line, the robot detects the 
hit point and the most far visible points on the perimeter of the 

obstacle. A visible point is a point which could be detected by the 
vision sensors. In Figure 6, the end point of each ray is a visible 
point. If there are more than one alternative point, the robot 
chooses the point which minimizes a cost function. The cost 
function is defined as follows: 
 

(3)      

 

“Which  is the distance between current position of the robot and
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Figure 6. (a) Performance of a vision sensor (b) Visible regions for the robot. 

 
 
 

 
 
Figure 7. A case with two alternative points. 

 
 
 

the th alternative point, and  is the direct distance between the 

th alternative point and the goal point.   and  are justifier 

coefficients which help this cost function to be justified for different 
cases. Figure 8 shows an example of an obstacle with two 
alternative points. 

According to Figure 7, when the robot arrives in point A, instead 
of using the previous algorithm and moving through the green lines, 
it determines two alternative points, 1 and 2. For each point, the 

robot measures   and  and by comparing  and , 

decides which alternative point is better. This procedure will be 
repeated in each point until the robot reaches the goal. 
 
Second step: Like the first step, this step performs in the same 

time with the Bug algorithm. In this step, for each point, the robot 
uses its vision sensors to check whether there is a collision free 
path directly to the goal point or not. If such path is available, the 

robot moves directly to the goal and terminates the rest of the 
algorithm. As shown in Figure 6, when the robot arrives in point A, it 
finds a free path to the goal point so there is no need to continue  to 

the algorithm. A general scheme of the justified Bug algorithm is 
presented below. 

Check whether the goal point is reachable or not, and if it is, 
move directly to the goal and terminate the rest of the algorithm. 
Detect the hit point through the m-line. Find the most far points in 
the perimeter of the current obstacle. If there are more than one 
alternative point, use the cost function to choose the best point. 
Repeat these steps until you reach the goal or find that there is no 
way to the goal. 

 
 
RESULTS AND DISCUSSION 

 
The algorithm was run for several problems ranging from 
simple convex to highly concave polygons and mazes 
and succeeded in performing effectively. Some of the 
simulations are shown in Figure 9(a)–(h). The running 
times were within a few seconds using a 2 GHz Intel 
Core 2 Duo processor. All the studies were simulated 
with MATLAB 7.7.0.471 (R2008b).  

The simulation results show that the justified algorithm 
performs successfully in different configuration spaces, 
especially in maze-like and uncluttered areas. In Figure 
9(d), the space is an uncluttered one with several 
obstacles scattered about the space and the algorithm  
could guide the robot to navigate among them 
productively. The performance of the justified algorithm in 
maze-like spaces is remarkable since it can find a free 
and relatively short path without being impressed by the 
confusing shape of the obstacles. Figure 9(h) shows a 
configuration which is a prepared case for trapping in 
local minima. The powerful ability of the justified 
algorithm in such a case is that the algorithm does not 
insist on moving directly to the goal which is one of the 
most important reasons for trapping in local minima. 
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Figure 8. The flowchart of our proposed algorithm. 

 
 
 

The performance of this algorithm was compared with 
several algorithms as shown in Figure 8. Since on-line 
method acquire their knowledge of environment by 
sensors and plan their path locally, it would be incorrect 
to compare off-line and on-line methods in term of 
processing time. 

In the comparison studies, the off-line methods have 
been used just to show the path generated by each 
algorithm (Figures 10 and 11). According to Figure 10, 
the performance of the justified Bug algorithm seems to 
be more effective than Bug I and Bug II. By comparing 
the processing time and length of the path which is 
provided in Table 1, some interesting results become 
clear. 

Among the abovementioned approaches, the only 
approach which is better in term of processing time is 
potential fields and the justified Bug algorithm requires 
less time than the rest of the algorithms. The length of the 

path in justified Bug algorithm is the shortest one and the 
percentage of improvement in term of length of the path 
is 25.69% for Bug I, 31.23% for Bug II, and 16.43% for 
the average length. 
 
 
Conclusion 
 
This paper is a research in one of the most challenging 
fields of motion planning which is online robot navigation.  
One of the important approaches in this field is Bug 
algorithm. In this algorithm, the robot move directly to the 
path until it reaches an obstacle. Then it tries to 
circumnavigate around the obstacle using its touch 
sensors. This algorithm suffers many drawbacks. The 
first drawback is that the algorithm cannot omit the 
unnecessary segment of the path. The second is ability of 
the robot to move to the  goal  directly  when  there  is  no 
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Figure 9. Simulation results for the Justified Bug algorithm in different configuration spaces.  

 
 
 

obstacle between the robot and the goal point. In order to 
improve the Bug algorithm in terms of its deficiencies, this 
research provides a justifier component which contains 
two  major  steps,  but  the  key  concept  of  this  justified 

algorithm is using vision sensors instead of the touch 
sensors. 

In the first step, the robot uses its vision sensors which 
is located on its perimeter and finds the first  hit  point  on  
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Figure 10. The comparison of our method with different approaches: (a) Visibility Graph (b) Potential f ields (c) 

Voronoi Diagram (d) Bug I (e) Bug II and (f) Justified Bug. 

 
 
 
the m-line. After that, instead of moving through the m-
line, the robot finds the most far visible points and uses a 
cost function  to  choose  the  best  one.  The  robot  then 

navigates directly to this locally best point. This 
procedure will continue till the robot reaches the goal 
point. In the second step the robot checks  each  point  to  
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Figure 11. Comparing the path length for different algorithms. 

 
 
 

Table 1. Time and length of the path for compared approaches. 

 

Approach Time (second) Length 

a Visibility graph 5.4 27.7 

b Potential fields 2.6 33.1 

c Voronoi diagram 6.1 37.3 

d Bug I 6.4 39.7 

e Bug II 4.4 42.9 

f Justified Bug 4.8 29.5 

 Average 4.95 35.3 

 
 
 
find out whether the goal point is reachable or not, and if 
it is, moves directly to the goal and terminates the rest of 
the algorithm. 

These two steps act simultaneously with the Bug 
algorithm. The performance of the justified Bug algorithm 
checked with simulation study. The performance seems 
to be much faster and provides shorter path than the old 
Bug algorithm. Also the processing time and the length of 
the path were compared with some important approaches 
in the field of motion planning. The results show that the 
justified Bug algorithm remarkably provides better paths. 

One of the important deficiencies of the Bug algorithm 
that was not attended to in this study is what happens 
when the robot should decide which course is better to 
circumnavigate around the obstacle, that is, clockwise or 
counter clockwise. This problem may be solved by using 
a   special   kind   of   vision   sensors   which    is    called 

continuous vision sensor. As the robot navigates along a 
path, a continuous vision sensor can detect all parts of 
the terrain that are visible. If this kind of sensor could 
provide enough information about the complete shape of 
each obstacle, the robot can choose the best course. 
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