International Journal of
Physical Sciences

  • Abbreviation: Int. J. Phys. Sci.
  • Language: English
  • ISSN: 1992-1950
  • DOI: 10.5897/IJPS
  • Start Year: 2006
  • Published Articles: 2542

Full Length Research Paper

Properties of Bertrand curves in dual space

Ä°lkay ARSLAN GÃœVEN
  • Ä°lkay ARSLAN GÃœVEN
  • Department of Mathematics, Faculty of Science and Arts, University of Gaziantep, Åžehitkamil, 27310, Gaziantep, Turkey.
  • Google Scholar
Ä°pek AÄžAOÄžLU
  • Ä°pek AÄžAOÄžLU
  • Department of Mathematics, Faculty of Science and Arts, University of Gaziantep, Åžehitkamil, 27310, Gaziantep, Turkey.
  • Google Scholar
R. A. Sventkovsky
  • R. A. Sventkovsky
  • Technical Sciences, CITiS, Presnenskii val str., 19, Moscow 123557, Russia
  • Google Scholar


  •  Received: 08 November 2013
  •  Accepted: 19 February 2014
  •  Published: 16 May 2014

References

Caliskan M, Senyurt S, Bilici M (in press). Some characterizations for the involute evolute curves in Dual Space. (in press)
 
Çöken AC, Görgülü A (2002). On the dual Darboux rotation axis of the dual space curve. Demonstratio Mathematica. 35(2):385-390.
 
 
Guggenheimer HW (1963). Differential Geometry. McGraw-Hill, New York. P.378.
 
 
Güven Ä°A, Kaya S, HacısalihoÄŸlu HH (2011). On closed ruled surfaces concerned with dual Frenet and Bishop frames. J. Dynamical Syst. Geometric Theories, 9(1):67-74.
 
 
Köse Ö, NizamoÄŸlu Åž, Sezer M (1988). An explicit characterization of dual spherical curves, DoÄŸa TU. J. Math. 12(3):105-113.
 
 
Kühnel W (2006). Differential Geometry: curves-surfaces-manifolds, second ed., Am. Math. Soc. USA. P.380.
 
 
Özkaldi S, Ä°larslan K, Yayli Y (2009). On Mannheim partner curve in dual space, An. Åžt. Univ. Ovidius Constanta, 17(2):131-142.
 
 
Struik DJ (1988). Lectures on Classical Differential Geometry. Dover, New York. P.221.
 
 
Veldkamp GR (1976). On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics, Mech. Mach. Theory, 11(2):141-156.