Full Length Research Paper
References
Bennasar A, Mulet M, Lalucat J, Garcia-Valdes E (2010). PseudoMLSA: a database for multigenic sequence analysis of Pseudomonas species. BMC Microbiol. 10(118). |
|
Braun SD, Volksch B, Nuske J, Spiteller / D (2008). 3-Methylarginine from Pseudomonas syringae pv. syringae 22d/93 suppresses the bacterial blight caused by its close relative Pseudomonas syringae pv. glycinea. Chembiochem: a Euro. J. Chem. Biol. 9(12):1913-1920. |
|
Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moenne-Loccoz Y (2009). Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett. Appl. Microbiol. 48(5):505-512. |
|
Duffy BK, Defago G (1999). Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65(6):2429-2438. |
|
Garbeva P, Silby MW, Raaijmakers JM, Levy SB, Boer W (2011). Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J. 5(6):973-985. |
|
Glick BR (1995). The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41(2):109-117. |
|
Gross H, Loper JE (2009). Genomics of secondary metabolite production by Pseudomonas spp. Natural product reports 26(11):1408-1446. |
|
Guillot E, Leclerc H (1993). Bacterial flora in natural mineral waters: characterization by ribosomal ribonucleic acid gene restriction patterns. Systematic Appl. Microbiol. 16(3):483-493. |
|
Halgren A, Azevedo M, Mills D, Armstrong D, Thimmaiah M, McPhail K, Banowetz G (2011). Selective inhibition of Erwinia amylovora by the herbicidally active germination-arrest factor (GAF) produced by Pseudomonas bacteria. J. Appl. Microbiol. 111(4):949-959. |
|
Higgs RE, Zahn JA, Gygi JD, Hilton MD (2001). Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl. Environ. Microbiol. 67(1):371-376. |
|
Jousset A, Lara E, Wall LG, Valverde C (2006). Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl. Environ. Microbiol. 72(11): 7083-7090. |
|
Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE (2011). Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol. Microbiol. 81(2):395-414. |
|
Lee X, Azevedo MD, Armstrong DJ, Banowetz GM, Reimmann C (2013). The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a seed germination-arrest factor. Environ. Microbiol. Rep. 5(1):83-89. |
|
Li L, Abu Al-Soud W, Bergmark L, Riber L, Hansen LH, Magid J, Sorensen SJ (2013). Investigating the diversity of pseudomonas spp. in soil using culture dependent and independent techniques. Curr. Microbiol. 67(4):423-430. |
|
Michelsen CF, Jensen H, Venditto VJ, Hennessy RC, Stougaard P (2015). Bioactivities by a crude extract from the Greenlandic Pseudomonas sp. In5 involves the nonribosomal peptides, nunamycin and nunapeptin. Peer J. (3):1476. |
|
Polanski-Cordovano G, Romano L, Marotta LL, Jacob S, Soo Hoo J, Tartaglia E, Asokan D, Kar S, Demain AL (2013). Nutritional studies on production of antibacterial activity by the zebra mussel antagonist, Pseudomonas fluorescens CL0145A. J. Microbiol. Biotechnol. 23(5): 656-660. |
|
Ramos JL, Filloux A (2010). Pseudomonas: Volume 6: Molecular Microbiology, Infection and Biodiversity, Springer Science & Business Media. |
|
Reder-Christ K, Schmidt Y, Dorr M, Sahl HG, Josten M, Raaijmakers JM, Gross H, Bendas G (2012). Model membrane studies for characterization of different antibiotic activities of lipopeptides from Pseudomonas. Biochim Biophys Acta 1818(3):566-573. |
|
Sambrook J, Russell, DW (2001). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press. |
|
Siddiqui IA, Shaukat SS (2004). Liquid culture carbon, nitrogen and inorganic phosphate source regulate nematicidal activity by fluorescent pseudomonads in vitro. Lett. Appl. Microbiol. 38(3):185-190. |
|
Trippe K, McPhail K, Armstrong D, Azevedo M, Banowetz G (2013). Pseudomonas fluorescens SBW25 produces furanomycin, a non-proteinogenic amino acid with selective antimicrobial properties. BMC Microbiol. 13(111). |
|
Upadhyay A, Srivastava S (2008). Characterization of a new isolate of Pseudomonas fluorescens strain Psd as a potential biocontrol agent. Lett. Appl. Microbiol. 47(2):98-105. |
|
Wadhwani T, Desai K, Patel D, Lawani D, Bahaley P, Joshi P, Kothari V (2009). Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials. Internet J. Microbiol. 7(1). |
|
Yadav S, Yadav S, Kaushik R, Saxena AK, Arora DK (2014). Genetic and functional diversity of fluorescent Pseudomonas from rhizospheric soils of wheat crop. J. Basic Microbiol. 54(5):425-437. |
|
Yamada T, Goto M, Punj V, Zaborina O, Chen ML, Kimbara K, Majumdar D, Cunningham E, Das Gupta TK, Chakrabarty AM (2002). Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc. Natl. Acad. Sci. U.S.A. 99(22):14098-14103. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0