Scientific Research and Essays

  • Abbreviation: Sci. Res. Essays
  • Language: English
  • ISSN: 1992-2248
  • DOI: 10.5897/SRE
  • Start Year: 2006
  • Published Articles: 2768

Full Length Research Paper

A comparative study of the creep behavior of laminated composites: Effect of type of fiber and matrix

D. Basaid
  • D. Basaid
  • Research Unit, Materials, Processes and Environment, (UR/MPE), M’Hamed Bougara University of Boumerdes, 3500 Boumerdes, Algeria.
  • Google Scholar
C. Aribi
  • C. Aribi
  • Research Unit, Materials, Processes and Environment, (UR/MPE), M’Hamed Bougara University of Boumerdes, 3500 Boumerdes, Algeria.
  • Google Scholar
J. Kari
  • J. Kari
  • Research Unit, Materials, Processes and Environment, (UR/MPE), M’Hamed Bougara University of Boumerdes, 3500 Boumerdes, Algeria.
  • Google Scholar
A. Benmounah
  • A. Benmounah
  • Research Unit, Materials, Processes and Environment, (UR/MPE), M’Hamed Bougara University of Boumerdes, 3500 Boumerdes, Algeria.
  • Google Scholar
B. Safi
  • B. Safi
  • Research Unit, Materials, Processes and Environment, (UR/MPE), M’Hamed Bougara University of Boumerdes, 3500 Boumerdes, Algeria.
  • Google Scholar


  •  Received: 28 February 2017
  •  Accepted: 29 March 2017
  •  Published: 31 March 2017

References

Abdel-Magid B, Lopez-Anido R, Smith G, Trofka S (2003). Flexure creep properties of E-glass reinforced polymers. Compos. Struct. 62:247-253.
Crossref

 

ACI 440.4R-04 (2004). Prestressing Concrete Structures with FRP Tendons, American Concrete Institute, 2004.

 
 

Asundi A, Choi AYN (1997). Fiber Metal Laminates: An Advanced Material for Future Aircraft. J. Mater. Processing Technol. 63:384-389.
Crossref

 
 

Barrere C, Dal Maso F (1997). Résines époxy réticulées par des polyamines : structure et proprieties. Oil Gas Sci. Technol. 52(3).
Crossref

 
 

Botelho EC, Rezende MC (2000). The use of Structural Composites in the Aerospace Industry. Polímeros: Ciên. Tecnol. 10(2):E4-E10.

 
 

Botelhoa EC, Silva RA, Pardini LC, Rezende MC (2006). A Review on the Development and Properties of Continuous Fiber/epoxy/aluminum Hybrid Composites for Aircraft Structures. Mater. Res. 9(3):247-256.
Crossref

 
 

Carrillo JG, Cantwell WJ (2007), Scaling effects in the tensile behavior of fiber-metal laminates. Compos. Sci. Technol. 67:1684-1693.
Crossref

 
 

Chang PY, Yeh PC, Yang JM (2008). Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates. Mater. Sci. Eng. A. 496:273-280.
Crossref

 
 

Chang PY, Yeh PC, Yang JM (2008). Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates. Mater. Sci. Eng. A. 496:273-280
Crossref

 
 

Cortes P, Cantwell WJ (2004). The Tensile and Fatigue Properties of Carbon Fiberreinforced PEEK-Titanium Fiber-metal Laminates. J. Reinf. Plast Compos. 15:1615-1623.
Crossref

 
 

Cortés P, Cantwell WJ (2006). The fracture properties of a fiber–metal laminate based on magnesium alloy. Compos. Part B. 37:163-170.
Crossref

 
 

Daghigh V, Khalili SMR, Farsani RE (2016). Creep Behavior of Basalt Fiber-Metal Laminate Composites. J. Compos. Part B. 01(017).
Crossref

 
 

Daghigh V, Khalili SMR, Farsani RE (2016). Creep Behavior of Basalt Fiber-Metal Laminate Composites. J. Compos. Part B. 01(017).
Crossref

 
 

Dal Maso F, Meziere J (1998). Calcul des propriétés élastiques des tissus utilisés dans les matériaux composites, Oil Gas Sci. Tech. 53(6):857-870.
Crossref

 
 

Dasappa P, Lee-Sullivan P, Xiao X (2009). Temperature effects on creep behavior of continuous fiber GMT composites. Comp. Part A. 40:1071-1081.
Crossref

 
 

Deng S, Ye L, Mai YW (1999). Influence of fiber cross-sectional aspect ratio on mechanical properties of glass fiber/epoxy composites, Tensile and flexure behavior. Compos. Sci. Technol. 59(9):1331-1339.
Crossref

 
 

Gillham JK (1986). Encyclopedia of Polymer Science and Engineering. 2nd. ed. John Wiley, New York. pp 400-425.

 
 

Goertzen WK, Kessler MR (2006). Creep behavior of carbon fiber/epoxy matrix composites. Mater. Sci. Eng. A. 421:217-225.
Crossref

 
 

Goertzen WK, Kessler MR (2006). Creep behavior of carbon fiber/epoxy matrix composites. Mater. Sci. Eng. A. 421:217-225.
Crossref

 
 

Kaleemulla KM, Siddeswarappa B (2009). Influence of fiber orientation on the in-planemechanical properties of laminated hybrid polymer composites. J. Reinforced Plastics Composites 29(12).

 
 

Kalthoff JF (2008). Characterization of the dynamic failure behaviour of a glass-fiber/vinylester at different temperatures by means of instrumented Charpy impact testing. Comp. Part B. 35:657-663.
Crossref

 
 

Kouadri BA, Imad A, Bouabdallah A, Elmeguenni M (2009). Analysis of the effect of temperature on the creep parameters of composite material. Mater. Design. 30:1569-1574.
Crossref

 
 

Raghavan J, Meshiib M (1997). Creep of polymer composites. J. Compos Sci. Technol. 57:1673-1688.
Crossref

 
 

Rees WWA, Garner AF, Dix S (2007). Creep in fibre-reinforced polymer mat composites. Eng. Integrity 23:6-13.

 
 

Soutis C (2005). Carbon fiber reinforced plastics in aircraft construction. Mater. Sci. Eng. A. 412:171-176.
Crossref

 
 

Tarpani JR, Milan MT, Spinelli D, Bose WW (2006a). Mechanical Performance of Carbon-epoxy Laminates Part I: Quasi-static and Impact Bending Properties. Mater. Res. 9(2):115-120.
Crossref

 
 

Tarpani JR, Milan MT, Spinelli D, Bose WW (2006b). Mechanical Performance of Carbon-epoxy Laminates Part II: Quasi-static and Fatigue Tensile Properties. Mater. Res. 9(2):121-130.
Crossref

 
 

Yan Ma, Masahito Ueda, Tomohiro Yokozeki, Toshi Sugahara, Yuqiu Yang, Hiroyuki Hamada (2017). A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites. J. Compos. Struct. 160:89-99.
Crossref