Full Length Research Paper
Abstract
The Rice-wheat (RW) cropping system is one of the major agricultural production systems in four Indo-Gangetic Plains (IGP) countries: India, Pakistan, Bangladesh and Nepal of South Asia covering about 32% of the total rice area and 42% of the total wheat area. The excessive utilization of natural resource bases and changing climate are leading to the negative yield trend and plateauing of Rice-wheat (RW) system productivity. The conservation agriculture based efficient and environmental friendly alternative tillage and crop establishment practices have been adopted by the farmers on large scale. A few tools have been evolved to simulate the different tillage and crop establishment. In the present study, InfoRCT (Information on Use of Resource Conserving Technologies), a excel based model integrating biophysical, agronomic, and socioeconomic data to establish input-output relationships related to water, fertilizer, labor, and biocide uses; greenhouse gas (GHG) emissions; biocide residue in soil; and Nitrogen (N) fluxes in the rice-wheat system has been validated for farmer participatory practices. The assessment showed that double no-till system increased the farmer’s income, whereas raised-bed systems decreased it compared with the conventional system. The InfoRCT simulated the yield, water-use, net income and biocide residue fairly well. The model has potential to provide assessments of various cultural practices under different scenarios of soil, climate, and crop management on a regional scale.
Key words: Biocide residue index, global warming potential, greenhouse gas emission, nitrogen budget, resource conserving technologies, rice-wheat system; systems analysis.
Copyright © 2024 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0