Journal of
Soil Science and Environmental Management

  • Abbreviation: J. Soil Sci. Environ. Manage.
  • Language: English
  • ISSN: 2141-2391
  • DOI: 10.5897/JSSEM
  • Start Year: 2010
  • Published Articles: 314

Review

Mitigating N2O emissions from agriculture: A review of the current knowledge on soil system modelling, environmental factors and management practices influencing emissions

D. Regaert
  • D. Regaert
  • Crop Science Unit, Gembloux Agro-Bio Tech, ULg, Belgium.
  • Google Scholar
M. Aubinet
  • M. Aubinet
  • BIOSE Department, Gembloux Agro-Bio Tech, ULg, Belgium.
  • Google Scholar
C. Moureaux
  • C. Moureaux
  • BIOSE Department, Gembloux Agro-Bio Tech, ULg, Belgium
  • Google Scholar


  •  Received: 04 March 2015
  •  Accepted: 12 June 2015
  •  Published: 01 July 2015

References

Arah JRM, Vinten AJA (1995). Simplified model of anoxia in aggregated soils. Eur. J. Soil Sci. 46:507-517.
Crossref
 
Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O'Donnell D, Schurgers G, Sorvari S, Vesala T (2010). Terrestrial biogeochemical feedbacks in the climate system. Nature Geosci. 3:525-532.
Crossref
 
Azeem B, Kushaari K, Man ZB, Basit A, Thanh TH (2014). Review on materials & methods to produce controlled release coated urea fertilizer. J Control Release 181C:11-21.
Crossref
 
Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007). Tillage and soil carbon sequestration-What do we really know? Agric. Ecosystems Environ. 118:1-5.
Crossref
 
Bakken LR, Bergaust L, Liu B, Frostegard A (2012). Regulation of denitrification at the cellular level: A clue to the understanding of N2O emissions from soils. Philos. Trans. R Soc. Lond. B Biol. Sci. 367:1226-34.
Crossref
 
Bateman EJ, Baggs EM (2005). Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology Fertil. Soils 41:379-388.
Crossref
 
Bessou C, Mary B, Léonard J, Roussel M, Gréhan E, Gabrielle B (2010). Modelling soil compaction impacts on nitrous oxide emissions in arable fields. Eur. J. Soil Sci. 61:348-363.
Crossref
 
Blagodatsky S, Grote R, Kiese R, Werner C, Butterbach-Bahl K (2011). Modelling of microbial carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission. Plant Soil 346:297-330.
Crossref
 
Blagodatsky S, Smith P (2012). Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas Emissions from soil. Soil Biol. Biochem. 47:78-92.
Crossref
 
Braker G, Schwarz J, Conrad R (2010). Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiol. Ecol. 73:134-48.
Crossref
 
Brisson N, Gary C, Justes E, Roche R, Mary B., Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P (2003). An overview of the crop model STICS. Eur. J. Agron. 18:309-332.
Crossref
 
Brisson N, Mary B, Ripoche D, Jeuffroy MH (1998). STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18:311-346.
Crossref
 
Brisson, N, Ruget F, Gate, P, Lorgeou, J (2002). STICS: A generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie 22:69-92.
Crossref
 
Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013). Nitrous oxide emissions from soil: how well do we understand the processes and their controls? Philos Trans. R Soc. Lond. B Biol. Sci. P. 368.
Crossref
 
Cannavo P, Lafolie F, Nicolardot B, Renault P (2006). Modeling seasonal variations in carbon dioxide and nitrous oxide in the Vadose Zone. Vadose Zone J. 5 990.
Crossref
 
Cardenas LM, Gooday R, Brown L, Scholefield D, Cuttle S, Gilhespy S, Matthews R, Misselbrook T, Wang J, Li C, Hughes G, Lord E (2013). Towards an improved inventory of N2O from agriculture: Model evaluation of N2O emission factors and N fraction leached from different sources in UK agriculture. Atmospheric Environ. 79:340-348.
Crossref
 
Celette F, Gary C (2013). Dynamics of water and nitrogen stress along the grapevine cycle as affected by cover cropping. Eur. J. Agron. 45:142-152.
Crossref
 
Celette F, Gaudin R, Gary C (2008). Spatial and temporal changes to the water regime of a Mediterranean vineyard due to the adoption of cover cropping. Eur. J. Agron. 29:153-162.
Crossref
 
Chen D, Li Y, Grace P, Mosier AR (2008). N2O emissions from agricultural lands: A synthesis of simulation approaches. Plant Soil 309:169-189.
Crossref
 
Constantin J, Mary B, Laurent F, Aubrion G, Fontaine A, Kerveillant P, Beaudoin N (2010). Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agric. Ecosystems Environ. 135:268-278.
Crossref
 
Cui F, Zheng X, Wang K, Zhou Z, Deng J (2014). Assessing biogeochemical effects and best management practice for a wheat-maize cropping system using the DNDC model. Biogeosciences 11:91-107.
Crossref
 
de Bruijn AMG, Butterbach-Bahl K, Blagodatsky S, Grote R (2009). Model evaluation of different mechanisms driving freeze–thaw N2O emissions. Agric. Ecosystems Environ. 133:196-207.
Crossref
 
De Klein CAM, Van Logtestijn RSP (1996). Denitrification in grassland soils in the Netherlands in relation to irrigation, N-application rate, soil water content and soil temperature. Soil Biol. Biochem. 28:231-237.
Crossref
 
Ghanbarian-Alavijeh B, Millán H, Huang G (2011). A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve. Canadian J. Soil Sci. 91:1-14.
Crossref
 
Giles M, Morley N, Baggs EM, Daniell TJ (2012). Soil nitrate reducing processes - drivers, mechanisms for spatial variation, and significance for nitrous oxide production. Front Microbiol. 3:407.
Crossref
 
Grant RF, Nyborg M, Laidlaw JW (1993a). Evolution of nitrous oxide from soils: I. Model development. Soil Sci. 156:259-265.
 
Grant RF, Nyborg ., Laidlaw JW (1993b). Evolution of nitrous oxide from soils: II. Experimental results and model testing. Soil Sci. 156:266-277.
 
Groffman PM, Butterbach-Bahl K, Fulweiler RW, Gold AJ, Morse JL, Stander EK, Tague C, Tonitto C, Vidon P (2009). Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93:49-77.
Crossref
 
Heinen M (2006). Simplified denitrification models: Overview and properties. Geoderma 133:444-463.
Crossref
 
Henault C, Bizouard F, Laville P, Gabrielle B, Nicoullaud B, Germon JC, Cellier P (2005). Predicting in situ soil N2O emission using NOE algorithm and soil database. Global Change Biol. 11:115-127.
Crossref
 
Kim DG, Hernandez-Ramirez G, Giltrap D (2013). Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis. Agric. Ecosystems Environ. 168:53-65.
Crossref
 
Langeveld CA, Leffelaar PA (2002). Modelling belowground processes to explain field-scale emissions of nitrous oxide. Ecolog. Modelling 149:97-112.
Crossref
 
Laughlin RJ, Stevens JR (2002). Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Sci. Soc. Am. J. 66: 1540-1548.
Crossref
 
Leffelaar PA, Wessel WW (1988). Denitrification in a homgeneous, closed system: Experiments and simulation. Soil Sci. 146:335-349.
Crossref
 
Lehuger S, Gabrielle B, Laville P, Lamboni M, Loubet B, Cellier P (2011). Predicting and mitigating the net greenhouse gas emissions of crop rotations in Western Europe. Agric. Forest Meteorol. 151:1654-1671.
Crossref
 
Li C, Frolking S, Frolking TD (1992a). A model of nitrous oxide evolution from soil driven by rainfall events:1. model structure and sensitivity. J. Geophys. Res. 97:9759-9776.
 
Li C, Frolking S, Frolking TD (1992b). A model of nitrous oxide evolution from soil driven by rainfall events: 2. Model applications. J. Geophys. Res. 97:9777-9783.
 
Liu B, Morkved PT, Frostegard A, Bakken L R (2010). Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol. Ecol. 72:407-17.
Crossref
 
Liu C, Wang K, Zheng X (2013). Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize cropping system. Biogeosciences 10:2427-2437.
Crossref
 
Maggi F, Gu C, Riley WJ, Hornberger GM, Venterea RT, Xu T, Spycher N, Steefel C, Miller NL, Oldenburg CM (2008). A mechanistic treatment of the dominant soil nitrogen cycling processes: Model development, testing, and application. J. Geophys. Res. P. 113.
Crossref
 
Manzoni S, Porporato A (2009). Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Bio. Biochem. 41:1355-1379.
Crossref
 
Molodovskaya M, Singurindy O, Richards BK, Warland J, Johnson MS, Steenhui TS (2012). Temporal variability of nitrous oxide from fertilized croplands: Hot moment analysis. Soil Sci. Soc. Am. 76:1728-1740.
Crossref
 
Mørkved PT, Dörsch P, Henriksen TM, Bakken LR (2006). N2O emissions and product ratios of nitrification and denitrification as affected by freezing and thawing. Soil Biol. Biochem. 38:3411-3420.
Crossref
 
Mosier AR, Kroeze C, Nevison C, Oenema O, Seitzinger S, Van Cleemput O (1998). Closing the-global N2O budget: Nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems 52:225-248.
Crossref
 
Or D, Smets BF, Wraith JM, Dechesne A, Friedman SP (2007). Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Adv. Water Res. 30:1505-1527.
Crossref
 
Pan Y, Ni BJ, Bond PL, Ye L, Yuan Z (2013a). Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res. 47:3273-3281.
Crossref
 
Pan Y, Ni B J, Yuan Z (2013b). Modeling electron competition among nitrogen oxides reduction and N2O Accumulation in denitrification. Envrion. Sci. Technol. 47:11083-11091.
Crossref
 
Parton WJ, Hartman M, Ojima D, Schimel D (1998). DAYCENT and its land surface submodel: description and testing. Global Planetary Change 19:35-48.
Crossref
 
Parton WJ, Holland EA, Del Grosso SJ, Hartman MD, Martin RE, Mosier AR., Ojima DS, Schimel DS (2001). Generalized model for NOx and NzO emissions from soils. J. Geophys. Res.106:403-419.
Crossref
 
Perfect E, Kay BD (1995). Applications of fractals in soil and tillage research: A review. Soil Tillage Res. 36:1-20.
Crossref
 
Perrier E, Bird N, Rieu M (1999). Generalizing the fractal model of soil structure the pore solid fractal approach. Geoderma 88:137-164.
Crossref
 
Petersen SO, Mutegi JK, Hansen EM, Munkholm LJ (2011). Tillage effects on N2O emissions as influenced by a winter cover crop. Soil Biol. Biochem. 43:1509-1517.
Crossref
 
Rappoldt C, Crawford JW (1999). The distribution of anoxic volume in a fractal model of soil. Geoderma 88:329-347.
Crossref
 
Richardson DJ, Felgate H, Watmough N, Thomson AJ, Baggs EM (2009). Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle – could enzymic regulation hold the key? Trends Biotechnol. 27:388-397.
Crossref
 
Riley WJ, Matson PA (2000). NLOSS: A mechanistic model of denitrified N2O and N2 from soils. Soil Sci. 165:237-249.
Crossref
 
Rubol S, Manzoni S, Bellin A, Porporato A (2013). Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA). Adv. Water Res.62:106-124.
Crossref
 
Saggar S, Jha N, Deslippe J, Bolan NS, Luo J, Giltrap DL, Kim DG, Zaman M, Tillman RW (2013). Denitrification and N2O:N2 production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts. Sci. Total Environ. 465:173-95.
Crossref
 
Schurgers G, Dorsch P, Bakken L, Leffelaar P, Haugen L (2006). Modelling soil anaerobiosis from water retention characteristics and soil respiration. Soil Biol. Biochem. 38:2637-2644.
Crossref
 
Senbayram M, Chen R, Budai A, Bakken L, Dittert K (2012). N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agric. Ecosystems Environ. 147:4-12.
Crossref
 
Simek M, Cooper JE (2002). The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil Sci. 53:345-354.
Crossref
 
Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003). Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 54:779-791.
Crossref
 
Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle, S, O'Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider, U, Towprayoon S, Wattenbach M, Smith J (2008). Greenhouse gas mitigation in agriculture. Philos Trans. R Soc. Lond. B Biol. Sci. 363:789-813.
Crossref
 
Stocker BD, Roth R, Joos F, Spahni R, Steinacher M, Zaehle S, Bouwman L, Xu R, Prentice IC (2013a). Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nature Climate Change 3:666-672.
Crossref
 
Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Y Xia, Bex V, Midgley PM (eds.) (2013b). IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
 
Sutton MA, Howard CM, Erisman JW, Bealey WJ, Billen G, Bleeker A, Bouwman AF, Grennfelt P, Van Grinsven H, Grizetti B (2011). European Nitrogen Assessment, chapter 5: The challenge to integrate nitrogen scienceand policies: The European Nitrogen Assessment approach, Cambridge University Press.
 
Syakila A, Kroeze C (2011). The global nitrous oxide budget revisited. Greenhouse Gas Meas. Manag. 1:17-26.
Crossref
 
Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, Richardson DJ (2012). Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos Trans. R Soc. Lond. B Biol. Sci. 367:1157-1168.
Crossref
 
Van den Heuvel RN, Bakker SE, Jetten MS, Hefting MM (2011). Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem. Geobiology 9:294-300.
Crossref
 
Van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C (2010). Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur. J. Soil Sci. 61:903-913.
Crossref
 
van Groenigen KJ, Osenberg CW, Hungate BA (2011). Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475:214-216.
Crossref
 
Wang K, Zhang R (2011). Estimation of soil water retention curve: An asymmetrical pore-solid fractal model. Wuhan University J. Nat. Sci. 16:171-178.
Crossref
 
Wolf I, Brumme R (2002). Contribution of nitrification and denitrification sources for seasonal N2O emissions in an acid German forest soil. Soil Biol. Biochem. 34:741-744.
Crossref
 
Zumft WG (1997). Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61:533-616.