African Journal of
Biotechnology

  • Abbreviation: Afr. J. Biotechnol.
  • Language: English
  • ISSN: 1684-5315
  • DOI: 10.5897/AJB
  • Start Year: 2002
  • Published Articles: 12344

Review

CRISPR/Cas genome editing: A frontier for transforming precision cassava breeding

Bicko Steve Juma
  • Bicko Steve Juma
  • Instutute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya.
  • Google Scholar
Cecilia Mweu
  • Cecilia Mweu
  • Instutute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya.
  • Google Scholar
Mathew Piero
  • Mathew Piero
  • Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.
  • Google Scholar
Wilton Mbinda
  • Wilton Mbinda
  • Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya.
  • Google Scholar


  •  Received: 01 April 2021
  •  Accepted: 25 May 2021
  •  Published: 30 June 2021

References

Abdelrahman M, Al-Sadi AM, Pour-Aboughadareh A, Burritt DJ, Tran LSP (2018). Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiology and Biochemistry 131:31-36. 
Crossref

 

Adhikari P, Poudel M (2020). CRISPR-Cas9 in agriculture: Approaches, applications, future perspectives, and associated challenges. Malaysian Journal of Halal Research 3(1):6-16. 
Crossref

 
 

Al-Khayri JM, Jain SM, Johnson DV (2015). Advances in plant breeding strategies: Breeding, biotechnology and molecular tools. Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools (Vol. 1). 
Crossref

 
 

Andersson M, Turesson H, Olsson N, Fält AS, Ohlsson P, Gonzalez MN, Hofvander P (2018). Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiologia Plantarum 164(4):378-384. 
Crossref

 
 

Ansari A, Wang C, Wang J, Wang F, Liu P, Gao Y, Zhao K (2017). Engineered dwarf male-sterile rice: A promising genetic tool for facilitating recurrent selection in rice. Frontiers in Plant Science 8:1-11. 
Crossref

 
 

Arora L, Narula A (2017). Gene editing and crop improvement using CRISPR-cas9 system. Frontiers in Plant Science 8:1932. 
Crossref

 
 

Barrangou R, Horvath P (2017). A decade of discovery: CRISPR functions and applications. Nature Microbiology 2(7):1-9. 
Crossref

 
 

Bernheim A, Calvo-Villamañán A, Basier C, Cui L, Rocha EPC, Touchon M, Bikard D (2017). Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria. Nature Communications 8(1):25-28. 
Crossref

 
 

Bhatta BP, Malla S (2020). Improving horticultural crops via crispr/cas9: Current successes and prospects. Plants 9(10):1-19. 
Crossref

 
 

Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K, Kagale S (2018). Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Scientific Reports 8(1):1-10. 
Crossref

 
 

Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017). CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiology 174(2):935-942. 
Crossref

 
 

Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, Rokhsar DS (2016). Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology 34(5):562-570. 
Crossref

 
 

Bull SE, Seung D, Chanez C, Mehta D, Kuon JE, Truernit E, Vanderschuren H (2018). Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. Science Advances 4(9): eaat6086.
Crossref

 
 

Carter J, Wiedenheft B (2015). Snapshot: CRISPR-RNA-guided adaptive immune systems. Cell 163(1):260-260.e1. 
Crossref

 
 

Ceballos H, Jaramillo J, Salazar S, Pineda L, Calle F, Setter T (2017). Induction of flowering in cassava through grafting. Journal of Plant Breeding and Crop Science 9(2)19-29. 
Crossref

 
 

Char SN, Wei J, Mu Q, Li X, Zhang ZJ, Yu J, Yang B (2020). An Agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnology Journal 18(2):319-321. 
Crossref

 
 

Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W, Jones TJ (2018). Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnology Journal 16(7):1388-1395. 
Crossref

 
 

Chiurugwi T, Kemp S, Powell W, Hickey LT (2019). Speed breeding orphan crops. Theoretical and Applied Genetics 132(3):607-616. 
Crossref

 
 

Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Voytas DF (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):756-761. 
Crossref

 
 

Clarke JL, Zhang P (2013). Plant biotechnology for food security and bioeconomy. Plant Molecular Biology 83(1-2):1-3. 
Crossref

 
 

Concordet JP, Haeussler M (2018). CRISPOR: Intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research 46(W1):W242-W245. 
Crossref

 
 

Devkota S (2018). The road less traveled: Strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. BMB Reports 51(9):437-443. 
Crossref

 
 

Doll NM, Gilles LM, Gérentes MF, Richard C, Just J, Fierlej Y, Widiez T (2019). Single and multiple gene knockouts by CRISPR-Cas9 in maize. Plant Cell Reports 38(4):487-501. 
Crossref

 
 

Doudna JA, Charpentier E (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213). 
Crossref

 
 

Fauser F, Schiml S, Puchta H (2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant Journal 79(2):348-359. 
Crossref

 
 

Gaj T, Gersbach CA, Barbas CF (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31(7)397-405 
Crossref

 
 

Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Xia Q (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology 87(1-2):99-110. 
Crossref

 
 

Garrett RA, Vestergaard G, Shah SA (2011). Archaeal CRISPR-based immune systems: Exchangeable functional modules. Trends in Microbiology 19(11):549-556. 
Crossref

 
 

Georges F, Ray H (2017). Genome editing of crops: A renewed opportunity for food security. GM Crops and Food 8(1):1-12. 
Crossref

 
 

Ghogare R, Williamson-Benavides B, Ramírez-Torres F, Dhingra A (2020). CRISPR-associated nucleases: the Dawn of a new age of efficient crop improvement. Transgenic Research 29:1-35.
Crossref

 
 

Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez, M, Hickey LT (2018a). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols 13(12):2944-2963. 
Crossref

 
 

Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez, M, Hickey LT (2018b). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols 13(12):2944-2963 BioRxiv. 
Crossref

 
 

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C (2010). Food security: The challenge of feeding 9 billion people. Science 327(5967):812-818. 
Crossref

 
 

Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, Renninger K, Bart RS (2019). Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal 17(2):421-434. 
Crossref

 
 

Gupta RM, Musunuru K (2014). The emergence of genome-editing technology. The Journal of Clinical Investigation 124(10):4154-4161. 
Crossref

 
 

Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim M R, ?miech M, Islam T (2018). Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: Recent progress, prospects, and challenges. Frontiers in Plant Science 9:617. 
Crossref

 
 

Hatem A, Bozda? D, Çatalyürek ÜV (2011). Benchmarking short sequence mapping tools. Proceedings - 2011 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2011, 109-113. 
Crossref

 
 

He Y, Zhu M, Wang L, Wu J, Wang Q, Wang R, Zhao Y (2018). Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants. Molecular Plant 11(9):1210-1213. 
Crossref

 
 

Hoffmann MD, Aschenbrenner S, Grosse S, Rapti K, Domenger C, Fakhiri J, Niopek D (2019). Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Research 47(13):e75.
Crossref

 
 

Hui-Li X, D L, Wang Z, Zhang H, Han C, Liu B, Chen Q (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. Plant Biology 1(1):3-13. 
Crossref

 
 

Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, Boyher A, Taylor NJ (2018). Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal 16(7):1275-1282. 
Crossref

 
 

Hussain B, Lucas SJ, Budak H (2018). CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Briefings in Functional Genomics 17(5):319-328. 
Crossref

 
 

Ishino Y, Shinagawa H, Makino K, Amemura M, Nakatura A (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169(12):5429-5433. 
Crossref

 
 

Ishino, Yoshizumi, Krupovic, M, Forterre P (2018). History of CRISPR-Cas from Encounter with a Mysterious. Journal of Bacteriology 200(7):e00580-17.
Crossref

 
 

Jansen R, Van Embden JDA, Gaastra W, Schouls LM (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology 43(6):1565-1575. 
Crossref

 
 

Jasin M, Rothstein R (2013). Repair of strand breaks by homologous recombination. Cold Spring Harbor Perspectives in Biology 5(11):1-18. 
Crossref

 
 

Jayavaradhan R, Pillis DM, Goodman M, Zhang F, Zhang Y, Andreassen PR, Malik P (2019). CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nature Communications 10(1):1-13. 
Crossref

 
 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012). A Programmable Dual-RNA - Guided 337(6096):816-821.
Crossref

 
 

Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Doudna JA (2014). Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):2-18. 
Crossref

 
 

Khoury LYE, Campbell JM, Clark KJ (2018). The transition of zebrafish functional genetics from random mutagenesis to targeted integration. Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research. Elsevier Inc. 
Crossref

 
 

Kivrak E, Pauzaite T, Copeland NA, Hardy JG, Kara P, Firlak M, Ozsoz M (2021). Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor. Biosensors 11(1):17. 
Crossref

 
 

Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E (2019). CHOPCHOP v3: Expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research 47(W1):W171-W174. 
Crossref

 
 

Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Harwood W (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biology 16(1):1-13. 
Crossref

 
 

Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Wang K (2019). Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal 17(2):362-372. 
Crossref

 
 

Li C, Chen C, Chen H, Wang S, Chen X, Cui Y (2018). Verification of DNA motifs in Arabidopsis using CRISPR/Cas9-mediated mutagenesis. Plant Biotechnology Journal 16(8):1446-1451. 
Crossref

 
 

Li G, Zhang X, Zhong C, Mo J, Quan R, Yang J, Wu Z (2017). Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Scientific Reports 7(1):1-11. 
Crossref

 
 

Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, Zhang X (2019). Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnology Journal, 17(5):858-868. 
Crossref

 
 

Li Q, Sapkota M, van der Knaap E (2020). Perspectives of CRISPR/Cas-mediated cis-engineering in horticulture: unlocking the neglected potential for crop improvement. Horticulture Research 7(1). 
Crossref

 
 

Li S, Xia L (2020). Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives. ABIOTECH 1(1):58-73. 
Crossref

 
 

Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology 30(5):390-392. 
Crossref

 
 

Li, Zhan, Wang, Y, Lu X, Li, R, Liu J, Fu S, Yao Y (2020). Construction and Verification of CRISPR/Cas9 Gene Editing Vector for Cassava MeSSIII Gene. Molecular Plant Breeding 11(17):1-8. 
Crossref

 
 

Li, Zhongsen, Liu, Z. Bin, Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L, Cigan, A. M. (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiology 169(2):960-970. 
Crossref

 
 

Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen LL (2017). CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants. Molecular Plant 10(3):530-532. 
Crossref

 
 

Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009). Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters 9(3):1007-1010. 
Crossref

 
 

Liu, Xuan, Wu, S, Xu J, Sui C, Wei J (2017). Application of CRISPR/Cas9 in plant biology. Acta Pharmaceutica Sinica B 7(3):292-302. 
Crossref

 
 

Liu, Xuejun, Xie C, Si, H, Yang J (2017). CRISPR/Cas9-mediated genome editing in plants. Methods 121-122:94-102. 
Crossref

 
 

Xiaonan M, Zhang X, Liu H, Li Z (2020). Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. Nature Plants 6(7):773-779. 
Crossref

 
 

Xingliang M, Mau M, Sharbel TF (2018). Genome Editing for Global Food Security. Trends in Biotechnology 36(2):123-127. 
Crossref

 
 

Xingliang M, Zhu Q, Chen Y, Liu YG. (2016). CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. Molecular Plant 9(7):961-974. 
Crossref

 
 

Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, ?ermák T, Chadha-Mohanty P (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnology Journal 16(11):1918-1927. 
Crossref

 
 

Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Koonin EV (2011). Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology 9(6):467-477. 
Crossref

 
 

Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Koonin EV (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology 13(11):722-736. 
Crossref

 
 

Malzahn A, Lowder L, Qi Y (2017). Plant genome editing with TALEN and CRISPR. Cell and Bioscience 7(1):1-18. 
Crossref

 
 

Manghwar H, Lindsey K, Zhang X, Jin S (2019). CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends in Plant Science 24(12):1102-1125. 
Crossref

 
 

Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK (2013). Application of the CRISPR-Cas system for efficient genome engineering in plants. Molecular Plant 6(6):2008-2011. 
Crossref

 
 

Martin AS, Salamango DJ, Serebrenik AA, Shaban NM, Brown WL, Harris RS (2019). A panel of eGFP reporters for single base editing by APOBEC-Cas9 editosome complexes. Scientific Reports 9(1):1-8. 
Crossref

 
 

McFarlane GR, Whitelaw CBA, Lillico SG (2018). CRISPR-Based Gene Drives for Pest Control. Trends in Biotechnology 36(2):130-133. 
Crossref

 
 

Mehta D, Stürchler A, Hirsch-Hoffmann M, Gruissem W, Vanderschuren H (2018). CRISPR-Cas9 interference in cassava linked to the evolution of editing-resistant geminiviruses. BioRxiv pp. 1-10. 
Crossref

 
 

Mekler V, Kuznedelov K, Severinov K (2020). Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences. Journal of Biological Chemistry 295(19):6509-6517. 
Crossref

 
 

Mikkelsen MD, Halkier BA (2003). Metabolic engineering of valine- and isoleucine-derived glucosinolates in arabidopsis expressing CYP79D2 from cassava. Plant Physiology 131(2):773-779.
Crossref

 
 

Molina R, Sofos N, Montoya G (2020). Structural basis of CRISPR-Cas Type III prokaryotic defence systems. Current Opinion in Structural Biology 65:119-129. 
Crossref

 
 

Musunuru K (2017). The hope and hype of CRISPR-Cas9 genome editing: A review. JAMA Cardiology 2(8):914-919. 
Crossref

 
 

Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (2013). Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51(12):835-843. 
Crossref

 
 

Nambiar TS, Billon P, Diedenhofen G, Hayward SB, Taglialatela A, Cai K, Ciccia A (2019). Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nature Communications 10(1):1-13. 
Crossref

 
 

Nassar NMA (2002). Cassava, Manihot esculenta Crantz, genetic resources: Origin of the crop, its evolution and relationships with wild relatives. Genetics and Molecular Research 1(4):298-305. 

 
 

Nocker S Van, Gardiner SE (2014). Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Horticulture Research 1(1):1-8. 
Crossref

 
 

O'Connor DJ, Wright GC, Dieters MJ, George DL, Hunter MN, Tatnell JR, Fleischfresser DB (2013). Development and Application of Speed Breeding Technologies in a Commercial Peanut Breeding Program. Peanut Science 40(2):107-114. 
Crossref

 
 

Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ (2017). Efficient CRISPR/cas9 genome editing of phytoene desaturase in cassava. Frontiers in Plant Science 8:1780. 
Crossref

 
 

Odipio J, Alicai T, Nusinow D, Bart R, Taylor N (2018). CRISPR/Cas9-mediated Disruption of Multiple TFL1-like Floral Repressors Activates Flowering in Cassava. In In Vitro Cellular and Developmental Biology-Animal 54:S47-S47. 233 Spring St, New York, NY 10013 Usa: Springer.

 
 

Okada A, Arndell T, Borisjuk N, Sharma N, Watson-Haigh NS, Tucker EJ, Whitford R (2019). CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal 17(10):1905-1913. 
Crossref

 
 

Palareti G, Legnani C, Cosmi B, Antonucci E, Erba N, Poli D, Tosetto A (2016). Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. International Journal of Laboratory Hematology 38(1):42-49. 
Crossref

 
 

Pardo B, Gómez-González B, Aguilera A (2009). DNA double-strand break repair: How to fix a broken relationship. Cellular and Molecular Life Sciences 66(6):1039-1056. 
Crossref

 
 

Piero Peisach E, Carl P, Robert G (2001). Design And Selection Ofnovel Cys2his2 Zinc Finger Proteins. Annual Review of Biochemistry 70(1):291-321.
Crossref

 
 

Peng R, Lin G, Li J (2016). Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS Journal 283(7):1218-1231. 
Crossref

 
 

MN (2013). Regeneration and RNAi-mediated downregulation of cyano-glycoside biosynthesis in cassava 167. 

 
 

Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L, Sørensen SJ, Shah SA (2020). Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Research 48(4):2000-2012. 
Crossref

 
 

Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rounsley S (2012). The Cassava Genome: Current Progress, Future Directions. Tropical Plant Biology 5(1):88-94. 
Crossref

 
 

Qin L, Li J, Wang Q, Xu Z, Sun L, Alariqi M, Jin S (2020). High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnology Journal 18(1):45-56. 
Crossref

 
 

Ray DK, Mueller ND, West PC, Foley JA (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6):e66428. 
Crossref

 
 

Razzaq A, Saleem F, Kanwal M, Mustafa G, Yousaf S, Arshad HMI, KhanJoyia FA (2019). Modern trends in plant genome editing: An inclusive review of the CRISPR/Cas9 Toolbox. International Journal of Molecular Sciences 20(16). 
Crossref

 
 

Ricroch A (2019). Global developments of genome editing in agriculture. Transgenic Research 28(2):45-52. 
Crossref

 
 

Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V, Cannone G, White MF (2013). Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Molecular Cell 52(1):124-134. 
Crossref

 
 

Sansbury BM, Hewes AM, Kmiec EB (2019). Understanding the diversity of genetic outcomes from CRISPR-Cas generated homology-directed repair. Communications Biology 2(1):1-10. 
Crossref

 
 

Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019). The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution 3(3):430-439. 
Crossref

 
 

Savic N, Ringnalda F, Bargsten K, Li Y, Berk C, Hall J, Schwank G (2017). Covalent linkage of the DNA repair template to the CRISPR/Cas9 complex enhances homology-directed repair. 
Crossref

 
 

Schenke D, Cai D (2020). Applications of CRISPR/Cas to Improve Crop Disease Resistance: Beyond Inactivation of Susceptibility Factors. Iscience 23(9):101478. 
Crossref

 
 

Schmidt C, Pacher M, Puchta H (2019). DNA break repair in plants and its application for genome engineering. Methods in Molecular Biology 1864:237-266. 
Crossref

 
 

Sharma S, Kaur R, Singh A (2017). Recent advances in CRISPR/Cas mediated genome editing for crop improvement. Plant Biotechnology Reports 11(4):193-207. 
Crossref

 
 

Shen H, Strunks GD, Klemann BJPM, Hooykaas PJJ, de Pater S (2017). CRISPR/Cas9-induced double-strand break repair in Arabidopsis nonhomologous end-joining mutants. G3: Genes, Genomes, Genetics 7(1):193-202. 
Crossref

 
 

Shimada T (1978). Plant regeneration from the callus induced from wheat embryo. The Japanese Journal of Genetics 53(5):371-374. 
Crossref

 
 

Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Koonin EV (2015). Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Molecular Cell 60(3):385-397. 
Crossref

 
 

Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Koonin EV (2017a). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology 15(3):169-182. 
Crossref

 
 

Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Koonin EV (2017b). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology 15(3):169-182. 
Crossref

 
 

Siritunga D, Sayre RT (2003). Generation of cyanogen-free transgenic cassava. Planta 217(3):367-373. 
Crossref

 
 

Stinson BM, Moreno AT, Walter JC, Loparo JJ (2020). A Mechanism to Minimize Errors during Non-homologous End Joining. Molecular Cell 77(5):1080-1091.
Crossref

 
 

Symington LS, Gautier J (2011). Double-strand break end resection and repair pathway choice. Annual Review of Genetics 45:247-271. 
Crossref

 
 

Tang XD, Gao F, Liu MJ, Fan QL, Chen DK, Ma WT (2019). Methods for enhancing clustered regularly interspaced short palindromic repeats/Cas9-mediated homology-directed repair efficiency. Frontiers in Genetics 10:551.
Crossref

 
 

Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM (2018). Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signaling and Behavior 13(10):1-7. 
Crossref

 
 

Tomlinson KR, Bailey AM, Alicai T, Seal S, Foster GD (2018). Cassava brown streak disease: historical timeline, current knowledge and future prospects. Molecular Plant Pathology 19(5):1282-1294. 
Crossref

 
 

Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Joung JK (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology 33(2):187-198. 
Crossref

 
 

Tyagi S, Kumar R, Kumar V, Won SY, Shukla P (2021). Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crops and Food 12(1):125-144. 
Crossref

 
 

Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe K (2017). Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports 7(1):1-8. 
Crossref

 
 

Veley KM, Okwuonu I, Jensen G, Yoder M, Taylor NJ, Meyers BC, Bart RS (2021). Gene tagging via CRISPR-mediated homology-directed repair in cassava. G3 Genes|Genomes|Genetics 11(4)::jkab028.
Crossref

 
 

Walsh RM, Hochedlinger K (2013). A variant CRISPR-Cas9 system adds versatility to genome engineering. Proceedings of the National Academy of Sciences of the United States of America 110(39):15514-15515. 
Crossref

 
 

Wang M, Wang S, Liang Z, Shi W, Gao C, Xia G (2018). From Genetic Stock to Genome Editing: Gene Exploitation in Wheat. Trends in Biotechnology 36(2):160-72. 
Crossref

 
 

Wang W, Pan Q, He F, Akhunova A, Chao S, Trick H, Akhunov E (2018). Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat. The CRISPR Journal 1(1):65-74. 
Crossref

 
 

Watters K (2018). The CRISPR Revolution: Potential Impacts on Global Health Security. 

 
 

Williams BO, Warman ML (2017). CRISPR/CAS9 Technologies. Journal of Bone and Mineral Research 32(5):883-888. 
Crossref

 
 

Chhotaray C, Tan Y, Mugweru J, Islam MM, Hameed HA, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J (2018). Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. Journal of Genetics and Genomics 45(6):281-297. 
Crossref

 
 

Ye L, Wang C, Hong L, Sun N, Chen D, Chen S, Han F (2018). Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discovery 4(1):1-12.
Crossref

 
 

Yin K, Han T, Liu G, Chen T, Wang Y, Yu AYL, Liu Y (2015). A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Scientific Reports 5:1-10. 
Crossref

 
 

Young K, Gasior SL, Jones S, Wang L, Navarro P, Vickroy B, Barrangou R (2019). The repurposing of type I-E CRISPR-Cascade for gene activation in plants. Communications Biology 2(1):1-7. 
Crossref

 
 

Zaidi SSeA, Mukhtar MS, Mansoor S (2018). Genome Editing: Targeting Susceptibility Genes for Plant Disease Resistance. Trends in Biotechnology 36(9):898-906. 
Crossref

 
 

Zhang Q, Xing HL, Wang ZP, Zhang HY, Yang F, Wang XC, Chen QJ (2018). Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Molecular Biology 96(4-5):445-456. 
Crossref

 
 

Zhang ZT, Jiménez-Bonilla P, Seo SO, Lu T, Jin YS, Blaschek HP, Wang Y (2018). Bacterial genome editing with CRISPR-Cas9: Taking clostridium beijerinckii as an example. Methods in Molecular Biology 1772:297-325. 
Crossref

 
 

Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research 42(17):10903-10914.
Crossref

 
 

ZHOU W, MA Q, ZHANG P, WANG L, WANG H, XU J, YANG J (2013). Key Scientific Questions and Recent Advances in Cassava Molecular Breeding. Scientia Sinica Vitae 43(12):1082-1089. 
Crossref

 
 

Zuo Z, Zolekar A, Babu K, Lin VJ, Hayatshahi HS, Rajan R, Liu J (2019). Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain. Elife 8:e46500.
Crossref