Journal of
Parasitology and Vector Biology

  • Abbreviation: J. Parasitol. Vector Biol.
  • Language: English
  • ISSN: 2141-2510
  • DOI: 10.5897/JPVB
  • Start Year: 2009
  • Published Articles: 204

Full Length Research Paper

Dynamics of insecticide resistance and the frequency of kdr mutation in the primary malaria vector Anopheles arabiensis in rural villages of Lower Moshi, North Eastern Tanzania

Johnson Matowo
  • Johnson Matowo
  • Kilimanjaro Christian Medical University College, Moshi, Tanzania.
  • Google Scholar
Jovin Kitau
  • Jovin Kitau
  • Kilimanjaro Christian Medical University College, Moshi, Tanzania.
  • Google Scholar
Bilali Kabula
  • Bilali Kabula
  • National Institute for Medical Research (NIMR), Tukuyu, Mbeya, Tanzania.
  • Google Scholar
Reginald A. Kavishe
  • Reginald A. Kavishe
  • Kilimanjaro Christian Medical University College, Moshi, Tanzania.
  • Google Scholar
Richard M. Oxborough
  • Richard M. Oxborough
  • London School of Hygiene and Tropical Medicine, London, UK.
  • Google Scholar
Robert Kaaya
  • Robert Kaaya
  • Pan-African Malaria Vector Control Consortium (PAMVERC), www.pamverc.org.
  • Google Scholar
Patrick Francis
  • Patrick Francis
  • Kilimanjaro Christian Medical University College, Moshi, Tanzania.
  • Google Scholar
Abdul Chambo
  • Abdul Chambo
  • Pan-African Malaria Vector Control Consortium (PAMVERC), www.pamverc.org.
  • Google Scholar
Franklin W. Mosha
  • Franklin W. Mosha
  • Kilimanjaro Christian Medical University College, Moshi, Tanzania.
  • Google Scholar
Mark W. Rowland
  • Mark W. Rowland
  • London School of Hygiene and Tropical Medicine, London, UK.
  • Google Scholar


  •  Received: 24 December 2013
  •  Accepted: 25 February 2014
  •  Published: 31 March 2014

Abstract

The major foci of pyrethroid resistance in 1990 to 2010 were in West and Central African populations of Anopheles gambiae s.s. Pyrethroid resistance in Anopheles arabiensis has been reported in several countries of East and Central Africa. Four cross-sectional surveys of A. arabiensis in Lower Moshi were conducted in 2009, 2011, 2012 and 2013 to determine levels of resistance to pyrethroids, organochlorines, organophosphates and carbamates using World Health Organization (WHO) standard diagnostic dosages. Mosquitoes were identified to species level and genotyped for both L1014F and L1014S mutations by hydrolysis probe assays. A. arabiensis remains the dominant malaria vector in the area. Full susceptibility to dichlorodiphenyltrichloroethane (DDT), organophosphates and carbamates was recorded in all eight villages. Following the current WHO guidelines, resistance to permethrin and lambdacyhalothrin was observed in 2009 with mortality rates ranging from 80 to 90% and from 66 to 97% for lambdacyhalothrin. Reduced susceptibility to deltamethrin was observed (87 to 97% mortality). The percentage mortality to permethrin, deltamethrin, lambdacyhalothrin was less than 90% in 2013 in all villages except in one village where mortality rate for deltamethrin was found to be 99%. These results clearly demonstrate the presence of pyrethroid resistance in A. arabiensis in Lower Moshi. The L1014F resistant allele was detected in one mosquito out of 642 that were screened for kdr mutation (allele frequency of 0.08%). The lack of DDT resistance coupled with previous studies showing very low frequency kdr suggests that enzyme-based mechanisms are responsible for resistance in A. arabiensis. Further studies are needed to investigate operational impact of observed resistance on malaria vector control interventions in the area.

Key words: Anopheles, resistance, mortality, dynamics, mutation, insecticide.