African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Full Length Research Paper

Studies on lignocellulose biodegradation of coir waste in solid state fermentation using Phanerocheate chrysosporium and Rhizopus stolonifer

Paulraj Kanmani, P. Karuppasamy, C. Pothiraj and Venkatesan Arul*
Department of Biotechnology, Pondicherry University, Pondicherry-605014, India.
Email: [email protected]

  •  Accepted: 09 April 2009
  •  Published: 15 December 2009

Abstract

 

The solid state fermentation is one of the most economically viable processes for the bioconversion of lignocellulosic coir waste is represented by Phanerochaete chrysosporium and Rhizopus stolonifer. Coir pith is a waste lignocellusic material; it consists of lignin, cellulose, hemicellulose and protein. The two fungal cultures are able to synthesis varying quantities of lignocellulytic enzymes (cellulase, xylanase, ligninase, and protease, laccase and lignin peroxidase) that are required for substrate bioconversion. For example, P. chrysosporium produces two extracelluler enzymes (laccase and lignin peroxidase). They have been associated with lignin depolymerisation in other fungi. Fermentation was carried out over 35 days and the bioconverted sample was analyzed at 7 days intervals, the highest and most significant lignocellulytic enzyme activity (P < 0.05) as well as lignocellulosic compound (P < 0.05) conversion was observed on day 35 in P. chrysosporium and coculture mediated fermentation. P. chrysosporium and coculture was more efficient than R. stolonifer. The maximum amount of laccase and lignin peroxidase produced by P. chrysosporium and coculture was   approximately (5 and 8.1 IU/ml, respectively) after 28 days of fermentation.

 

Key words: Laccase, lignin peroxidase, cellulase, xylanase, protease,Phanerochaete chrysosporium, Rhizopus stolonifer, coculture, solid state   fermentation, coir pith.