International Journal of
Medicine and Medical Sciences

  • Abbreviation: Int. J. Med. Med. Sci.
  • Language: English
  • ISSN: 2006-9723
  • DOI: 10.5897/IJMMS
  • Start Year: 2009
  • Published Articles: 535

Review

An insight review on immunopathogenesis of bovine and human mycobacteria infections

Wesinew Adugna
  • Wesinew Adugna
  • National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia.
  • Google Scholar
Tesfaye Sisay Tessema
  • Tesfaye Sisay Tessema
  • College of Natural and Computational Sciences, Addis Ababa University, Ethiopia.
  • Google Scholar
Simenew Keskes
  • Simenew Keskes
  • College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Zeit, Ethiopia.College of Agriculture and Natural Resources, Dilla University, Dilla, Ethiopia.
  • Google Scholar


  •  Accepted: 26 November 2013
  •  Published: 31 January 2014

References

Algood H, Lin P, Flynn J (2005). Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin. Infect. Dis. 41:189-193.
Crossref
 
Amanfu W (2006). The situation of tuberculosis and tuberculosis control in animals of economic interest. Tuberculosis 86:330-335.
Crossref
 
Annon E (2003). Zoonotic Tuberculosis – Final Report, Food Safety Authority of Ireland Scientific Committee. 4-6
 
Ayele W, Neill S, Zinsstag J, Weiss M, Pavlik I (2004). Bovine tuberculosis: an old disease but a new threat to Africa. Int. J. Tuberc. Lung Dis. 8:924-937.
Pubmed
 
Berrington W, Hawn T (2007). Mycobacterium tuberculosis, macrophages, and the innate immune response: does common variation matter. Immunol. Rev. 219:167-186.
Crossref
 
Brill K, Li Q, Larkin R, Canaday D, Kaplan D, Boom W, Silver R (2001). Human natural killer cells mediate killing of intracellular Mycobacterium tuberculosis H37Rv via granule independent mechanisms. Infect. Immunol. 69:1755-1765.
Crossref
 
Buddle B, McCarthy A, Ryan T, Pollock J, Vordermeier H, Hewinson R, Andersen P, de Lisle G (2003). Use of mycobacterial peptides and recombinant proteins for the diagnosis of bovine tuberculosis in skin test-positive cattle. Vet. Rec. 153:615-620.
Crossref
 
Buddle B, Skinner M, Wedlock D, Collins D, ds Lisle G (2002). New generation Vaccine and delivery system for control of bovine tuberculosis in cattle and wildlife. Vet. Immunol. Immunopathol. 87:177-185.
Crossref
 
Cassidy J, Bryson D, Cancela M, Forster F, Pollock J, Neill S (2001). Lymphocyte subtypes in experimentally induced early-stage bovine tuberculous lesions. J. Comp. Pathol. 124:46-51.
Crossref
 
Chambers M, Gavier-Widen D, Hewinson R (2004). Antibody bound to the surface antigen MPB83 of Mycobacterium bovis enhances survival against high dose and low dose challenge. Immunol. Med. Microbiol. 41:93-100.
Crossref
 
Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C (2003). The growing burden of tuberculosis; global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163:1009-1021.
Crossref
 
De Valliere S, Abate G, Blazevic A, Heuertz R, Hoft D (2005). Enhancement of innate and cell-mediated immunity by anti-mycobacterial antibodies. Infect. Immunol. 73(10):6711-20.
Crossref
 
Dieli F, Ivanyi J, Marsh P, Williams A, Naylor I, Sireci G, Caccamo N, Di Sano C, Salerno A (2003). Characterization of lung γδ T cells following intranasal infection with Mycobacterium bovis bacillus Calmette-Guerin. J. Immunol. 170:463-469.
Pubmed
 
Ehlers S, Benini J, Held H, Roeck C, Alber G, Uhlig S (2001). Alphabeta T cell receptor positive cells and interferon-gamma, but not inducible nitric oxide synthase, are critical for granuloma necrosis in a mouse model of mycobacteria-induced pulmonary immunopathology. J. Exp. Med. 194:1847-1859.
Crossref
 
Ehlers S, Schaible UE (2013). The granuloma in tuberculosis: Dynamics of a host-pathogen collusion. Front. Immun. 3(411):1-9.
 
Euze’by JP (2004). Posting date List of Bacterial names with Standing in Nomenclature. http://www.bacterio.cict.fr/m/mycobacterium.html
 
Flynn J (2004). Immunology of tuberculosis and implications in vaccine development. Tubercul. 84: 93-101.
Crossref
 
Flynn J, Chan J (2001). Immunology of tuberculosis. Annu. Rev. Immunol. 19:93- 129.
Crossref
 
Fulton S, Reba S, Pai R, Pennini M, Torres M, Harding C, Boom W (2004). Inhibition of major histocompatibility complex II expression and antigen processing in murine alveolar macrophages by Mycobacterium bovis BCG and the 19-kilodalton mycobacterial lipoprotein. Infect. Immunol. 72:2101-2110.
Crossref
 
Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, Orefici G, Julkunen I, Coccia E (2001). Infection of human macrophages and dendritic cells with M. tuberculosis induces a differential cytokine gene expression that modulates T cell response. J. Immunol. 166:7033-7041.
Pubmed
 
Glatman-Freedman A (2006). The role of antibody-mediated immunity in defense against Mycobacterium tuberculosis: Advances toward a novel vaccine strategy. Tuberculosis 86:191-197.
Crossref
 
Guirado E, Schlesinger LS (2013). Modeling the Mycobacterium tuberculosis granuloma, the critical battle field in host immunity and disease. Front. Immunol. 4(98):1-7.
 
Hickman S, Chan J, Salgame P (2002). M. tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarisation. J. Immunol. 168:4636-4642.
Pubmed
 
Hiwa M, Frode S, Berven F, Harald W (2007). Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 7:1702-1718.
Crossref
 
Holtmeier W, Kabelitz D (2005). γδ T cells link innate and adaptive immune responses. Chem. Immunol. Allergy. 86:151-183.
Crossref
 
Hope J, Thom M, McCormick P, Howard C (2004). Interaction of antigen presenting cells with mycobacterial. Vet. Immunol. Immunopathol. 100:187-195.
Crossref
 
Houben E, Nguyen L, Pieters J (2006). Interaction of pathogenic mycobacteria with the host immune system. Curr. Opin. Microbiol. 9:76-85.
Crossref
 
Kaufmann S, Schaible U (2003). A dangerous liaison between two major killers: Mycobacterium tuberculosis and HIV target dendritic cells through DC-SIGN. J. Exp. Med. 197:1-5.
Crossref
 
Kisich K, Higgins M, Diamond G, Heifets L (2002). Tumor necrosis factor alpha stimulates killing of Mycobacterium tuberculosis by human neutrophils. Infect. Immun. 70:4591-4599.
Crossref
 
Lacy P, Eitzen G (2008). Control of granule exocytosis in neutrophils. Front. Biosci. 13: 5559-5570.
Crossref
 
Lang R (2013). Recognition of the mycobacterial cord factor by Mincle: relevance for granuloma formation and resistance to tuberculosis. Front. Immunol. 4(5):1-7.
 
Lie’bana E, Aranaz A, Aldwell F, McNair J, Neill S, Smyth A, Pollock J (2000). Cellular interactions in bovine tuberculosis: release of active mycobacteria from infected macrophages by antigen-stimulated T-cells. Immunolgy 99:23-29.
Crossref
 
Linda J, Julie G, Yvonne S, Glyn H, Martin V, Arun W (2006). Immunohistochemical markers augment evaluation of vaccine efficacy and disease severity in bacillus Calmette–Guerin (BCG) vaccinated cattle challenged with Mycobacterium bovis. Vet. Immunol. Immunopathol. 111:219-229.
Crossref
 
Lopez M, Sly L, Luu Y, Young D, Cooper H, Reiner N (2003). Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like receptor-2. J. Immunology 170:2409-2416.
Pubmed
 
Lund F, Hollifield M, Schuer K, Lines J, Randall T, Garvy B (2006). B cells are required for generation of protective effector and memory CD4 cells in response to Pneumocystis lung infection. J. Immunol. 176(10):6147-6154.
Pubmed
 
Maglione P, Xu J, Chan J (2007). B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J. Immunol. 178(11):7222-7234.
Pubmed
 
Martineau A, Newton S, Wilkinson K, Kampmann B, Hall B, Nawroly N, Packe G, Davidson R, Griffiths C, Wilkinson R (2007). Neutrophil-mediated innate immune resistance to mycobacteria. J. Clin. Investig. 117:1988-1994.
Crossref
 
Mitchell V, Waters W (2006). Advances in bovine tuberculosis diagnosis and pathogenesis: What policy makers need to know? J. Vet. Microbio. 112:181-190.
Crossref
 
Neill S, Bryson D, Pollock J (2001). Pathogenesis of tuberculosis in cattle. Tubercul. 81:79-86.
Crossref
 
Ngai P, McCormick S, Small C, Zhang X, Zganiacz A, Aoki N, Xing Z (2007). Gamma interferon responses of CD4 and CD8 T-cell subsets are quantitatively different and independent of each other during pulmonary Mycobacterium bovis BCG infection. Infect. Immun. 75:2244-2252.
Crossref
 
Nguyen L, Pieters J (2005). The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages. Trends Cell. Biol. 15:269-276.
Crossref
 
North R, Jung Y (2004). Immunity to tuberculosis. Annu. Rev. Immunol. 22:599-623.
Crossref
 
Noss E, Harding C, Boom W (2000). Mycobacterium tuberculosis inhibits MHC class II antigen processing in murine bone marrow macrophages. Cellul. Immunol. 201:63-74.
Crossref
 
Noss E, Pai R, Sellati T, Radolf J, Belisle J, Golenbock D, Boom W, Harding C (2001). Toll-like receptor two-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of M. tuberculosis. J. Immunol. 167:910-918.
Pubmed
 
Peters W, Ernst J (2003). Mechanisms of cell recruitment in the immune response to M. tuberculosis. Microbes Infect. 5:151-158.
Crossref
 
Phillips C, Foster C, Morris P, Teverson R (2003). The transmission of Mycobacterium bovis infection to cattle. Res. Vet. Sci. 74:1-15.
Crossref
 
Pieters J (2001). Evasion of host cell defense mechanisms by pathogenic bacteria. Curr. Opin. Immunol. 13:37-44.
Crossref
 
Pollock J, McNair J, Welsh M, Girvin R, Kennedy H, Mackie D, Neill S (2001). Immune responses in bovine tuberculosis. Tuberculosis 81:103-107.
Crossref
 
Pollock J, Neill S (2002). Mycobacterium bovis infection and tuberculosis in cattle. Vet. J. 163:115-127.
Crossref
 
Pollock J, Rodgers J, Welsh M, McNair J (2006). Pathogenesis of bovine tuberculosis: The role of experimental models of infection. Vet. Microbiol. 112:141-150.
Crossref
 
Pollock J, Welsh M, McNair J (2005). Immune responses in bovine tuberculosis: Towards new strategies for the diagnosis and control of disease. Vet. Immunol. Immunopathol. 108:37-43.
Crossref
 
Renshaw P, Panagiotidou P, Whelan A, Gordon S, Hewinson R, Williamson R, Carr M (2002). Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1: 1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6:CFP-10 complex. Implications for pathogenesis and virulence. J. Biol. Chem. 277:21598-21603.
Crossref
 
Renwick R, White P, Bengis R (2007). Bovine tuberculosis in southern African wildlife: a multi-species host-pathogen system. Epidemiol. Infect. 135:529-540.
Crossref
 
Roach D, Briscoe B, Saunders M, France P, Riminton S, Britton W (2001). Secreted Lymphotoxin-a Is Essential for the Control of an Intracellular Bacterial Infection. J. Exp. Med. 193:239-246
Crossref
 
Russell M, Iskandar M, Mykytczuk O, Nash J, Krishnan L, Sad S (2007). A reduced antigen load in vivo, rather than weak inflammation, causes a substantial delay in CD8+ T cell priming against Mycobacterium bovis (bacillus Calmette-Guerin). J. Immunol. 179:211-220.
Pubmed
 
Sawant K, McMurray D (2007). Guinea pig neutrophils infected with Mycobacterium tuberculosis produce cytokines which activate alveolar macrophages in noncontact cultures. Infect. Immun. 75:1870-1877.
Crossref
 
Shaler CR, Horvath CN, Jeyanathan M, Xing Z (2013). Within the Enemy's Camp: Contribution of the granuloma to the dissemination, persistence and transmission of Mycobacterium tuberculosis. Front. Immun. 4(30):1-8.
 
Smith N, Gordon S, de la Rua-Domenech R, Clifton-Hadley R, Hewinson R (2006). Bottlenecks and broomsticks: the molecular revolution of Mycobacterium bovis. Nat. Rev. Microbiol. 4:670-681.
Crossref
 
Tailleux L, Neyrolles O, Honore-Bouakline S, Perret E, Sanchez F, Abastado J, Lagrange P, Gluckman J, Rosenzwajg M, Herrmann J (2003a). Constrained intracellular survival of M. tuberculosis in human dendritic cells. J. Immunol. 170:1939–1948.
Pubmed
 
Tailleux L, Schwartz O, Herrmann J, Pivert E, Jackson M,Amara A (2003b). DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197(1):121-127.
Crossref
 
Tan B, Meinken C, Bastian M, Bruns H, Legaspi A, Ochoa M, Krutzik S, Bloom B, Ganz T, Modlin R, Stenger S (2006). Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J. Immunol. 177:1864-1871.
Pubmed
 
Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H (2003). The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 21:483-513.
Crossref
 
Thoen C, Lobue P, de Kantor I (2006). The importance of Mycobacterium bovis as a zoonosis. Vet. Microbiol. 112:339-345.
Crossref
 
Tizard I (2004). Veterinary Immunology an Introduction. 7th ed. USA: Elsevier. 57.
 
Tonya A, de Almeida B, Sergio A (2005). Morphometric Analysis of Granulomas Induced by Mycobacterium bovis suggests an Influence of IFN-Gamma on the Generation and Modulation upon Granulomatous Inflammatory Response in the Different Tissues. Int. J. Morphol. 23(4):317-322.
 
Triccas J, Davenport M (2008). Infectious diseases: too little, too late for tuberculosis. Immunol. Cell Biol. 86:293-294.
Crossref  
 
Tsai M, Chakravarty S, Zhu G (2006). Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cellul. Microbiol. 8(2):218-232.
Crossref
 
Tyler C, Mitchell V, Waters W (2007). Associations between cytokine gene expression and pathology in Mycobacterium bovis infected cattle. Vet. Immunol. Immunopathol. 119:204–213.
Crossref
 
Ulrichs T, Kaufmann S (2006). New insights into the function of granulomas in human tuberculosis. J. Pathol. 208:261-269.
Crossref
 
Uziel C, Elihu A, Jose A, Gutierrez P (2011). Alternative activation modifies macrophage resistance to Mycobacterium bovis. J. Vet. Microbiol. 151:51-59.
Crossref
 
Van Rhijn, I, Godfroid J, Michel A, Rutten V (2008). Bovine tuberculosis as a model for human tuberculosis: advantages over small animal models. Microbes Infect. 10(7):711-715.
Crossref
 
Villarreal-Ramos B, McAulay M, Chance V, Martin M, Morgan J, Howard C (2003). Investigation of the Role of CD8+ T Cells in Bovine Tuberculosis in vivo. Infect. Immun. 71:4297-4303.
Crossref
 
Welsh M, Cunningham R, Corbett D, Girvin R, McNair J, Skuce R, Bryson D, Pollock J (2005). Influence of pathological progression on the balance between cellular and humoral immune responses in bovine tuberculosis. Immunolgy 114:101.
Crossref
 
Wolf A, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, Ernst J (2008). Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med. 205:105-115.
Crossref
 
World Health Organization (2010). WHO report on Global tuberculosis control: surveillance, planning and financing. Available from http://www.who.int/tb/publications/global_report/2010/en/index.html.
 
World Health Organization (2012). Global tuberculosis report: WHO Library Cataloguing-in-Publication Data. WHO report (Accessed 2013 October 09), Available on the WHO web site (www.who.int) 1-100.