Abstract
This paper aims at reviewing the application of biomimetics in design of agricultural implements. Most of the biomimetic works done were aimed at investigating the effect of non-smooth surfaces on soil resistance based on soil burrowing animals. The characteristics of soil-burrowing animals for improved soil scouring and their mechanism for reducing soil adhesion and friction are discussed. From past research works, it can be concluded that non-smooth surfaces can generally reduce soil resistance however the extent of reduction is still a gray area. The main factors affecting soil adhesion like the nature and properties of the soil, the properties of the soil-engaging component surfaces and the experimental conditions which are difficult to replicate, could be the explanation for inconsistencies in the extent of soil resistance reduction. Generally, when applying the concept of non-smooth surfaces in biomimetic implement design, general factors considered in arranging non-smooth structures are distribution of normal stresses, choice of non-smooth type and material, soil motion tracks during operation and choice of non-smooth convex parameters.
Key words: Biomimetics, anti-friction, anti-adhesion, soil resistance, burrowing animals.