African Journal of
Mathematics and Computer Science Research

  • Abbreviation: Afr. J. Math. Comput. Sci. Res.
  • Language: English
  • ISSN: 2006-9731
  • DOI: 10.5897/AJMCSR
  • Start Year: 2008
  • Published Articles: 262

Full Length Research Paper

A method for the solution of fractional differential equations using generalized Mittag-Leffler function

SHARMA Kishan
  • SHARMA Kishan
  • Department of Mathematics, NRI Institute of Technology and Management, Jhansi Road, Gwalior-474001, India
  • Google Scholar


  •  Received: 30 January 2014
  •  Accepted: 16 May 2014
  •  Published: 31 May 2014

References

 
Ahmed E, El-Sayed AMA, El-Saka HAA (2006). On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys. Lett. A. 358(1):1-4.
Crossref
 
Arafa AAM, Rida SZ, Ali HM (2013). Generalized Mittag-Leffler function method for solving Lorenz system. Int. J. Innov. Appl. Std. 3:105-111.
 
 
Argyris J, Faust G, Haase M (1994). An exploration of Chaos, in: Texts on Computational Mechanics. VII. North-Holland publishing Company. Amsterdam.
 
 
Bagley RL, Calico RA (1991). Fractional order state equations for the control of viscoelasticallydamped structures. J. Guidance Control Dyn. 14(2):304-311.
Crossref
 
 
Barrio R, Serrano S (2007). A three-parametric study of the Lorenz model. Physica D 229:43-51.
Crossref
 
 
EI-Sayed AMA, Rida SZ, Arafa AAM (2009). On the solutions of Time- fractional bacterial chemotexis in a diffusion gradient chamber. Int. J. Non-lin. Sci. 7(4):485-492.
 
 
EI-Sayed AMA, Rida SZ, Arafa AAM (2010). Exact solutions of sometime-fractional biological population models by using generalized differential transform method. Int. J. Math. Model. Simul. Appl. 3(3):231-239.
 
 
Gejji VD, Jafari H (2007). Analysis of a system of non autonomous fractional differential equations involving Caputo derivatives. J. Math. Anal. Appl. 328(2):1026-1033.
Crossref
 
 
Gorenflo R, Luchko Y, Mainardi F (2000). Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118(1-2):175-191.
Crossref
 
 
Hairer E, Wanner G (1991). Solving ordinary differential equations II: Stiff and differential-algebraic problems. Springer-Verlag.
Crossref
 
 
Hilfer R (2000). Application of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore. p. 463
 
 
Hilfer R (2002). Experimental evidence for fractional time evaluation groups forming materials. Chem. Phys. 284:399-408.
Crossref
 
 
Hilfer R (2003). On relaxation. Fractals 11:251-257.
Crossref
 
 
Klafter J, Lim SC, Metzler R (2011). Fractional Dynamics: Recent Advances. World Scientific, Singapore.
 
 
Lorenz E (1963). Deterministic non-periodic flow. J. Atmos. Sci. 20:130.
Crossref
 
 
Mainardi F, Gorenflo R (2007). Time-fractional derivatives in relaxation processes: A tutorial survey. Fraction. Calculus Appl. Anal. 10(3):269-308.
 
 
Merdan M (2009). Variational iteration and homotopy perturbation method for solving Lorenz system. BAU FBE Dergisi 1:3-14.
 
 
Metzler R, Barkai E, Klafter J (1999). Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Plank equation approach. Phys. Rev. Lett. 82:3563.
Crossref
 
 
Metzler R, Klafter J (2000). The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339:1-77.
Crossref
 
 
Miller KS, Ross B (1993). An introduction to the fractional calculus and fractional differential equations. Wiley, New York.
 
 
Mittag-Leffler GM (1903). Sur la nuovelle function Eα(x). C.R.Acad.Sci. Paris 2:137:554-558.
 
 
Oldham KB, Spanier J (1974). The fractional calculus. Academic, New York.
 
 
Rida SZ, Arafa AAM (2011). New method for solving linear fractional differential equations. Int. J. Differ. Eq. Article ID 814132, 8 pp.
 
 
Rida SZ, EI-Sayed AMA, Arafa AAM (2010). On the solution of time fractional reaction- diffusion equations. Commun. Nonlin. Sci. Numer. Simul. 15: 3847-3854.
Crossref
 
 
Shawagfeh NT (2002). Analytical approximate solutions for nonlinear fractional differential equations. Appl. Math. Comput. 131(2-3):517-529.
Crossref
 
 
Sparrow C (1982). The Lorenz equations: Bifurcations, Chaos, and strange attractors, in: Applied Mathematical Sciences. Springer-Verlag. New York, p. 41.
 
 
Viana M (2000). What's new on Lorenz strange attractors? Math. Intelligencer 22:6.
Crossref
 
 
Wiman A (1905). Uber de fundamental satz in der theorie der fucktionen. Acta Mathematica 29:191-201.
Crossref