African Journal of
Agricultural Research

  • Abbreviation: Afr. J. Agric. Res.
  • Language: English
  • ISSN: 1991-637X
  • DOI: 10.5897/AJAR
  • Start Year: 2006
  • Published Articles: 6849

Full Length Research Paper

Mineral and organic fertilizer in two Physalis species

ARIATI Ana Claudia
  • ARIATI Ana Claudia
  • Federal Technological University of Paraná, Via do Conhecimento, km 01, 85503-350, Pato Branco, Paraná, Brazil.
  • Google Scholar
OLIVEIRA Marisa de Cacia
  • OLIVEIRA Marisa de Cacia
  • Federal Technological University of Paraná, Via do Conhecimento, km 01, 85503-350, Pato Branco, Paraná, Brazil.
  • Google Scholar
LOSS Edenes Maria Schroll
  • LOSS Edenes Maria Schroll
  • Federal Technological University of Paraná, Via do Conhecimento, km 01, 85503-350, Pato Branco, Paraná, Brazil.
  • Google Scholar
GOMES Izabela
  • GOMES Izabela
  • Federal Technological University of Paraná, Via do Conhecimento, km 01, 85503-350, Pato Branco, Paraná, Brazil.
  • Google Scholar
PACHECO Vacilania
  • PACHECO Vacilania
  • Federal Technological University of Paraná, Via do Conhecimento, km 01, 85503-350, Pato Branco, Paraná, Brazil.
  • Google Scholar
NEGRI Rafaele Cristina
  • NEGRI Rafaele Cristina
  • Federal Technological University of Paraná, Via do Conhecimento, km 01, 85503-350, Pato Branco, Paraná, Brazil.
  • Google Scholar

  •  Received: 16 September 2016
  •  Accepted: 21 December 2016
  •  Published: 12 January 2017


Physalis cultivation can be an alternative of extra income for small and medium producers, mainly with the use of materials available on the property that can replace chemical fertilizer. This study aimed to evaluate agronomic parameters of Physalis peruviana and P. pubescens submitted two different sources of fertilization - chemical and organic. We evaluated plant height, shoot dry mass, production/plant, fruits diameter and weight and productivity. The organic fertilization provided better results for vegetative parameters. Regarding production, fertilization resulted in increase in mass, with no significant difference between sources. In the production of fruits/plant we obtained 156.2 g, 274.6 and 355.5 g for unfertilized, chemical and organic fertilizers, respectively, without significant differences between species. The productivity estimates were 2,370, 1,831 and 1,041 kg ha-1, for organic, mineral and unfertilized treatments, respectively. These results demonstrate that organic fertilizer with poultry manure is the best alternative as a source of nutrients, which may result in gains to the producer by the use of originated waste from other activities, as well as lower environmental contamination, either by improper disposal of waste or the use of chemical fertilizers.

Key words: Nitrogen, nutrition, poultry litter, production, Solanaceae


The Physalis genus, belonging to the Solanaceae family, comprises about 120 species and its probable center of origin is the Mexico (Li et al., 2008; Kindscher et al., 2012; Whitson, 2012). Its fruits are protected by a capsule and contain significant levels of vitamins A, C and B complex, and minerals, carotenoids and tocopherols (Hassanien, 2011; Ramadan, 2011), with some of these with antioxidant activity (Bravo et al., 2015). It is noteworthy the production of polioxigenated metabolites, the vitasteroids, including physalins, which are substances that present  interesting  pharmacological activities (Tomassini et al., 2000). Some species are used in traditional medicine for treatment of diseases, with several studies demonstrating the presence of other bioactive molecules that can cause future, medications (Arun and Asha, 2007; Chen et al., 2011; Hassanien, 2011; Puente et al., 2011).
Physalis, although little known to the majority of consumers, has production and marketing potential, especially for its nutraceutical qualities (Barbieri et al., 2012), and may be an excellent alternative for small and medium producers (Thomé and  Osaki,  2010).  In  Brazil, P. peruviana has been gaining attention among producers; however, are still scarce work and research results to guide them in relation to cultural practices, productivity and economic aspects of production.  Currently, the fertilizer management carried out in Phyalis crops is based on recommendations for tomato crop (Gonçalves et al., 2012; Filgueira, 2003; Rufato et al., 2008). Differently from P. peruviana, P. pubescens is known by farmers to be considered weed (Lorenzi, 2008), and, therefore without major interest in the exploitation of its fruits.
The application of fertilizers and lime in the fruit production can represent over 25% of the production cost and, therefore, the use of organic compounds becomes a promising alternative (Vidigal et al., 2010). In addition, the use of organic fertilizer provides greater environmental sustainability, preserving natural resources, avoiding water contamination and harnessing materials available on the agricultural property, reducing production costs and making it feasible economically.
Based on the presented, the aim of this work was to evaluate agronomic parameters of two species of Physalis - P. peruviana L. and P. pubescens L. - submitted to mineral and organic fertilizer (poultry litter), with focus on nitrogen fertilization.


Seeds of P. peruviana L. and P. pubescens L. were obtained from plants grown in a greenhouse. It was used 250 mL plastic cups with fertile humus  as  substrate  to  obtain  the  seedlings,  setting  three seeds in each one. The cultures were kept in a greenhouse, with average temperatures in the period of 24 °C, being carried manual waterings daily, in the early morning and late afternoon, avoiding waterlogging and/or water stress. After 20 days, was performed the thinning leaving one seedling cup. When the plants reached about 15 cm (50 days after sowing) were transplanted to the experiment site in spacing of 3,0 x 0,5 m. Each experimental unit consisted of 12 plants, and the borders were not used for evaluations. The crop treatment consisted of frequent waterings (manual) with soil kept in its field capacity, weed control (manual weeding), especially in the early stages and monitoring the emergence of pests and diseases. Once the plants reached 30 cm were vertically trained with the help of bamboo stakes.
The experiment was conducted within the municipal district of Itapejara D’Oeste/PR, located at 26°3’30.54” S and 52°48'7.06" O, altitude of 530 m, with the weather classified as Cfa (humid subtropical climate), according to Köppen. The average temperature during the execution of the experiment was 23.5°C (Data collected daily at the site of the experiment, with thermometer use. The soil was analyzed before the experiment installation (Table 1) and after correction, presented pH 5.8 and base saturation (V%) above 70%.
The two species of Phyalis received, each one, three treatments: control (without fertilizer), mineral fertilizer (NPK) and organic (poultry litter). For mineral fertilizers was used three different sources: urea (45% N), single superphosphate (18% P2O5) and potassium chloride (60% K2O). The organic fertilization consisted of existing poultry litter on the property where the experiment was carried. This material was weathered for a period of 90 days before use, was submitted after it, to chemical analysis to determine nutrient content, as shown in Table 2.
Fertilization was performed in the pits at the time of transplanting, considering 300 kg of nitrogen per hectare. The nitrogen dose was based on trials in greenhouse (Passos, 2013). The amounts of phosphorus and potassium were calculated on the basis of the result of poultry litter analysis. The doses used are shown in Table 3.  
The experimental design was a randomized blocks, with two species, three treatments and five blocks, characterized as a two-factor (2 x 3) with two qualitative variables, with 30 plots and each one with 12 plants.
The experiment was carried in the years 2013 and 2014 (from October 2013 to January 2014 having as previous experiment based on 2012 to 2013), and due to irregularity of production, was set up a unique collection of materials at 140 days after sowing. The following parameters were evaluated: plant height (cm), dry matter of aerial parts (DMAP) (g), fruit production per plant (g), average yield (kg ha-1), transverse diameter (equatorial) average fruit (mm) and average fruit weight, with capsules (g). It was also estimated the relative increase in productivity arising nitrogen fertilization (IRPAN) proposed by Ferreira et al. (2010). For this, we used the difference between the maximum production fruit (MW) kg ha-1 and fruit production to a zero dose (PBC zero) divided by N rate required to obtain the PM by using the formula: IRPAN = (PM – PBC zero) / (Dose PM).
The data were submitted to analysis of variance (ANOVA) and the means analyzed by Tukey test at 5% probability of error, with GENES statistical program.



The final plant height parameter showed no significant difference between species, however, there was significant difference between the nutritional sources. Fertilization providing higher height was organic, with an average of 180.90 cm main branch height, against 167.7 of mineral fertilizer (Figure 1).
Peixoto et al. (2010), using two doses of cattle manure, 30 and 60 t ha-1, Physalis (P. peruviana), found no significant difference between them in plant height parameter, showing that although there is no influence of dose, probably the source was important. In tomato plants, the application of the effluent derived from the biodigestion of cattle manure resulted in higher plants (10.5%) compared to treatment with NPK (Campos, 2007). Freitas et al. (2012) also observed a better response in the rate of growth of sorghum plants when received organic manure (cattle manure). These authors suggest that plants under the organic fertilizer respond gradually over the growing cycle of the crop, once the nutrient release rate is not as fast as in the chemical fertilizer, supplying therefore their nutritional needs for a longer period chemicals, which could be observed in the same Physalis plants fertilized with poultry litter.
Unlike that observed for Physalis, some studies comparing organic and chemical fertilizers, such as jambu, the authors had greater heights when plants were treated with urea, and organic resulted in lower plants than the considered for the specie (Borges et al., 2013).
The dry matter of aerial parts (DMAP) showed the same pattern of plant height parameter. The organic fertilization resulted in better response, with an average of 1010.35 g of DMAP plant-1, the mineral fertilizer 982.96 g DMAP plant-1, and the control with the  lowest  value  of 882.10 g DMAP plant-1 (Figure 2).Satisfactory results resulting from organic fertilization were found also in other species, such as basil, which in addition to chicken manure, received mineral complementation (Blank et al., 2005). Silveira Junior et al. (2015) reported an increase in Piata grass biomass using different doses of biofertilizers derived from the poultry manure digestion. Beyond merely supplying nutrients, the positive effects in the soil such as increased microbial activity, improved aeration and water infiltration in the soil profile, it provided better plant growth, resulting in the largest mass production with organic fertilizer, in the two species tested, in relation to controls and mineral fertilizer. The opposite was also observed in study about the influence of semi-decomposed poultry manure (10 t ha-1) and mineral fertilizers (4.5 g m-2), applied in coverage, in lettuce and peruvian carrot, in isolated crops or in consortium (Vieira et al., 2003). The authors obtained higher yields of fresh and dry weight of lettuce in consortium with Peruvian carrot and mineral N (9.88 t ha-1 fresh weight and 0.53 t ha-1 dry mass). With organic fertilizer under the same conditions (consortium), was obtained 6.68 t ha-1 and 0.39 t ha-1, respectively. In this case, it appears that the immediate availability of N, as well as intercropping favored in some way, the target species. Also in lettuce, Steiner et al. (2012) achieved a higher dry matter when applied poultry litter, however, did not differ from pig slurry and chemical treatment with urea. Borges et al. (2013), working with jambu, a plant widely used in northern Brazil, found greater accumulation of biomass in chemical fertilizer in comparison to cattle manure, however, the latter promoted greater phosphorus accumulation in the leaves. 
Regarding the size (diameter) of the fruits, without the capsules,  there  was  no  significant   difference   for   the different species and for the tested nutritional sources (Figure 3). The average values for both species were 17.81 mm (control), 18.75 mm (chemical fertilizer) and 18.30 mm (organic).
These results differ from those observed by Muniz et al. (2011),  that  when  evaluating   the   effect   of   chemical fertilizer (NPK 5:20:10) and organic (manure compost of bovine 50% + 50% swine) in P. peruviana obtained larger diameter fruit in plants fertilized with the organic compound (21.14 mm with coat); and the chemical resulted in fruits with a mean diameter of 19.98 mm and 18.99 mm control. Albayrak et al.  (2014),  analyzing  only the influence of nitrogen, obtained no difference in fruit diameter of P. peruviana with increasing doses of this element (from 0.4 to 2 kg ha-1), considering that the control resulted in significantly smaller fruits.
Colombian standards classify the fruits of "uchuva" (P. peruviana) in four marketing categories, with relative to the equatorial diameter, with coat: A - 15.0 to 18.0 mm; B - 18.1 to 20.0 mm; C - 20.1 to 22.0 mm; D 22.0 mm (Codex Stan, 2005). Therefore, the fruits of both species of Physalis would be within the marketing standards of the largest producer in the Americas. Considering that the fruits were measured without coats, the control with fruit classified at least in category A (17.81 mm), and B or C to the fruits from plants fertilized (18.75 and 18.30 mm, chemistry and organic, respectively). It is clear other factors can contribute to the improvement of the size of the fruit, such as spacing, conduct of the plant, etc. and may result in bigger fruit.
The average masses of fruits (with cap) were enriched with the supply of nutrients, however, there was no significant difference between organic and mineral sources. The organic fertilizer produced fruits averaging 4.2 g, 4.1 g against chemical and 3.5 g for the control (Figure 4).
These results are close to those observed by Muniz et al. (2011) in fruit of Physalis derived from plants treated with chemical fertilizer (4.67 g) and organic (4.43 g). Thomé and Osaki (2010) tested different levels of NPK in producing three kinds of Physalis (P. peruviana, P. ixocarpa, and P. angulata) and obtained average fruit mass without significant differences between species, ranging from 1.15 to 1.44 g and only P. peruviana and  P. ixocarpa tended to increase in mass with the increase of fertilizer. In tomatoes produced in the greenhouse, Hernández et al. (2014) did not observe significant differences between mineral and organic fertilizer (manure of sheep + goats and mixing of waste from olive oil industry + manure + pruning of olive).
According to the export standards (Colombia), the Physalis fruit should be sold with a minimum weight of 4.0 g (Codex Stan, 2005). Therefore, as seen with the diameter, the fruits produced in the experiment, other than from the control, would be considered acceptable by Colombian standards.
When was analyzed production per plant parameter, there were significant differences in relation to different sources of fertilizer. Both species and the interaction between the factors were not significant. The average fruit yield plant-1 was 156.19 g (control), of 274.64 g (chemical fertilizer), and 355.44 g (organic), indicating that both species of Physalis showed higher fruit production plant-1 when subjected to the latter, with an increase of more than 40% compared with the control (Figure 5).
n this study, although no significant difference between species was found, it was observed that P. peruviana excelled when fertilized with poultry litter. In a previous study only with mineral nitrogen fertilization at a dose of 300 kg ha-1, P. peruviana produced more fruit, but with smaller individual mass (unpublished data).
In an experiment with three species of Physalis, Tomé and Osaki (2010) found that increases in NPK doses did not change the production of fruits per plant, and even between species, there was no significant difference  with the values being between 1.19 to 1.20 kg of fruit plant-1. Having been set a single harvest, at 140 days after sowing, fruit production in this study was much lower, however, with the continued fruitfulness would be possible to reach higher values, even higher than the authors mentioned above.
Hérnandez et al. (2014), when analyzing the effect of chemical fertilization and two forms of organic compounds (manure of sheep + goats and mixing of waste from for olive oil industry + manure + pruning olive) in tomato production in a greenhouse, they found that the latter were those that produced few fruit by plants - on average 19 and 7.75, respectively, while the control (chemical fertilizer) produced 73.5 fruits per plant. In cucumber, the effect of organic fertilizer of poultry manure base (4 t ha-1) was superior to chemical treatment (NPK), producing more fruit, of better quality and size (Okoli and Nweke, 2015).
With regard to productivity, due to the irregular fruiting, lasting several weeks, approximations were made, taking into account four months of production. The average yields were obtained from 1,041 kg ha-1 for the control, 1,831 kg ha-1 for chemical fertilizer and 2,370 kg ha-1 for organic. Em tomato plants, Muller et al. (2013) found lower productivity of commercial fruits with poultry litter (16.2 t ha-1), reaching 86.9 t ha-1 against 100.1 t ha-1 with chemical complementation (500: 600: 600 kg ha-1 t NPK), in the 2007/2008 harvest, suggesting that the low result of organic fertilizer was due to an imbalance of nutrients or  lack  of  simultaneity  between  the   mineralization   of nutrients and plant needs. The same was observed by Hernandez et al. (2014), with tomatoes produced in the greenhouse, with the chemical fertilization overcoming organic in relation to production. Tomato, grown in poor soil (andosol) and imbalance between cations, showed no significant difference in the number of fruits per plant and productivity, for the treatments with chemicals, organic manure (poultry manure) or a combination of both (Tonfack et al., 2008). Araújo et al. (1999) had lower productivity of melon with organic fertilizer when compared to mineral. Since Rech et al. (2006) found that increased doses of organic fertilizer (poultry litter) were able to increase the number of fruit per plant zucchini, but not significantly differ from the mineral fertilizer.
When the gains are estimated with fertilization, through IRPAN, it was found that the organic source, regardless of the species resulted in increased 4.43 kg ha-1 of fruits while the chemical was only 2.63 kg ha-1. This demonstrates the potential of organic fertilizer, aviary manure for producing Physalis.
In this study, the increase in fruit production observed in plants that received organic fertilizer can be attributed to the availability of nutrients in a balanced way, without loss, either by leaching, fixation or volatilization, as in larger proportions in the mineral nutrient sources. According to Medeiros and Santos (2005), organic fertilizer provides a greater yield by providing sufficient quantities of nitrogen and potassium gradually, supplying, satisfactorily, the plant demand for these elements, which are essential for obtaining adequate production. 


Through the results, local conditions, the experimental period, are favorable to the cultivation of the two species, and the organic fertilization, although did not differ in some parameters of chemical, provides higher plants, most mass and fruit in the standards set by international  marketing and export standards, thus making possible scale production with utilization of materials (nutrients) that may be available on the property, without waste and with less risk of environmental contamination.


The authors have not declared any conflict of interests.


Albayrak B, Sönmez I, Biyikli M (2014). The determination of nitrogen demand of Physalis (Physalis peruviana L.) in Yalova/Turkey. Turk. J. Agric. Nat. Sci. 2:1425-1428.


Araújo JAC, Guerra AG, Durigan JF (1999). Effect of organic and mineral fertilization on melon under greenhouse conditions. Rev. Bras. Eng. Agríc. Ambient. 3(1):26-29.


Arun M, Asha VV (2007). Preliminary studies on antihepatotoxic effect of Physalis peruviana Linn. (Solanaceae) against carbon tetrachloride induced acute liver injury in rats. J. Ethnopharmacol. 111:110-114.


Barbieri RL, Vizzoto M (2012). Pequenas frutas ou frutas vermelhas. Rev. Inf. Agropecu. 33(268):7-10.


Blank AF, Silva PA, Arrigoni-Blank MF, Silva-Mann R, Barreto MCV (2005). Influência da adubação orgânica e mineral no cultivo de manjericão cv. Genovese. Rev. Cienc. Agron. 36(2):175-180.


Borges LS, Guerrero AC, Goto R, Lima GPP (2013). Productivity and accumulation of nutrients in plants of jambu, under mineral and organic fertilization. Semin - Cienc. Agrar. 34:83-94.


Bravo K, Sepulveda-Ortega S, Lara-Guzman O, Navas-Arboleda AA, Osorio E (2015). Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.). J. Sci. Food Agric. 95(7):1562-1569.


Campos ARF (2007). Adubação orgânica e mineral sobre características produtivas do tomateiro cultivar Santa Cruz em ambiente protegido. 31f. Trabalho de conclusão de curso. Universidade Federal da Paraíba, Areia, Brasil.


Chen LX, Hao H, Qiu F (2011). Natural Withanolides: An Overview. Nat. Prod. Rep. 28:705-740.


Codex Stan (2005). Norma del codex para la uchuva. n. 226. México 14 p.


Ferreira MMM, Ferreira GB, Fontes PCR (2010). Nitrogen fertilization efficiency in tomato at two sowing times. Rev. Ceres 57(2):263-273.


Filgueira FAR (2003). Solanáceas: agrotecnologia moderna na produção de tomate, batata, pimenta, berinjela e jiló. Editora UFLA, Lavras, Brasil 333 p.


Freitas GA, Sousa CR, Capone A, Afférri FS, Melo AV, Silva RR (2012). Adubação orgânica no sulco de plantio no desenvolvimento de plantas de sorgo. J. Biotechnol. Biodivers. 3(1):61-67.


Gonçalves ED, Zambon CR, Pio R, Silva LFO, Alvarenga AA, Caproni CM (2012). Aspectos técnicos do cultivo de fisális para o Sul de Minas. 


Hassanien MFR (2011). Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Res. Int. 27(3):259-273.


Hernández T, Chocano C, Moreno JL, Garcia C (2014). Towards a more sustainable fertilization: combined use of compost and inorganic fertilization for tomato cultivation. Agric. Ecosyst. Environ. 196:178-184.


Kindscher K, Long Q, Corbett S, Bosnak K, Loring H, Cohen M, Timmermanns BN (2012). The ethnobotany and ethnopharmacology of wild tomatillos, Physalis longifolia Nutt., and related Physalis species: a review. Econ. Bot. 66(3):298-310.


Li YZ, Pan YM, Huang XY, Wang HS (2008). Withanolides from Physalis alkekengi var. francheti. Helv. Chim. Acta 91(12):2284-2291.


Lorenzi H (2008). Plantas daninhas do Brasil. Plantarum, Nova Odessa, Brasil 672 p.


Medeiros ARM, Santos AM (2005). Sistemas de produção do morangueiro: nutrição, calagem e adubação. Embrapa Clima Temperado.


Muller S, Wamser AF, Suzuki A, Becker WF (2013). Tomato yield under organic fertilization and supplementation with mineral fertilizers. Hortic. Bras. 31(1):86-92.


Muniz J, Kretzschmar AA, Rufato L, Silveira FN, Brighenti LM, Sabatino RS (2011). Plantas de fisális (Physalis peruviana L.) submetidas a adubação química e orgânica. Cadern. Agroecol. 6(2):1-5.


Okoli PSO, Nweke IA (2015). Effect of poultry manure and mineral fertilizer on the growth performance and quality of cucumber fruits. J. Exp. Biol. Agricult. Sci. 3(IV):362-367.


Passos AI (2013). Adubação e assimilação de nitrogênio em duas espécies de fisális. 54f. Dissertação de Mestrado - Universidade Tecnológica Federal do Paraná, Pato Branco, Brasil.


Peixoto N, Peixoto FC, Vaz UL, Neri SCM, Monteiro JG (2010). Plant growth and production of husk tomato depending on organic fertilization and mulching. Hortic. Bras. 28(3):370-372.


Puente LA, Pinto-Mu-oz CA, Castro ES, Cortés M (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Res. Int. 44(7):1733-1740.


Ramadan MF (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): an overview. Food Res. Int. 44(7):1830-1836.


Rech EG, Franke LB, Barros IBI (2006). Organic and mineral fertilization on the production of zucchini seeds. Rev. Bras. Semen. 28(2):110-116.


Rufato L, Rufato AR, Schelemper C, Lima CSM, Kretzschmar AA (2008). Aspectos técnicos da cultura da Physalis. CAV/UDESC, Lages, Brasil 100 p.


Silveira Junior O, Santos AC, Roch JML, Ferreira CLS, Oliveira LBT, Rodrigues MOD, Rodrigues MOD (2015). Implantação de pastagens sob sistema monocultivo e integrado com lavoura utilizando biofertilizante de cama de aviário como adubação de cobertura. Rev. Bras. Saúde Prod. Anim. 16(3):499-512.


Steiner F, Echer MM, Guimarães VF (2012). Produção de alface "Piraroxa" afetada pela adubação nitrogenada com fertilizante orgânico e mineral. Sci. Agrar. Paran. 11(3):77-83.


Thomé M, Osaki, F (2010). Adubação de nitrogênio, fósforo e potássio no rendimento de Physalis spp. Rev. Acad. Agrár. Ambient. 8:11-18.


Tomassini TCB, Barbi NS, Ribeiro IM, Xavier DCD (2000). Gênero Physalis – uma revisão sobre vitaesteróides. Quim. Nova 23(1):47-57.


Tonfack LB, Bernadac A, Youmbi E, Mbouapouognigni VP, Ngueguim M, Akoa A (2009). Impact of organic and inorganic fertilizers on tomato vigor, yield and fruit composition under tropical andosol soil conditions. Fruits 64(3):167-177.


Vidigal SM, Sediyama MAN, Pedrosa MW, Santos MR (2010). Onion yield in organic system using organic compost of swine manure. Hortic. Bras. 28(2):168-173.


Vieira MC, Zárete NAH, Gomes HE (2003). The Peruvian carrot and lettuce yield and income in monocropping and intercropping systems, using nitrogen fertilization and chicken manure in cover. Acta Sci. Agron. 25(1):201-208.


Whitson M (2012). Calliphysalis (Solanaceae): a new genus from Southeastern USA. Rhodora 114:133-147.