Full Length Research Paper
References
Abraham A (2004). Meta learning evolutionary artificial neural networks. Neurocomput. 56:1-38. Crossref |
||||
Bache K, Lichman M (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml/]. Irvine, CA: University of California, School of Information and Computer Science. | ||||
Engelbrecht A, Cloete I (1998). Feature extraction from feedforward neural networks using sensitivity analysis.In Proceedings of the International Conference on Systems, Signals, Control, Computers, pp. 221-225. | ||||
Fischer I, Zell A (2000).Visualization of neural networks using java applets. In Proceedings of the 11th Annual Conference of the EAEEIE. pp. 71–76. | ||||
Garson GD (1991). Interpreting neural-network connection weights. AI Expert 6(4):46-51. | ||||
Gevrey M, Dimopoulos I, Lek S (2003). Review and comparison of methodsto study the contribution of variables in artificial neural network models. Ecol. Model. 160(3):249-264. Crossref |
||||
Goh ATC (1995). Back-propagation neural networks for modeling complex systems.AI Eng. 9(3):143-151. | ||||
Haykin S (1999). Neural Networks: A Comprehensive Foundation. Princeton Hall, 2nd Edition. | ||||
Milne L (1995). Feature selection using neural networks with contribution measures. AI-Conference pp. 571-571. | ||||
Montao JJ, Palmer A (2003). Numeric sensitivity analysis applied to feedforward neural networks. Neural Comput. Appl. 12(2):119-125. Crossref |
||||
Olden JD, Jackson DA (2002). Illuminating the black box: A randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 154(1):135-150. Crossref |
||||
Paliwal M, Kumar UA (2011). Assessing the contribution of variables in feed forward neural network. Appl. Soft Comput. 11(4):3690-3696. Crossref |
||||
Reed R (1993). Pruning algorithms - A survey. IEEE Trans. Neural Netw. 4(5):740-747. Crossref |
||||
Sjöberg J, Zhang Q, Ljung L, Benveniste A, Delyon B, Glorennec PY, Hjalmarsson H, Juditsky A (1995). Nonlinear black-box modeling in system identification: A unified overview. Automatica 31(12):1691-1724. Crossref |
||||
Steeler MJ, Ward MO, Alvarez SA (2001). Nvis: An interactive visualization tool for neural networks. In Proceedings of SPIE Symposium on Visual DataExploration and Analysis. pp. 234–241. | ||||
Tzeng FY, Ma KL (2005). Opening the black box - Data driven visualization of neural network. IEEE Visualization. p. 49. | ||||
Viste M, Skartveit HL (2004). Visualization of complex systems - The two shower mode. Psychnol. J. 2(2):229-241. |
Copyright © 2022 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0