Scientific Research and Essays

  • Abbreviation: Sci. Res. Essays
  • Language: English
  • ISSN: 1992-2248
  • DOI: 10.5897/SRE
  • Start Year: 2006
  • Published Articles: 2755

Full Length Research Paper

Numerical solutions for the nonlinear partial fractional Zakharov-Kuznetsov equations with time and space fractional

Khaled A. Gepreel
  • Khaled A. Gepreel
  • Mathematics Department, Faculty of Science, Zagazig University, Egypt, Mathematics Department, Faculty of Science, Taif University, Saudi Arabia,
  • Google Scholar
Taher A. Nofal
  • Taher A. Nofal
  • Mathematics Department, Faculty of Science, Taif University, Saudi Arabia, Mathematics Department, Faculty of Science, El-Minia University, Egypt
  • Google Scholar
Ali A. Al-Thobaiti
  • Ali A. Al-Thobaiti
  • Mathematics Department, Faculty of Science, Taif University, Saudi Arabia
  • Google Scholar

  •  Received: 08 December 2013
  •  Accepted: 07 June 2014
  •  Published: 15 June 2014


Agrawal OP, Baleanu D (2007). Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems. J. Vibr. Contr. 13:1269-1281.
Biazar J, Badpeima F, Azimi F (2009). Application of the homotopy perturbation method to Zakharov Kuznetsov equations. Comput. Math. Appl. 58:2391-2394.
Daftardar-Gejji V, Bhalekar S (2008). Solving multi-term linear and non-linear diffusion wave equations of fractional order by Adomian decomposition method. Appl. Math. Comput. 202:113–120.
El-Sayed AMA (1996). Fractional-order diffusion wave equation. Int. J. Theor. Phys. 35:311-322.
Gepreel KA, Mohamed MS (2013). Analytical Approximate solution for nonlinear space-time Klein Gordon equation. Chin. Phys. B. 22:10201-10207.
Golbabai A, Sayevand K (2010). The homotopy perturbation method for multi-order time fractional differential equations. Nonlin. Sci. Lett. A. 1:147–154.
Golbabai A, Sayevand K (2011). Fractional calculus – A new approach to the analysis of generalized fourth-order diffusion–wave equations. Comput. Math. Appl. 61:2227-2231.
Golbabai A, Sayevanda K (2012). Solitary pattern solutions for fractional Zakharov–Kuznetsov equations with fully nonlinear dispersion. Appl. Math. Lett. 25:757-766.
Hammouch Z, Mekkaoui T (2013). Approximate analytical solution to a time-fractional Zakharov-Kuznetsov equation. Int. J. Eng. Tech. 1:1-13.
He JH (2006). New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B. 20:1-7.
Herzallah MAE, El-Sayed AMA, Baleanu D (2010). On the fractional-order Diffusion Wave process. Rom. J. Phys. 55:274–284.
Herzallah MAE, Gepreel KA (2012). Approximate solution to the time-space fractional cubic nonlinear Schrodinger equation. Appl. Math. Mod. 36:5678–5685.
Herzallah MAE, Muslih SI, Baleanu D, Rabei EM (2011). Hamilton -Jacobi and fractional like action with time scaling. Nonlin. Dyn. 66:549-555.
Hesam S, Nazemi A, Haghbin A (2012). Analytical solution for the Zakharov-Kuznetsov equations by differential transform method. Int. J. Eng. Nat. Sci. 4:235-240.
Podlubny I (1999). Fractional Differential Equations. Academic Press. San Diego.
Jesus IS, Machado JAT (2008). Fractional control of heat diffusion systems. Nonlin. Dyn. 54:263-282.
Kilbas AA, Srivastava HM, Trujillo JJ (2006). Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies. Elsevier.
Liao SJ (1992). The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problem. Ph.D. Thesis. Shanghai Jiao Tong University.
Liao SJ (1995). An approximate solution technique which does not depend upon small parameters: A special example. Int. J. Nonlin. Mech. 30:371-380.
Magin RL (2006). Fractional Calculus in Bioengineering. Begell House Publisher. Inc. Connecticut.
Miller DA, Sugden SJ (2009). Insight into the Fractional Calculus via a Spreadsheet. Spreadsheets in Education, 3.
Molliq RY, Batiha B (2012). Approximate Analytic Solutions of Fractional Zakharov-Kuznetsov Equations By Fractional Complex Transform. Int. J. Phys. Res. 1:28-33.
Monro S, Parkers EJ (1999). The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions. J. Plasma Phys. 62:305-317.
Samko SG, Kilbas AA, Marichev OI (1993). Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach. Langhorne.
Sweilam NH, Khader MM, Al-Bar RF (2007). Numerical studies for a multi-order fractional differential equation. Phys. Lett. A. 371:26-33.
Tarasov VE (2008). Fractional vector calculus and fractional Maxwell's equations. Ann. Phys. 323:2756-2778.
West BJ, Bologna M, Grigolini P (2003). Physics of Fractal operators. New York, Springer.