African Journal of

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12278

Full Length Research Paper

AtNEA1-identification and characterization of a novel plant nuclear envelope associated protein

Ting Lu
  • Ting Lu
  • Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
  • Google Scholar

  •  Accepted: 29 January 2014
  •  Published: 12 February 2014


In animal and yeast cells, a cross nuclear envelope structure linker of nucleoskeleton and cytoskeleton (LINC) is formed by outer nuclear membrane SUN proteins and inner nuclear membrane KASH proteins. However, little information was acquired about plant SUN-KASH structure until they were found in plant SUN proteins in 2010 and KASH proteins in 2012. The SUN-KASH complex alongside with actin in the microfilament cytoskeleton and nucleaoskeleton together shape the main cell skeleton structure and involve in many important biological functions including cell structure stability, cell movement and cell division. In searching of other plant nuclear envelope associated proteins, arabidopsis nuclear envelop associated (AtNEA1) protein 1, a plant nucleoplasmic protein, was identified from biological studies. AtNEA1 was predicted to have a nuclear localisation signal (NLS), two coiled coil domains and one transmembrane (TM) domain. The mutants with the deletion of respective putative domains were observed under confocal microscopy. The subcellular localisation of mutants implied that putative NLS is not essential for AtNEA1 to diffuse through NPC but can strongly increase the efficiency, both coiled coil domains participate in the interaction of AtNEA1 with its unknown INM intrinsic interaction partner, and putative TM appeared to be non-functional. The function of AtNEA1 in plant was studied through observing tDNA lines.


Key words: Arabidopsis nuclear envelope associated protein 1 (AtNEA1), bioinformatics search, confocal microscopy, nucleoplasmic protein, domain deletions, truncation.