Full Length Research Paper
References
Agrawal OP, Baleanu D (2007). Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems. J. Vibr. Contr. 13:1269-1281. Crossref |
||||
Biazar J, Badpeima F, Azimi F (2009). Application of the homotopy perturbation method to Zakharov Kuznetsov equations. Comput. Math. Appl. 58:2391-2394. Crossref |
||||
Daftardar-Gejji V, Bhalekar S (2008). Solving multi-term linear and non-linear diffusion wave equations of fractional order by Adomian decomposition method. Appl. Math. Comput. 202:113–120. Crossref |
||||
El-Sayed AMA (1996). Fractional-order diffusion wave equation. Int. J. Theor. Phys. 35:311-322. Crossref |
||||
Gepreel KA, Mohamed MS (2013). Analytical Approximate solution for nonlinear space-time Klein Gordon equation. Chin. Phys. B. 22:10201-10207. Crossref |
||||
Golbabai A, Sayevand K (2010). The homotopy perturbation method for multi-order time fractional differential equations. Nonlin. Sci. Lett. A. 1:147–154. | ||||
Golbabai A, Sayevand K (2011). Fractional calculus – A new approach to the analysis of generalized fourth-order diffusion–wave equations. Comput. Math. Appl. 61:2227-2231. Crossref |
||||
Golbabai A, Sayevanda K (2012). Solitary pattern solutions for fractional Zakharov–Kuznetsov equations with fully nonlinear dispersion. Appl. Math. Lett. 25:757-766. Crossref |
||||
Hammouch Z, Mekkaoui T (2013). Approximate analytical solution to a time-fractional Zakharov-Kuznetsov equation. Int. J. Eng. Tech. 1:1-13. | ||||
He JH (2006). New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B. 20:1-7. Crossref |
||||
Herzallah MAE, El-Sayed AMA, Baleanu D (2010). On the fractional-order Diffusion Wave process. Rom. J. Phys. 55:274–284. | ||||
Herzallah MAE, Gepreel KA (2012). Approximate solution to the time-space fractional cubic nonlinear Schrodinger equation. Appl. Math. Mod. 36:5678–5685. Crossref |
||||
Herzallah MAE, Muslih SI, Baleanu D, Rabei EM (2011). Hamilton -Jacobi and fractional like action with time scaling. Nonlin. Dyn. 66:549-555. Crossref |
||||
Hesam S, Nazemi A, Haghbin A (2012). Analytical solution for the Zakharov-Kuznetsov equations by differential transform method. Int. J. Eng. Nat. Sci. 4:235-240. | ||||
Podlubny I (1999). Fractional Differential Equations. Academic Press. San Diego. | ||||
Jesus IS, Machado JAT (2008). Fractional control of heat diffusion systems. Nonlin. Dyn. 54:263-282. Crossref |
||||
Kilbas AA, Srivastava HM, Trujillo JJ (2006). Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies. Elsevier. | ||||
Liao SJ (1992). The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problem. Ph.D. Thesis. Shanghai Jiao Tong University. | ||||
Liao SJ (1995). An approximate solution technique which does not depend upon small parameters: A special example. Int. J. Nonlin. Mech. 30:371-380. Crossref |
||||
Magin RL (2006). Fractional Calculus in Bioengineering. Begell House Publisher. Inc. Connecticut. | ||||
Miller DA, Sugden SJ (2009). Insight into the Fractional Calculus via a Spreadsheet. Spreadsheets in Education, 3. | ||||
Molliq RY, Batiha B (2012). Approximate Analytic Solutions of Fractional Zakharov-Kuznetsov Equations By Fractional Complex Transform. Int. J. Phys. Res. 1:28-33. | ||||
Monro S, Parkers EJ (1999). The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions. J. Plasma Phys. 62:305-317. Crossref |
||||
Samko SG, Kilbas AA, Marichev OI (1993). Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach. Langhorne. | ||||
Sweilam NH, Khader MM, Al-Bar RF (2007). Numerical studies for a multi-order fractional differential equation. Phys. Lett. A. 371:26-33. Crossref |
||||
Tarasov VE (2008). Fractional vector calculus and fractional Maxwell's equations. Ann. Phys. 323:2756-2778. Crossref |
||||
West BJ, Bologna M, Grigolini P (2003). Physics of Fractal operators. New York, Springer. Crossref |
Copyright © 2023 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0