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This research work was set to examine the activities of the Nigerian Stock Exchange using the All-
Share Index monthly data published between the year 2000 and 2015. Based on the plotted ACF graph 
of the original series, it was observed that the series was non-stationary and also exhibited some 
elements of seasonality which necessitated the series to be differenced to attain stationarity as well as 
reducing the seasonal effect. This deseasonalised stationary series data was modeled in order to 
determine the stability of the parameter estimation. The plots of the ordinary and seasonal differenced 
series autocorrelation and partial autocorrelation functions suggested some models for selection but 
the Akaike and Bayesian Information Criterion was used to select the model that really provided the 
best fit for the series. From the family of the seasonal models generated using R-Console, seasonal 
ARIMA (2, 1, 1)×(0, 1, 1)12 model was found to be the most adequate model that really captured the 
dependence in the series and that also tracked the seasonal effect. The adequacy of the chosen model 
was subsequently checked using both the Shapiro-Wilk and Ljung-Box test approaches. The Shapiro-
Wilk test for normality of residuals while Ljung-Box test for dependence in residuals of the fitted 
model. Method of maximum likelihood was used to determine the estimates of the parameters of the 
identified models and each parameter was statistically tested for significance. The model was used for 
a short term forecast (2016-2018). 
 
Key words: Deseasonalised, autocorrelation function, partial autocorrelation function, stationarity, All-Share 
Index. 

 
 
INTRODUCTION 
 
The Autoregressive (AR), Moving Average (MA) and the 
mixed autoregressive moving average (ARMA) models 
are often very useful in modeling most time series data. 
However, they have the assumption  of  homoscedasticity 

(or equal variance) for the errors. A time series that 
exhibits some elements of seasonality can only be 
modeled using seasonal models such as Seasonal AR, 
Seasonal MA, Seasonal ARMA and Seasonal ARIMA. 
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(Madsen, 2008). 
A Seasonal ARIMA model contains seasonal part and 

non-seasonal part in which both parts have the same 
structure. It may have an AR factor, an MA factor, and/or 
an order of differencing. In the seasonal part of the 
model, all of these factors operate across multiples of 
lags (the number of periods in a season). If the series has 
a long and consistent pattern, then one should consider 
using an order of seasonal differencing. It is statistically 
good not to use more than one order of seasonal 
differencing or more than two orders of total differencing 
(seasonal and non-seasonal). If the autocorrelation at the 
seasonal period is positive, one should consider a 
seasonal AR term to the model but if the autocorrelation 
at the seasonal period is negative, consider adding a 
Seasonal MA term to the model. Seasonal AR and 
Seasonal MA terms cannot be mixed in the same model 
and one should always avoid using more than one of 
either kind. Usually, the most commonly used seasonal 
model is the seasonal ARIMA (0, 1, 1) x (0, 1, 1)12 
model, that is, an MA (1) x SMA (1) model with both a 
seasonal and non-seasonal difference. In a rare case, a 
seasonal ARIMA (0, 1, 2) x (0, 1, 1)12 might be more 
adequate depending on the nature of the data. When a 
seasonal ARIMA model is fitted to log data, it is capable 
of tracking a multiplicative seasonal pattern (Ediger and 
Akar, 2007). Box et al. (1994) introduced a SARIMA 
model as an adaptation of an autoregressive integrated 
moving average (ARIMA) model, which was earlier 
proposed to specifically explain the variation of seasonal 
time series. The best forecasts in Box et al. (1994) as 
judged by the root mean-square error (RMSE) and other 
criteria were obtained with the family of periodic 
autoregressive models. It was found that a periodic auto-
regression which was determined by choosing    as 
small as possible to achieve an adequate fit gave the 
best model forecasts. This was accomplished by initially 
determining    based on a plot of the periodic partial 
autocorrelation function and then checking the adequacy 
of the fitted model. This approach is thus a natural 
extension of that of Box and Jenkins (1976). On the other 
hand, a subset periodic auto regression approach was 
found to produce comparatively very poor forecasts. In 
this approach, for each period all possible auto 
regressions with some parameters constrained to zero 
and with   =12 were examined (212 possibilities) and 
the best model was selected (Akaike, 1974) as well as 
Anderson (1999). In the work of Hamilton (1994), the 
model fitted in the case of Domestic Inflation Rate and 
Exchange Rate were ARIMA (1, 1, 0) and ARIMA (1, 1, 
1) respectively which were used to make inflation and 
exchange rates forecasts in and the validity of the model 
was tested. In the work of Dielman (1991), on Application 
of SARIMA and Exponential Smoothing in Urban 
Freeway Traffic Flow Prediction, the application of time 
series models to the single interval traffic flow forecasting 
problem  of  urban  freeway  was   addressed.   Seasonal  

 
 
 
 

Time Series approaches have not been used in previous 
forecasting research. However, time series of traffic flow 
data are characterized by definite periodic cycles. 
Seasonal ARIMA and Winters Exponential Smoothing 
models were developed and tested on the data sets 
belonging to two sites. A direct comparison with Smith 
(1980) findings revealed that ARIMA (2, 0, 1) (0, 1, 1) at a 
lag of 96 (daily period) and SARIMA (1, 0, 1)x(0, 1, 1)12 at 
a lag of 96 (daily period) were the best fit models for the 
Telegraph Road and Wilson Bridge Sites. The single step 
forecasting results indicate that SARIMA out-perform 
neural network and historical average models as reported 
by Smith (1980). Noakes et al. (1985) fitted a seasonal 
ARIMA model using data that consisted of thirty mean 
monthly river flows for periods between 37 and 64 years. 
Various models and model selection procedures were 
used to calibrate a model to each data set omitting the 
last three years of data. The one step forecasts ahead 
were then compared for the last three years (36 values) 
of the data. Modeling of Nigerian Naira foreign exchange 
rates with other currencies has also engaged the 
attention of many researchers, a few of whom are Olowe 
(2009), Etuk (2012, 2013) etc. Many economic and 
financial time series are known to exhibit some level of 
seasonality in their behavior. Foreign exchange rates are 
among such series, their observed volatility 
notwithstanding. For instance, Etuk (2012) has shown 
that monthly Nigerian Naira-US Dollar exchange rates 
are seasonal with period 12 months. He fitted an (0, 1, 1) 
x (1, 1, 1)12 SARIMA model to it and on this basis 
forecasted the 2012 values. Etuk (2013) also fitted 
another (0, 1, 1) x (1, 1, 1)12 SARIMA model to the 
monthly Naira-Euro exchange rates. A few other authors 
who have written extensively on the theoretical properties 
as well as on the practical applications of SARIMA 
models, highlighting their relative benefits are Priestly 
(1981), Farrah (2009), Philips (1994), Bollerslev (1986), 
Surhatono (2011), Oduro-Gyimah et al. (2012), Sami et 
al. (2012) and Bigovic (2012). 

This study shall contribute significantly to the body of 
knowledge and the development of financial time series 
study in particular; as a well diagnosed SARIMA model 
that can be fit into the All-Share Index series of the 
Nigerian Stock Exchange in order to actualize reasonable 
forecast. 
 
 
MATERIALS AND METHODS 
 
The data for this research comprises the All-Share Index of the 
Nigerian Stock Exchange (NSE) on monthly basis for the periods of 
sixteen years (2000-2015). The time series SARIMA methodology 
adopted is subsequently discussed and analyzed. 
 
 
Seasonal models 
 
Seasonal movement is usually due to the recurring events which 
takes place annually or  quarterly  as  the  case  may  be.  Seasonal  

 
 
 
 



models have pronounced regular ACF and PACF patterns with a 
periodicity equal to the order of seasonality. If the seasonality is 
annual, the ACF spikes are heightened at seasonal lags over and 
above the regular non-seasonal variation once per year. If the 
seasonality is quarterly, there will be prominent ACF spikes four 
times per year. 
 
 
Seasonal Autoregressive (SAR) model 
 
Seasonal Autoregressive model contains autoregressive 
parameters at seasonal lags. The time sequence plot of ACF or 
PACF can be used as a primary instrument for identifying seasonal 
autoregressive model. 

Seasonal autoregressive models is given as 
 
                                                                                                           
 

where |Φ| < 1 and    is independent of          , …, it is obvious 
that |Φ| < 1 ensures stationarity. 

Generally, a seasonal AR (P) model and a seasonal period’s s is 
given as: 
 

                                                                        

 
It is required that    is independent of     ,     ,… and, for 
stationarity, that the roots of Φ(x) = 0 be greater than 1 in absolute 
value. 

 
 
Seasonal Moving Average (SMA) model 

 
A seasonal moving average model of order Q with seasonal period 
s is given as: 
 
                                                                (3) 

 
 
Seasonal Autoregressive Integrated Moving Average (SARIMA) 
model 
 
An important tool in modeling non-stationary seasonal processes is 
the seasonal difference. The seasonal difference of period s for the 

series      is denoted by      and is defined as: 
 
                                                                                                                
 
For a series of length n, the seasonal difference series will be of 
length n-s; that is, s data values are lost due to seasonal 
differencing. 

In a non-stationary seasonal model, a process    is said to be a 
multiplicative seasonal ARIMA model with non-seasonal (regular) 
orders p, d and q, seasonal orders P, D and Q and seasonal period 
s if the differenced series: 
 

       
                                                                                                             

 
satisfies an ARMA (p,q) x (P Q)s  model with seasonal period s. We 
say that [  ] is an ARIMA (p, d, q) x (P, D, Q)s model with seasonal 
period s. 

In practice, many time series contains a seasonal periodic 
component which repeats every s observations. Box-Jenkins has 
generalized the ARIMA model to deal with seasonality and defines 
a general multiplicative seasonal ARIMA model in the form: 

 
                                                                            

 
 

 
 
where B denotes the backward shift operator,       and   are 
polynomials for order p, P, q, and Q respectively.    is the observed 
time series and    represent an unobserved white noise series, that 
is, a sequence of independently (uncorrelated) identically 
distributed random variables with zero mean and constant variance 

  
 . 
All the identified parameters shall be estimated using the method 

of maximum likelihood. 
Upon the fitting of the above discussed model, diagnostic checks 
shall be carried out to ensure normalcy using the following validity 
checks 
 
i) Residual analysis 
ii) Shapiro-Wilk Test of Normality 
iii) The Ljung-Box Test - A portmanteau test according to Box and 
Pierce (1970) proposed the statistic: 
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Thus, a general “portmanteau” test would reject the ARMA (p, q) 
model if the observed value of Q exceeds an appropriate critical 
value in a Chi-Square distribution with k-p-q degrees of freedom. 
 
 
The Akaike Information Criterion (AIC) 
 
The AIC is defined as 
 

AIC = -2  ⁄  + 2  ⁄                                 (8) 
 
Where l is the log likelihood computed as: 
 

l = -  
 

 
{ 1 + log(2 ) + log (

 ̂  ̂

 
)}                                                        (9) 

 
The AIC is often used in model selection for non-nested alternative 
and models with smaller values of AIC are considered best. 

 
 
RESULTS ANALYSIS 
 
Checking for stationarity and determination of the 
appropriate SARIMA Order 
 
Tables 1 and 2 and Figures 1 to 7 were derived showing 
the stationarity and determination of the appropriate 
SARIMA order. 
 
 
Parameter estimation of identified model 
 
Model specification for the best fit SARIMA order in Table 
2 is given as: 
 

 
                                                                                (10) 
 
Substituting the values of the parameters, we have 
 

                                                                                             (11) 

 
 

 

 

 1  𝜙1  𝜙2 
2  1   12  1     𝑡 =  1   1   1   1B12  𝑡        

 
 

 

 1  0.4995 + 0.2191 2  1   12  1     𝑡 =  1  0.7342   1 + 0.7395  𝑡   

  



 
 

 
 

Figure 1. Time Series Plot of  NSE ASI Series. 
 
 
 

Diagnostic check on SARIMA (2,1,1) × (0,1,1)12 model 
 
The Shapiro-Wilk test of normality gives a test statistic of 
W = 0.9235, with a P-value of 0.0000 which indicates that 
the residuals are normally distributed at 1, 5 and 10% 
significance levels. 

The Ljung-Box test statistic examines the null 
hypothesis of independence in the residuals of the All-
Share Index series with a Chi-squared value of 0.01927 
with a P-value of 0.8896 which lead to the acceptance of 
null hypothesis that all the autocorrelation functions are 
zero. 
 
 
DISCUSSION 
 
From Figure 1, it was observed that the pattern of the 
graph indicates that the series is non-stationary. There 
were both upward and downward trend as well as 
seasonal variation which also show that the series is 
stochastic in nature. The autocorrelation plot in Figure 2 
indicates significant spikes from lag 1 to 24 as well as 
seasonal variation, a downward trend for subsequent 
lags and off to zero at lag 40 which also indicates an 
element of non-stationary. In view of this, stationarity was 
therefore achieved by applying differencing as evidenced 
in Figures 4, 5 and 6 for the series acceptability 
ascertained by performing Augmented Dickey Fuller Test. 

Since the Dickey-Fuller test statistic is -4.7637 and the 
P-value is 0.01 as obtained in Table 1, we therefore fail to 
accept H0 and hence conclude that the alternative 
hypothesis is true, that is, the series is stationary in its 

mean and variance. This test brings to reality the fitting of 
a suitable SARIMA model. 

Having made the series stationary, decision was made 
on reasonable values of the orders of the Autoregressive 

(AR ()), Seasonal Autoregressive (SAR ()), ordinary 

differencing, Moving Average (MA()) and Seasonal 

Moving Average (SMA()). With a few iterations on this 
model-building strategy, we arrive at the parameters 
estimation presented in Table 2, hence the SARIMA 
model of order (2, 1, 1) x (0, 1, 1)12 presented as 
Equation 10. The model parameters have been 
parsimoniously fitted, the standard errors and log-
likelihood have improved while the model has a smaller 
AIC and variance which confirms that it captures the 
dependence in the series more than any other iterative 
models suggested by the sample ACF and PACF of first 
order and seasonal differencing. 
 
 
Forecasting 
 
Based on the set objectives of this research, forecasting 
was done using the fitted SARIMA model and the 
forecast values exhibited downward trend for All-Share 
Index in the Nigeria Stock Exchange in the month of 
January, March, June to August and October every year 
and a pick up on the month of February, April, May and 
December on yearly basis. However, the ASI has been 
confirmed to have seasonal effect over time since there is 
an upward trend in the stock market every month of 
December for the forecasted years of 2016-2018 
respectively (Figure 8). 

 
 



 
 

 
 

Figure 2. Sample ACF of of NSE ASI Series. 
 
 
 

 
 

Figure 3. Sample PACF of  NSE  ASI Series. 
 

 



 
 

 
 

Figure 4. Plot of the first and seasonal differences of NSE ASI Series. 
 
 
 
 

 
 

Figure 5. Sample ACF of First Order and Seasonal Differencing of ASI. 

 
 



 
 

 
 

               Figure 6. Sample PACF of First Order and Seasonal Differencing of ASI. 
 
 
 

 
 

Figure 7. Adequacy Check For Sarima (2,1,1) × (0,1,1)12 using ACF of Residuals. 
 

 
 

 
 

Figure 8. Forecasts from SARIMA (2,1,1) x (0,1,1)12. 

 
 



 
 

Table 1. Augmented Dickey-Fuller Test for Series stationarity. 
 

Dickey-Fuller test statistic Lag order P-value 

-4.7637 5 0.01 
 

Source: R-studio output. 
 
 
 

Table 2. Possible SARIMA models for ASI Series. 
 

Model Coefficient Estimate Standard Error |Z|-value 

SARIMA (3, 1, 3) × (1, 1, 0)12 

1 0.0444 0.3118 0.1424 

2 0.2176 0.2337 0.9311 

3 0.2975 0.1061 2.8040* 

1 -1.2634 0.3265 3.8879* 

2 0.2095 0.5786 0.3621 

3 0.0539 0.2886 0.1868 

   -0.4574 0.0863 5.3001* 

Log-likelihood = -1722 AIC = 3459.99 
2  

= 14137733 

     

SARIMA (1, 1, 1) × (1, 1, 0)12 

1 -0.3252 0.0827 3.9323* 

1 -0.8081 0.0617 13.0972* 

   0.4241 0.0875 4.8469* 

Log-likelihood = -1730.16 AIC = 3468.32 
2  

= 15858073 

     

SARIMA (1, 1, 2) × (0, 1, 1)12 

1 -0.1694 0.1605 1.0555 

1 -1.0572 0.1488 7.1048* 

2 0.2131 0.1497 2.1460* 

   -0.7509 0.0993 7.5619* 

Log-likelihood = -1723.1 AIC = 3456.21 
2  

= 14018819 

     

SARIMA (2, 1, 1) × (0, 1, 1)12 BEST FIT 

1 0.4995 0.1076 4.6422* 

2 -0.2191 0.1009 2.1715* 

1 0.7342 0.0985 7.4538* 

   -0.7395 0.0999 7.4024* 

Log-likelihood = -1721.78 AIC = 3453.57 
2  

= 13853805 
 

Source: R-studio output. 

 

 
Conclusion 
 
Having used necessary and suitable methods in line with 
the set goals of this research, there is no doubt that the 
main purpose has been fully realized. 

Therefore, based on the results obtained by the 
empirical analysis of the data collected, the following 
conclusions are therefore arrived at: 
 
i) SARIMA model (2, 1, 1) x (0, 1, 1)12 is the most 
appropriate fit for the All-Shares index of Nigerian Stock 
Exchange. 
ii) The stock market enjoyed the most economic boost in 
the month of February, April, May and December 
respectively based on the forecast. 
iii)  The  period of  January,  March,   June,   August   and 
October exhibited a downward trend for the stock market. 
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