Full Length Research Paper
Abstract
The Internet-based recruiting platforms become a primary recruitment channel in most companies. While such platforms decrease the recruitment time and advertisement cost, they suffer from an inappropriateness of traditional information retrieval techniques like the Boolean search methods. Consequently, a vast amount of candidates missed the opportunity of recruiting. The recommender system technology aims to help users in finding items that match their personnel interests; it has a successful usage in e-commerce applications to deal with problems related to information overload efficiently. In order to improve the e-recruiting functionality, many recommender system approaches have been proposed. This article will present a survey of e-recruiting process and existing recommendation approaches for building personalized recommender systems for candidates/job matching.
Key words: Recommender systems, collaborative filtering, content-based filtering, hybrid approach, machine learning, e-recruiting, similarity measure.
Copyright © 2023 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0