African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12487

Review

An overview of the role of rumen methanogens in methane emission and its reduction strategies

Satyanagalakshmi Karri*
  • Satyanagalakshmi Karri*
  • Nutrition Biotechnology Laboratory Dairy Cattle Nutrition Division National Dairy Research Institute, Karnal - 132001 Haryana, India.
  • Google Scholar
Sridhar Goud Talla
  • Sridhar Goud Talla
  • Nutrition Biotechnology Laboratory Dairy Cattle Nutrition Division National Dairy Research Institute, Karnal - 132001 Haryana, India.
  • Google Scholar
Sirohi S. K.
  • Sirohi S. K.
  • Nutrition Biotechnology Laboratory Dairy Cattle Nutrition Division National Dairy Research Institute, Karnal - 132001 Haryana, India.
  • Google Scholar


  •  Received: 26 August 2014
  •  Published: 22 April 2015

References

Adam Cieslak, Pawel Zmora, Emilia Pers-Kamczyc, Malgorzata Szumacher-Strabel (2012).Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo Animal Feed Science and Technology 176 102- 106.
Crossref

 

Agarwal N, Kamra DN. Chaudhary LC, Patra AK (2006). Effect of Sapindus mukorossi extracts on in vitro methanogensis and fermentation characteristics in buffalo rumen liquor. J. Appl. Animal Res. 30:1-4.

 
 

Alberts W (1988). Discovery, biochemistry and biology of lovastatin, Am. J. Cardiol. vol. 62, no. 15, pp. 10-15,
Crossref

 
 

Archer B, Harris JE (1986). Methanogenic bacteria and methane production in various habitats, in Anaerobic Bacteria in Habitats Other than Man, E. M. Barnes and G. C. Mead, Eds., Blackwell Scientific, Oxford, UK pp.,185-223.

 
 

Asiegbu FO, Paterson A, Morrison IM, Smith JE (1995). Effect of cell wall phenolics and fungal metabolites on methane and acetate production under in vitro conditions. J. Gen. Appl. Microbiol. 41:475-485.
Crossref

 
 

Beauchemin KA, Kreuzer M, O'Mara FP, McAllister TA (2008).Nutritional management for enteric methane abatement: a review. Austr. J. Exp. Agric. vol. 48, no. 1-2, pp. 21-27.
Crossref

 
 

Bryant MP, Burkey LA (1953). Numbers and some predominant groups of bacteria in the rumen of cow fed different rations. J. Dairy Sci. 36:218-224.
Crossref

 
 

Bryant MP, Small N (1956). Characteristics of two new genera of anaerobe curved rods isolated from the rumen of cattle. J. Bacteriol. 72:22-26.
Pubmed

 
 

Bryant MP (1986). Ruminococcus. In Bergey's Manual of Systematic Bacteriology (ed. Sneath, P. H. A.), Williams and Wilkins, Baltimore 2, 1093-1097.

 
 

Bryant MP, Small N, Bouma C, Robinson IM (1958). Studies on the composition of the ruminal flora and fauna of young calves. J. Dairy Sci. 41:1747-1767.
Crossref

 
 

C Grainger, MJ Auldist, T Clarke, KA Beauchemin, SM McGinn, MC Hannah, RJ Eckard, LB Lowe (2008). Use of Monensin Controlled-Release Capsules to Reduce Methane Emissions and Improve Milk Production of Dairy Cows Offered Pasture Supplemented with Grain. J. Dairy Sci. 91:1159-1165.
Crossref

 
 

Callaway T, Edrington T, Rychlik J, Genovese K, Poole T, Jung Y, Bischoff R, Anderson C, Nisbet D (2003). Ionophores: Their Use as Ruminant Growth Promotants and Impact on Food Safety. Current Issues in Intestinal Microbiolology 4:43-51.
Pubmed

 
 

Chaudhary PP, Sirohi SK (2009). Dominance of Methanomicrobium phylotype in methanogen population present in Murrah buffaloes (Bubalus bubalis). Letters in Appl. Microbiol. 49:274-277.
Crossref

 
 

Cheng KJ, Wallace RJ (1979). The mechanism of passage of endogenous urea through the rumen wall and the role of ureolytic epithelial bacteria in the urea flux. British J. Nutr. 42:553-557.
Crossref

 
 

Cieslak A, M Szumacher-Strabel, A Stochmal, W Oleszek. 2013. Plant components with specific activities against rumen methanogens, Animal 7:s2, pp 253-265
Crossref

 
 

Cieslak A, Va´ radyova Z, Kisˇidayova S, Szumacher-Strabel M (2009a). The effects of linoleic acid on the fermentation parameters, population density, and fatty-acid profile of two rumen ciliate cultures, Entodinium caudatum and Diploplastron affine. Acta Protozoologica 48, 51-61.

 
 

Cotta MA (1992). Interaction of ruminal bacteria in the production and utilization of malto oligosaccharides from starch. Appl. Environ. Microbiol. 58: 48-54.
Pubmed

 
 

Dehority BA (1986) Protozoa of the digestive tract of herbivorous mammals. Insect Science Application. 7:279-296.
Crossref

 
 

Dehority BA, Scott HW (1967). Extent of cellulose and hemicelluloses digestion in various forages by pure cultures of rumen bacteria. J. Dairy Sci. 50:1136-1141.
Crossref

 
 

Dinsdale, D.; Cheng, K.J.; Wallace, R.J.; Goodlad, R.A., 1980.Digestion of epithelial tissue of the rumen wall by adherent bacteria in infused and conventionally fed sheep. Appl. Environ. Microbiol. 39:1059-1066.
Pubmed

 
 

Dohme, F.; Machmüler, A.; Wasserfallen, A.; Kreuzer, M., 2000. Comparative efficiency in various fats rich medium chain fatty acid to suppress ruminal methanogenesis as measured with RUSITEC. Canadian J. Agric. Sci. 80:473-482.

 
 

Dohme. A.; Machm¨uller, A., Wasserfallen., and Kreuzer, M., 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets, Letters in Applied Microbiology 32, 47-51,

 
 

Eugene M., Masse D., Chiquette J., and Benchaar C., 2008.Metaanalysis on the effects of lipid supplementation on methane production in lactating dairy cows," Canadian J. Animal Sci. vol. 88, no. 2, pp. 331-334.
Crossref

 
 

Feng, Z.H.; Cao, Y.F.; Gao, Y.X.; Li, Q.F.; Li, J.G., 2012. Effect of gross saponins of Tribulus terrestris on ruminal fermentation and methane production in vitro. J. Animal Vet. Adv. Res. 11, 2121-2125.
Crossref

 
 

Flint HJ, McPherson CA, Avgustin G, Stewart CS (1990). Use of a cellulase encoding gene probe to reveal restriction fragment length polymorphisms among ruminal strains of Bacteroides succinogenes. Current Microbiol. 20:63-68.
Crossref

 
 

G Goel, HPS Makkar, K Becker (2008b). Effects of Sesbania sesban and Carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane. Anim. Feed Sci. Technol. 147:72-89.
Crossref

 
 

G Goel, HPS Makkar, KA Becker (2008). Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. J. Appl. Microbiol. 105, 770-777.
Crossref

 
 

Gerald Wischer, Jeannette Boguhn, Herbert Steingaß, Margit Schollenberger, Karin Hartung, Markus Rodehutscor (2012). Effects of monensin and tannin extract supplementation on methane production and other criteria of rumen fermentation in vitro and in long-term studies with sheep. Thesis.

 
 

Gill M, Smith P, Wilkinson JM (2010). Mitigating climate change: the role of domestic livestock. Animal 4, 323-333.
Crossref

 
 

GOI, 17th Livestock Census 2012. Ministry of Agriculture, Government of India, February 29.

 
 

H Guan, K Wittenberg, K Ominski, D Krause (2006). Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Animal Sci. 84: 1896-1906.
Crossref

 
 

HD Hess, RA Beuret, M Lotscher, IK Hindrichsen, A Machmüller, Carulla JE, Lascano CE, Kreuzer M (2004). Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage. Anim. Sci. 79:177-189.

 
 

Hungate RE (1957). Microorganisms in the rumen of cattle fed a constant ration. Can. J. Microbiol. 3:289-311.
Crossref

 
 

Hungate RE (1944).Studies on cellulose fermentation. The culture and physiology of an anaerobic cellulose digesting bacterium. J. Bacteriol. 48:499-513.
Pubmed

 
 

Hungate RE (1950).The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14, 1-49.
Pubmed

 
 

Hungate RE, Smith W, Bauchop T, Yu I, Rabinowitz JC (1970). Formate as an intermediate in the bovine rumen fermentation," J. Bacteriol. vol. 102, no. 2, pp. 389-397,
Pubmed

 
 

Janssen PH, Kirs M (2008). Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 74:3619-3625.
Crossref

 
 

Johnson KA, Johnson DE (1995). Methane emissions from cattle. J. Animal Sci. vol. 73, no. 8, pp. 2483-2492.
Pubmed

 
 
   

Jordan DK, Lovett FJ, Monahan J, Callan FB, O'Mara FP (2006). Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers, J. Animal Sci. 84, 162-170.
Crossref

 
 

Jordan E, Kenny D, Hawkins M, Malone R, Lovett DK, O'Mara FP (2006). Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls. J. Animal Sci. 84, 2418-2425.
Crossref

 
 

Jordan E, Lovett DK, Hawkins M, Callan JJ, O'Mara FP (2006). The effect of varying levels of coconut oil on intake, digestibility and methane output from continental cross beef heifers. Animal Sci. 82, 859-865.
Crossref

 
 

Jordan E, Lovett DK, Monahan FJ, Callan J, Flynn B, O'Mara FP (2006). Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers, J. Animal Sci. 84,162-170.
Crossref

 
 

Juan Boo Liang, Mohammad Faseleh Jahromi, Rosfarizan Mohamad, Yong Meng Goh, Parisa Shokryazdan, Yin Wan Ho (2012). Lovastatin-Enriched Rice Straw Enhances Biomass Quality and Suppresses Ruminal Methanogenesis. BioMed Res. Int. Volume 2013, Article ID 397934, 13 pages

 
 

Kamra DN, Patra AK, Chatterjee PN, Ravindra Kumar, Neeta Agarwal, Chaudhary LC (2008) Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview. Austr. J. Exp. Agric. 48:175-178.
Crossref

 
 

Kessel J, Russell J (1996). The Effect of pH on Ruminal Methanogenesis. Rumen Microbiol. 20:90- 92.
Crossref

 
 

Kongmun P., Wanapat M., Pakdee P., Navanukraw C. 2010.Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livestock Science. 127 38-44.
Crossref

 
 

Kongmuna P, Wanapat M, Pakdeea P, Navanukrawa C, Yub Z (2011) Manipulation of rumen fermentation and ecology of swamp buffalo by coconut oil and garlic powder supplementation Livestock Science. 135. 84-92.
Crossref

 
 

Konrad Z, Eichler J (2002) Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows Protein translocation. Biochem. J. vol. 366, no. 3, pp. 959-964,
Crossref

 
 

Krumholz LR, Forsberg CW, Veira DM (1983). Association of methanogenic bacteria with rumen protozoa, Can. J. Microbiol. 29, 676-680.
Crossref

 
 

Kumar R, Kamra DN, Agarwal N, Chaudhary LC (2009). Effect of eucalyptus (Eucalyptus globulus) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Animal Nutr. Feed Technol. 9:237-243.

 
 

L Holtshausen, AV Chaves, KA Beauchemin, SM McGinn, TA McAllister, NE Odongo, PR Cheeke, C Benchaar (2009). Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 92, 2809-2821.
Crossref

 
 

Lai LST, Pan CC, Tzeng BK (2003). The influence of medium design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures,"Process Biochemistry, vol. 38, no. 9, pp. 1317-1326.
Crossref

 
 

Latham MJ, Wolin MJ (1977). Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environ. Microbiol. 34:297-301.
Pubmed

 
 

Latham MJ, Sharpe E, Weiss N (1979). Anaerobic cocci from the bovine alimentary tract, the amino acids of their cell wall peptidoglycans and those of various species of anaerobic Streptococcus. J. Appl. Bacteriol. 47:209-221.
Crossref

 
 

Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D and Attwood GT 2010.The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5. e8926. doi:10.1371/journal.pone.0008926.
Crossref

 
 

Lettat FH, Benchaar C (2013). Corn silage in dairy cow diets to reduce ruminal methanogenesis: Effects on the rumen metabolically active microbial communities. J. Dairy Sci. Volume 96, Issue 8, Pages 5237-5248.
Crossref

 
 

Li L, Davis J, Nolan J, Hegarty R (2012). An initial investigation on rumen fermentation pattern and methane emission of sheep. Offered diets containing urea or nitrate as the nitrogen source. Animal Prod. Sci. 52, 653-658.

 
 

Li W, Powers W (2012). Effects of saponins extracts on air emissions from steers. J. Anim. Sci. 90:4001-4013.
Crossref

 
 

Lila ZA, Mohammed N, Kanda S, Kamada T, Itabashi H (2003). Effect of saponin on rumen fermentation with particular reference to methane production in vitro. J. Dairy Sci. 86, 3330-3336.
Crossref

 
 

LJ Hamlin, RE Hungate (1956). Culture and physiology of a starch digesting bacterium (Bacteroides amylophilus, nov. sp.) from the bovine rumen. J. Bacteriol. 72:548-554.
Pubmed

 
 

M. Szumacher-Strabel PZ, E Roj, A Stochmal, E Pers-Kamczyc, A Urbańczyk, W Oleszek, D Lechniak, A Cieślak (2011). The potential of the wild dog rose (Rosa canina) to mitigate in vitro rumen methane production. J. Animal Feed Sci. 20:285-299.

 
 

Machmuller A, Kreuzer M (1999). Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Can. J. Anim. Sci., 79, 65-72.
Crossref

 
 

Machmuller CR, Soliva, M Kreuzer (2003).Methane suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. British J. Nutr. vol. 90, no. 3, pp. 529-540.
Crossref

 

 

MacHmüller DA, Ossowski, M Kreuzer (2000).Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Animal Feed Sci. Technol. vol. 85, no. 1-2, pp. 41-60.
Crossref

 

Mao L, Wang JK, Zhou YY, Liu JX (2010). Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science. vol. 129, no. 1-3, pp. 56-62,
Crossref

 
 

Mao HL, Wang JK, Zhou YY, Liu JX (2010). Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Sci, 129:56-62.
Crossref

 
 

Martin C, Rouel J, Jouany JP, Doreau M, Chilliard Y (2008). Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J. Animal Sci. 86:2642-2650.
Crossref

 
 

Martino Cassandro, Marcello Mele, Bruno Stefanon. 2013. Genetic aspects of enteric methane emission in livestock ruminants: Review, Italian J. Anim Sci. vol.12:e73.
Crossref

 
 

McAllister TA, Newbold CJ (2008).Redirecting rumen fermentation to reduce methanogenesis. Austr. J. Exp. Agric. 48, 7-13.
Crossref

 
 

McCowan RP, Cheng KJ, Bailey CB, Costerton JW (1978). Adhesion of bacteria to epithelial cell surfaces within the reticulo-rumen of cattle. Appl Environ Microb 35:149-155.
Pubmed

 
 

McGinn SM, Beauchemin K A, Coates T, Colombatto D (2004). Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Animal Sci. vol. 82, no. 11, pp. 3346-3356.
Pubmed

 
 

McGinn SM, Beauchemin KA, Coates T, Colombatto D (2004). Methane emissions from beef cattle: effect of monensin, sunflower oil, enzymes, yeast and fumaric acid. J. Animal Sci. 82:3346-3356.
Pubmed

 
 

Morgavi DP, Martin C, Jouany JP, Ranilla MJ. 2012. Rumen protozoa and methanogenesis: not a simple cause-effect relationship. The British J. Nutr. 107, 388-397.
Crossref

 
 

Morgavi P, Forano E, Martin C, Newbold CJ (2010). Microbial ecosystem and methanogenesis in ruminants, The Animal Consortium Animal, 4:7:1024-1036
Crossref

 
 

Morvan B, Dore J, Rieulesme F, Foucat L, Fonty G, Gouet P (1994). Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb. FEMS Microbiology Letters. 117:249-256.
Crossref

 
 

Navneet Goel, Sunil Kumar Sirohi, Jaya Dwivedi (2012).Estimation of Total Saponins and Evaluate Their Effect on in vitro Methanogenesis and Rumen Fermentation Pattern in Wheat Straw Based Diet. J. Adv. Vet. Res. 2 120-126.

 
 

Patra AK, Kamra DN, Agarwal N (2006). Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol. 128:276-291.
Crossref

 
 

Pawel Zmora, Adam Cieslak, Dariusz Jedrejek, Anna Stochmal, Emilia Pers-Kamczyc, Wieslaw Oleszek, Agnieszka Nowak, Joanna Szczechowiak, Dorota Lechniak, Malgorzata Szumacher-Strabel (2012) Preliminary in vitro study on the effect of xanthohumol on rumen methanogenesis. Archives. Animal Nutr. 66:1:66-71
Crossref

 
 

Pen B, Takaura K, Yamaguchi S, Asa R, Takahashi J (2007). Effects of Yucca schidigera and Quillaja saponaria with or without b-1, 4 galacto-oligosaccharides on ruminal fermentation, methane production and nitrogen utilization in sheep. Anim. Feed Sci. Technol. 138:75-88.
Crossref

 
 

Pers-Kamczyc E, Zmora P, Cieslak A, Szumacher-Strabel M (2011). Development of nucleic acid based techniques and possibilities of their application to rumen microbial ecology research. J. Animal Feed Sci. 20:315-337.

 
 

Petri RM, Schwaiger T, Penner GB, Beauchemin KA, Forster RJ, McKinnon JJ, McAllister TA (2013). Changes in the Rumen Epimural Bacterial Diversity of Beef Cattle as Affected by Diet and Induced Ruminal Acidosis. Appl. Environ. Microbiol.
Crossref

 
 

R Grainger, T Williams, A Clarke, DG Wright, RJ Eckard (2010). Supplementation with whole cottonseed causes long-term reduction of methane emissions from lactating dairy cows offered a forage and cereal grain diet. J. Dairy Sci. vol. 93, no. 6, pp. 2612-2619.
Crossref

 
 

Sauer FD, Fellner V, Kinsman R, Kramer JKG, Jackson HA, Lee AJ, Chen S (1998). Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. J. Animal Sci. 76:906-914.
Pubmed

 
 

Sharp R, Ziemer CJ, Stern MD, Stahl DA (1998). Taxonspecific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiol. Ecol. vol. 26, no. 1, pp. 71-78.
Crossref

 
 

Sirohi SK, Chaudhary PP, Singh N, Singh D, Puniya AK (2013). The 16S rRNA and mcrA gene based comparative diversity of methanogens in cattle fed on high fibre based diet. Gene. 523 161-166.
Crossref

 
 

Sirohi SK, Singh N, Singh Dagar S, Puniya AK (2012) Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl. Microbiol. Biotechnol. 95:1135-1154.
Crossref

 
 

Sirohi SK, Manu Mehta, Navneet Goel, Poonam Pandey (2012). Effect of herbal plants oil addition in total mixed diets on anti-methanogenic activity, rumen fermentation and gas production kinetics in vitro. J. Nat. Prod. Plant Resour. 2 (1):73-80.

 
 

Sirohi SK, Pandey P, Goel N, Mohini M, Kundu SS (2012). Effect of tartaric acid addition on rumen fermentation, methane production and digestibility in different diets containing wheat straw in vitro. Online J. Anim. Feed Res. 2 (3):308-313.

 
 

Skillman LC, Evans PN, Naylor GE, Morvan B, Jarvis GN, Joblin KN (2004). 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe, 10:277-285.
Crossref

 
 

Sliwinski BJ, Kreuzer M, Wettstein HR, Machmuller A (2002). Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins and associated emissions of nitrogen and methane. Arch. Anim. Nutr. 56:379-392.

 
 

Smit and Mushegian A., 2000.Biosynthesis of isoprenoids via mevalonate in archaea: the lost pathway, Genome Research. vol. 10, pp. 1468-1484,
Crossref

 
 

Soliva R, Meile L, Cie´slak A, Kreuzer M, Machm¨uller A (2004). Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis," British J. Nutr. vol. 92, no. 4, pp. 689-700.
Crossref

 
 

Sridhar GT, Rita R, Syma A, Anil K, Renuka, Sirohi SK, Puniya AK, Upadhyay RC (2014). Effect of Trigonella foenum-graecum- Brassica juncea on Methane Production in Buffalo and cross breed cattle. Int. J. Adv. Res. Volume 2, Issue 1:1041-1047.

 
 

Stackebrandt E, Hippe H (1986). Transfer of Bacteroides amylophilus to a new genus Ruminobacter gen. nov. Syst. Appl. Microbiol. 8:204-207.
Crossref

 
 

Stewart CS, Dinsdale D, Cheng KJ, Paniagua C (1979). The digestion of straw in the rumen. In Straw Decay and its Effect on Disposal and Utilization (ed. Grossbard, E.), Wiley, Chichester. pp. 123-130.

 
 

Stewart CS, Flint HJ, Bryant MP (1997). The rumen bacteria. In The rumen microbial ecosystem (ed. PN Hobson and CS Stewart), pp. 10-72. Blackie Academic and Professional, London, UK,.
Crossref

 
 

St-Pierre B, Wright AD (2012). Diversity of gut methanogens in herbivorous animals. Animal, 7 (suppl. 1), 49-56.
Crossref

 
 

Stumm CK, Gitzen HJ, Vogels GD (1982). Association of methanogenic bacteria with ovine rumen ciliates. British J. Nutr. 48 417-431.
Crossref

 
 

Tedeschi L, Fox D, Tylutki T (2003). Potential Environmental Benefits of Ionophores in Ruminant Diets. J. Environ. Qual. 32: 1591-1602.
Crossref

 
 

Ungerfeld EM, Rust SR, Burnett R (2006). Effects of butyrate precursors on electron relocation when methanogenesis is inhibited in ruminal mixed cultures. Letters in Appl. Microbiol. 42, 567-572.
Pubmed

 
 

Ungerfeld EM, Rust SR, Boone DR, Liu Y (2004). Effects of several inhibitors on pure cultures of ruminalmethanogens. J. Appl. Microbiol. 97:520-526.
Crossref

 
 

Ushida K, Tanaka H, Kjima Y (1989). Effect of phenolic acids on gas and volatile fatty acids production by mixed rumen population with or without protozoa. Japanese J. Zootech. Sci., 60, 1135-1142.
Crossref

 
 

Van Gylswyk NO, Van der Toorn JJTK (1985). Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fibre digesting bacteria from the ruminal of sheep fed stover. Int. J. Syst. Bacteriol. 35:323-326.
Crossref

 
 

Van Gylswyk NO, Hoffman JSL (1970). Characteristics of cellulolytic Cillobacteria from the rumens of sheep fed teff (Eragrostistef) hay diets. J. Gen. Microbiol. 60:381-386.
Crossref

 
 

Van Vugt SJ, Waghorn GC, Clark DA, Woodward SL (2005). Impact of monensin on methane production and performance of cows fed forage diets. Proceedings of the New Zealand Society of Animal Production. 65:362-366.

 
 

Waghorn GC, Clark H, Taufa V, Cavanagh A (2008). Monensin controlled-release capsules for methane mitigation in pasture-fed dairy cows. Austr. J. Exp. Agric. 48, 65-68.
Crossref

 
 

Wallace RJ, McEwan NR, McIntosh FM, Teferedegne B, Newbold CJ (2002). Natural products as manipulators of rumen fermentation, Asian Aust. J. Anim. 15 1458- 1468.
Crossref

 
 

Wang Y, McAllister TA, Newbold, CJ, Rode LM, Cheeke PR, Cheng KJ (1998). Effect of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (Rusitec). Anim. Feed Sci. Technol. 74:143-153.
Crossref

 
 

Y de Haas, JJ Windig, MPL Calus, J Dijkstra, M de Haan, A Bannink, RF Veerkamp (2011). Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J. Dairy Sci. 94(12):6122-6134.
Crossref

 
 

Yan T, Mayne CS, Gordon FG, Porter MG, Agnew RE, Patterson DC, Ferris CP, Kilpatrick DJ (2010). Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. J Dairy Sci. 93:2630-2638.
Crossref

 
 

Yuan ZP, Zhang CM, Zhou L, Zou CX, Guo YQ, Li WT, Liu JX, Wu YM (2007). Inhibition of methanogenesis by tea saponin and tea saponin plus disodium fumarate in sheep. J. Anim. Feed Sci. 16 (Suppl 2), 560-565.

 
 

Zhou CS, Xiao WJ, Tan ZL, Salem AZM, Geng MM, Tang SX, Wang M, Han XF, Kang JH (2012). Effects of dietary supplementation of tea saponins (Ilex kudingcha C.J. Tseng) on ruminal fermentation, digestibility and plasma antioxidant parameters in goats. J. Anim. Feed Sci. 176:163-169.
Crossref