International Journal of
Physical Sciences

  • Abbreviation: Int. J. Phys. Sci.
  • Language: English
  • ISSN: 1992-1950
  • DOI: 10.5897/IJPS
  • Start Year: 2006
  • Published Articles: 2529

Full Length Research Paper

Study of optical constants in Se- In –Pb thin films of chalcogenide glasses

Preeti Dwivedi
  • Preeti Dwivedi
  • Department of Physics, V.S.S.D. College, Kanpur, India.
  • Google Scholar
Rita Awasthi
  • Rita Awasthi
  • Department of Physics, V.S.S.D. College, Kanpur, India.
  • Google Scholar


  •  Published: 28 January 2014

References

 

Al-Ghamdi AA (2006). Optical band gap and optical constants in amorphous Se96−xTe4Agx thin films. Vacuum. 80(5):400-405.
http://dx.doi.org/10.1016/j.vacuum.2005.07.003
 
Barman DB, Sharma P (2013). Optical studies of Se-Bi-Te-Sb thin films by single transmission spectrum. Glass Physics and Chemistry, 39(3):276-278
http://dx.doi.org/10.1134/S1087659613030048
 
Books A, Afanasyeva NI, Makhine V, Bruch RF, Mc. Greger B. (1999). FEW-FTIR spectroscopy applications and computer data processing for noninvasive skin tissue diagnostics in vivo. SPIE-The International society for Optical Engineering, 3596:140-151.
 
Borgogro JP, Lazarides B, Pelletier E (1982). Constants of Inhomogeneous Thin Films. Appl. Optics, 21:4020-4029.
 
Dixit N, Vijaya R (2001). Chalcogenide glasses for use in photonic switching devices: a detailed analysis. SPIE-The International society for Optical Engineering, 4417:477-482.
 
Hoede S, Loreal O, Sire O, Turlin B, Boussard-Pledel C, Le. Coq D, Bureau B, Fonteneau G, Pigeon C, Leroyer P, Lucas J (2001). Biological tissue infrared analysis by chalcogenide glass optical fiber spectroscopy. SPIE-The International society for Optical Engineering, 4158:49-56.
 
Hasegawa S, Yazaki S, Shimizuol T (1978). Solid State Commun. 26:4070.
http://dx.doi.org/10.1016/0038-1098(78)90191-6
http://dx.doi.org/10.1016/0038-1098(78)90515-X
 
Kumar S, Khan ZH, Khan MAM, Hussain M (2005). Studies on thin films of lead chalcogenides. Current Appl. Phys. 5(6):561-566.
http://dx.doi.org/10.1016/j.tsf.2005.03.011
http://dx.doi.org/10.1016/j.tsf.2004.06.093
http://dx.doi.org/10.1016/j.tsf.2004.08.144
http://dx.doi.org/10.1016/j.tsf.2005.05.042
 
Miller LS, Walder AJ, Lensell P, Blundell A (1988). Reflectometry Measurement of Optical Parameters of Au/SiO2/Si Films. Thin Solid Films. 165:11.
http://dx.doi.org/10.1016/0040-6090(88)90279-9
 
Mott NF, Davis EA (1979). Electronic Process in Non-Crystalline Materials (1979) (Clarendon, Oxford) P. 428.
 
Schweitzer T, Goutaland F, Martins E, Hewak DW, Brocklesby WS (2001). Site-selective spectroscopy in dysprosium-doped chalcogenide glasses for 1.3 µm optical fiber amplifiers. J. Optical Soc. Am. B (optical physics), 18(10):1436-1442.
http://dx.doi.org/10.1364/JOSAB.18.001436
 
Scott BA, Remier JA, Plecenik RM, Simonyi EE, Reuter W (1982). Low Defect Density Hydrogenated Amorphous Silicon Prepared by Homogeneous Chemical Vapor Deposition. Appl. Phys. Lett. 40:973.
http://dx.doi.org/10.1063/1.92972
 
Urbach F (1953). The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Physics Rev. 92:1324.
http://dx.doi.org/10.1103/PhysRev.92.1324
 
Zakery A, Elliott S (2003). Optical properties and applications of chalcogenide glasses: a review. Non-Cryst. Solids, 330:1-3.