Scientific Research and Essays

  • Abbreviation: Sci. Res. Essays
  • Language: English
  • ISSN: 1992-2248
  • DOI: 10.5897/SRE
  • Start Year: 2006
  • Published Articles: 2755

Full Length Research Paper

Numerical solutions for the nonlinear partial fractional Zakharov-Kuznetsov equations with time and space fractional

Khaled A. Gepreel
  • Khaled A. Gepreel
  • Mathematics Department, Faculty of Science, Zagazig University, Egypt, Mathematics Department, Faculty of Science, Taif University, Saudi Arabia,
  • Google Scholar
Taher A. Nofal
  • Taher A. Nofal
  • Mathematics Department, Faculty of Science, Taif University, Saudi Arabia, Mathematics Department, Faculty of Science, El-Minia University, Egypt
  • Google Scholar
Ali A. Al-Thobaiti
  • Ali A. Al-Thobaiti
  • Mathematics Department, Faculty of Science, Taif University, Saudi Arabia
  • Google Scholar


  •  Received: 08 December 2013
  •  Accepted: 07 June 2014
  •  Published: 15 June 2014

References

Agrawal OP, Baleanu D (2007). Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems. J. Vibr. Contr. 13:1269-1281.
Crossref
 
Biazar J, Badpeima F, Azimi F (2009). Application of the homotopy perturbation method to Zakharov Kuznetsov equations. Comput. Math. Appl. 58:2391-2394.
Crossref
 
Daftardar-Gejji V, Bhalekar S (2008). Solving multi-term linear and non-linear diffusion wave equations of fractional order by Adomian decomposition method. Appl. Math. Comput. 202:113–120.
Crossref
 
El-Sayed AMA (1996). Fractional-order diffusion wave equation. Int. J. Theor. Phys. 35:311-322.
Crossref
 
Gepreel KA, Mohamed MS (2013). Analytical Approximate solution for nonlinear space-time Klein Gordon equation. Chin. Phys. B. 22:10201-10207.
Crossref
 
Golbabai A, Sayevand K (2010). The homotopy perturbation method for multi-order time fractional differential equations. Nonlin. Sci. Lett. A. 1:147–154.
 
Golbabai A, Sayevand K (2011). Fractional calculus – A new approach to the analysis of generalized fourth-order diffusion–wave equations. Comput. Math. Appl. 61:2227-2231.
Crossref
 
Golbabai A, Sayevanda K (2012). Solitary pattern solutions for fractional Zakharov–Kuznetsov equations with fully nonlinear dispersion. Appl. Math. Lett. 25:757-766.
Crossref
 
Hammouch Z, Mekkaoui T (2013). Approximate analytical solution to a time-fractional Zakharov-Kuznetsov equation. Int. J. Eng. Tech. 1:1-13.
 
He JH (2006). New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B. 20:1-7.
Crossref
 
Herzallah MAE, El-Sayed AMA, Baleanu D (2010). On the fractional-order Diffusion Wave process. Rom. J. Phys. 55:274–284.
 
Herzallah MAE, Gepreel KA (2012). Approximate solution to the time-space fractional cubic nonlinear Schrodinger equation. Appl. Math. Mod. 36:5678–5685.
Crossref
 
Herzallah MAE, Muslih SI, Baleanu D, Rabei EM (2011). Hamilton -Jacobi and fractional like action with time scaling. Nonlin. Dyn. 66:549-555.
Crossref
 
Hesam S, Nazemi A, Haghbin A (2012). Analytical solution for the Zakharov-Kuznetsov equations by differential transform method. Int. J. Eng. Nat. Sci. 4:235-240.
 
Podlubny I (1999). Fractional Differential Equations. Academic Press. San Diego.
 
Jesus IS, Machado JAT (2008). Fractional control of heat diffusion systems. Nonlin. Dyn. 54:263-282.
Crossref
 
Kilbas AA, Srivastava HM, Trujillo JJ (2006). Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies. Elsevier.
 
Liao SJ (1992). The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problem. Ph.D. Thesis. Shanghai Jiao Tong University.
 
Liao SJ (1995). An approximate solution technique which does not depend upon small parameters: A special example. Int. J. Nonlin. Mech. 30:371-380.
Crossref
 
Magin RL (2006). Fractional Calculus in Bioengineering. Begell House Publisher. Inc. Connecticut.
 
Miller DA, Sugden SJ (2009). Insight into the Fractional Calculus via a Spreadsheet. Spreadsheets in Education, 3.
 
Molliq RY, Batiha B (2012). Approximate Analytic Solutions of Fractional Zakharov-Kuznetsov Equations By Fractional Complex Transform. Int. J. Phys. Res. 1:28-33.
 
Monro S, Parkers EJ (1999). The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions. J. Plasma Phys. 62:305-317.
Crossref
 
Samko SG, Kilbas AA, Marichev OI (1993). Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach. Langhorne.
 
Sweilam NH, Khader MM, Al-Bar RF (2007). Numerical studies for a multi-order fractional differential equation. Phys. Lett. A. 371:26-33.
Crossref
 
Tarasov VE (2008). Fractional vector calculus and fractional Maxwell's equations. Ann. Phys. 323:2756-2778.
Crossref
 
West BJ, Bologna M, Grigolini P (2003). Physics of Fractal operators. New York, Springer.
Crossref