Review
References
Abdelrahman M, Al-Sadi AM, Pour-Aboughadareh A, Burritt DJ, Tran LSP (2018). Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiology and Biochemistry 131:31-36. |
|
Adhikari P, Poudel M (2020). CRISPR-Cas9 in agriculture: Approaches, applications, future perspectives, and associated challenges. Malaysian Journal of Halal Research 3(1):6-16. |
|
Al-Khayri JM, Jain SM, Johnson DV (2015). Advances in plant breeding strategies: Breeding, biotechnology and molecular tools. Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools (Vol. 1). |
|
Andersson M, Turesson H, Olsson N, Fält AS, Ohlsson P, Gonzalez MN, Hofvander P (2018). Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiologia Plantarum 164(4):378-384. |
|
Ansari A, Wang C, Wang J, Wang F, Liu P, Gao Y, Zhao K (2017). Engineered dwarf male-sterile rice: A promising genetic tool for facilitating recurrent selection in rice. Frontiers in Plant Science 8:1-11. |
|
Arora L, Narula A (2017). Gene editing and crop improvement using CRISPR-cas9 system. Frontiers in Plant Science 8:1932. |
|
Barrangou R, Horvath P (2017). A decade of discovery: CRISPR functions and applications. Nature Microbiology 2(7):1-9. |
|
Bernheim A, Calvo-Villamañán A, Basier C, Cui L, Rocha EPC, Touchon M, Bikard D (2017). Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria. Nature Communications 8(1):25-28. |
|
Bhatta BP, Malla S (2020). Improving horticultural crops via crispr/cas9: Current successes and prospects. Plants 9(10):1-19. |
|
Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K, Kagale S (2018). Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Scientific Reports 8(1):1-10. |
|
Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017). CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiology 174(2):935-942. |
|
Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, Rokhsar DS (2016). Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology 34(5):562-570. |
|
Bull SE, Seung D, Chanez C, Mehta D, Kuon JE, Truernit E, Vanderschuren H (2018). Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. Science Advances 4(9): eaat6086. |
|
Carter J, Wiedenheft B (2015). Snapshot: CRISPR-RNA-guided adaptive immune systems. Cell 163(1):260-260.e1. |
|
Ceballos H, Jaramillo J, Salazar S, Pineda L, Calle F, Setter T (2017). Induction of flowering in cassava through grafting. Journal of Plant Breeding and Crop Science 9(2)19-29. |
|
Char SN, Wei J, Mu Q, Li X, Zhang ZJ, Yu J, Yang B (2020). An Agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnology Journal 18(2):319-321. |
|
Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W, Jones TJ (2018). Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnology Journal 16(7):1388-1395. |
|
Chiurugwi T, Kemp S, Powell W, Hickey LT (2019). Speed breeding orphan crops. Theoretical and Applied Genetics 132(3):607-616. |
|
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Voytas DF (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):756-761. |
|
Clarke JL, Zhang P (2013). Plant biotechnology for food security and bioeconomy. Plant Molecular Biology 83(1-2):1-3. |
|
Concordet JP, Haeussler M (2018). CRISPOR: Intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research 46(W1):W242-W245. |
|
Devkota S (2018). The road less traveled: Strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. BMB Reports 51(9):437-443. |
|
Doll NM, Gilles LM, Gérentes MF, Richard C, Just J, Fierlej Y, Widiez T (2019). Single and multiple gene knockouts by CRISPR-Cas9 in maize. Plant Cell Reports 38(4):487-501. |
|
Doudna JA, Charpentier E (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213). |
|
Fauser F, Schiml S, Puchta H (2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant Journal 79(2):348-359. |
|
Gaj T, Gersbach CA, Barbas CF (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31(7)397-405 |
|
Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Xia Q (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology 87(1-2):99-110. |
|
Garrett RA, Vestergaard G, Shah SA (2011). Archaeal CRISPR-based immune systems: Exchangeable functional modules. Trends in Microbiology 19(11):549-556. |
|
Georges F, Ray H (2017). Genome editing of crops: A renewed opportunity for food security. GM Crops and Food 8(1):1-12. |
|
Ghogare R, Williamson-Benavides B, Ramírez-Torres F, Dhingra A (2020). CRISPR-associated nucleases: the Dawn of a new age of efficient crop improvement. Transgenic Research 29:1-35. |
|
Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez, M, Hickey LT (2018a). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols 13(12):2944-2963. |
|
Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez, M, Hickey LT (2018b). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols 13(12):2944-2963 BioRxiv. |
|
Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C (2010). Food security: The challenge of feeding 9 billion people. Science 327(5967):812-818. |
|
Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, Renninger K, Bart RS (2019). Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal 17(2):421-434. |
|
Gupta RM, Musunuru K (2014). The emergence of genome-editing technology. The Journal of Clinical Investigation 124(10):4154-4161. |
|
Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim M R, ?miech M, Islam T (2018). Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: Recent progress, prospects, and challenges. Frontiers in Plant Science 9:617. |
|
Hatem A, Bozda? D, Çatalyürek ÜV (2011). Benchmarking short sequence mapping tools. Proceedings - 2011 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2011, 109-113. |
|
He Y, Zhu M, Wang L, Wu J, Wang Q, Wang R, Zhao Y (2018). Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants. Molecular Plant 11(9):1210-1213. |
|
Hoffmann MD, Aschenbrenner S, Grosse S, Rapti K, Domenger C, Fakhiri J, Niopek D (2019). Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Research 47(13):e75. |
|
Hui-Li X, D L, Wang Z, Zhang H, Han C, Liu B, Chen Q (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. Plant Biology 1(1):3-13. |
|
Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, Boyher A, Taylor NJ (2018). Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal 16(7):1275-1282. |
|
Hussain B, Lucas SJ, Budak H (2018). CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Briefings in Functional Genomics 17(5):319-328. |
|
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakatura A (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169(12):5429-5433. |
|
Ishino, Yoshizumi, Krupovic, M, Forterre P (2018). History of CRISPR-Cas from Encounter with a Mysterious. Journal of Bacteriology 200(7):e00580-17. |
|
Jansen R, Van Embden JDA, Gaastra W, Schouls LM (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology 43(6):1565-1575. |
|
Jasin M, Rothstein R (2013). Repair of strand breaks by homologous recombination. Cold Spring Harbor Perspectives in Biology 5(11):1-18. |
|
Jayavaradhan R, Pillis DM, Goodman M, Zhang F, Zhang Y, Andreassen PR, Malik P (2019). CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nature Communications 10(1):1-13. |
|
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012). A Programmable Dual-RNA - Guided 337(6096):816-821. |
|
Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Doudna JA (2014). Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):2-18. |
|
Khoury LYE, Campbell JM, Clark KJ (2018). The transition of zebrafish functional genetics from random mutagenesis to targeted integration. Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research. Elsevier Inc. |
|
Kivrak E, Pauzaite T, Copeland NA, Hardy JG, Kara P, Firlak M, Ozsoz M (2021). Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor. Biosensors 11(1):17. |
|
Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E (2019). CHOPCHOP v3: Expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research 47(W1):W171-W174. |
|
Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Harwood W (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biology 16(1):1-13. |
|
Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Wang K (2019). Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal 17(2):362-372. |
|
Li C, Chen C, Chen H, Wang S, Chen X, Cui Y (2018). Verification of DNA motifs in Arabidopsis using CRISPR/Cas9-mediated mutagenesis. Plant Biotechnology Journal 16(8):1446-1451. |
|
Li G, Zhang X, Zhong C, Mo J, Quan R, Yang J, Wu Z (2017). Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Scientific Reports 7(1):1-11. |
|
Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, Zhang X (2019). Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnology Journal, 17(5):858-868. |
|
Li Q, Sapkota M, van der Knaap E (2020). Perspectives of CRISPR/Cas-mediated cis-engineering in horticulture: unlocking the neglected potential for crop improvement. Horticulture Research 7(1). |
|
Li S, Xia L (2020). Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives. ABIOTECH 1(1):58-73. |
|
Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology 30(5):390-392. |
|
Li, Zhan, Wang, Y, Lu X, Li, R, Liu J, Fu S, Yao Y (2020). Construction and Verification of CRISPR/Cas9 Gene Editing Vector for Cassava MeSSIII Gene. Molecular Plant Breeding 11(17):1-8. |
|
Li, Zhongsen, Liu, Z. Bin, Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L, Cigan, A. M. (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiology 169(2):960-970. |
|
Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen LL (2017). CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants. Molecular Plant 10(3):530-532. |
|
Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009). Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters 9(3):1007-1010. |
|
Liu, Xuan, Wu, S, Xu J, Sui C, Wei J (2017). Application of CRISPR/Cas9 in plant biology. Acta Pharmaceutica Sinica B 7(3):292-302. |
|
Liu, Xuejun, Xie C, Si, H, Yang J (2017). CRISPR/Cas9-mediated genome editing in plants. Methods 121-122:94-102. |
|
Xiaonan M, Zhang X, Liu H, Li Z (2020). Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. Nature Plants 6(7):773-779. |
|
Xingliang M, Mau M, Sharbel TF (2018). Genome Editing for Global Food Security. Trends in Biotechnology 36(2):123-127. |
|
Xingliang M, Zhu Q, Chen Y, Liu YG. (2016). CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. Molecular Plant 9(7):961-974. |
|
Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, ?ermák T, Chadha-Mohanty P (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnology Journal 16(11):1918-1927. |
|
Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Koonin EV (2011). Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology 9(6):467-477. |
|
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Koonin EV (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology 13(11):722-736. |
|
Malzahn A, Lowder L, Qi Y (2017). Plant genome editing with TALEN and CRISPR. Cell and Bioscience 7(1):1-18. |
|
Manghwar H, Lindsey K, Zhang X, Jin S (2019). CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends in Plant Science 24(12):1102-1125. |
|
Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK (2013). Application of the CRISPR-Cas system for efficient genome engineering in plants. Molecular Plant 6(6):2008-2011. |
|
Martin AS, Salamango DJ, Serebrenik AA, Shaban NM, Brown WL, Harris RS (2019). A panel of eGFP reporters for single base editing by APOBEC-Cas9 editosome complexes. Scientific Reports 9(1):1-8. |
|
McFarlane GR, Whitelaw CBA, Lillico SG (2018). CRISPR-Based Gene Drives for Pest Control. Trends in Biotechnology 36(2):130-133. |
|
Mehta D, Stürchler A, Hirsch-Hoffmann M, Gruissem W, Vanderschuren H (2018). CRISPR-Cas9 interference in cassava linked to the evolution of editing-resistant geminiviruses. BioRxiv pp. 1-10. |
|
Mekler V, Kuznedelov K, Severinov K (2020). Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences. Journal of Biological Chemistry 295(19):6509-6517. |
|
Mikkelsen MD, Halkier BA (2003). Metabolic engineering of valine- and isoleucine-derived glucosinolates in arabidopsis expressing CYP79D2 from cassava. Plant Physiology 131(2):773-779. |
|
Molina R, Sofos N, Montoya G (2020). Structural basis of CRISPR-Cas Type III prokaryotic defence systems. Current Opinion in Structural Biology 65:119-129. |
|
Musunuru K (2017). The hope and hype of CRISPR-Cas9 genome editing: A review. JAMA Cardiology 2(8):914-919. |
|
Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (2013). Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51(12):835-843. |
|
Nambiar TS, Billon P, Diedenhofen G, Hayward SB, Taglialatela A, Cai K, Ciccia A (2019). Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nature Communications 10(1):1-13. |
|
Nassar NMA (2002). Cassava, Manihot esculenta Crantz, genetic resources: Origin of the crop, its evolution and relationships with wild relatives. Genetics and Molecular Research 1(4):298-305. |
|
Nocker S Van, Gardiner SE (2014). Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Horticulture Research 1(1):1-8. |
|
O'Connor DJ, Wright GC, Dieters MJ, George DL, Hunter MN, Tatnell JR, Fleischfresser DB (2013). Development and Application of Speed Breeding Technologies in a Commercial Peanut Breeding Program. Peanut Science 40(2):107-114. |
|
Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ (2017). Efficient CRISPR/cas9 genome editing of phytoene desaturase in cassava. Frontiers in Plant Science 8:1780. |
|
Odipio J, Alicai T, Nusinow D, Bart R, Taylor N (2018). CRISPR/Cas9-mediated Disruption of Multiple TFL1-like Floral Repressors Activates Flowering in Cassava. In In Vitro Cellular and Developmental Biology-Animal 54:S47-S47. 233 Spring St, New York, NY 10013 Usa: Springer. |
|
Okada A, Arndell T, Borisjuk N, Sharma N, Watson-Haigh NS, Tucker EJ, Whitford R (2019). CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal 17(10):1905-1913. |
|
Palareti G, Legnani C, Cosmi B, Antonucci E, Erba N, Poli D, Tosetto A (2016). Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. International Journal of Laboratory Hematology 38(1):42-49. |
|
Pardo B, Gómez-González B, Aguilera A (2009). DNA double-strand break repair: How to fix a broken relationship. Cellular and Molecular Life Sciences 66(6):1039-1056. |
|
Piero Peisach E, Carl P, Robert G (2001). Design And Selection Ofnovel Cys2his2 Zinc Finger Proteins. Annual Review of Biochemistry 70(1):291-321. |
|
Peng R, Lin G, Li J (2016). Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS Journal 283(7):1218-1231. |
|
MN (2013). Regeneration and RNAi-mediated downregulation of cyano-glycoside biosynthesis in cassava 167. |
|
Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L, Sørensen SJ, Shah SA (2020). Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Research 48(4):2000-2012. |
|
Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rounsley S (2012). The Cassava Genome: Current Progress, Future Directions. Tropical Plant Biology 5(1):88-94. |
|
Qin L, Li J, Wang Q, Xu Z, Sun L, Alariqi M, Jin S (2020). High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnology Journal 18(1):45-56. |
|
Ray DK, Mueller ND, West PC, Foley JA (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6):e66428. |
|
Razzaq A, Saleem F, Kanwal M, Mustafa G, Yousaf S, Arshad HMI, KhanJoyia FA (2019). Modern trends in plant genome editing: An inclusive review of the CRISPR/Cas9 Toolbox. International Journal of Molecular Sciences 20(16). |
|
Ricroch A (2019). Global developments of genome editing in agriculture. Transgenic Research 28(2):45-52. |
|
Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V, Cannone G, White MF (2013). Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Molecular Cell 52(1):124-134. |
|
Sansbury BM, Hewes AM, Kmiec EB (2019). Understanding the diversity of genetic outcomes from CRISPR-Cas generated homology-directed repair. Communications Biology 2(1):1-10. |
|
Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019). The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution 3(3):430-439. |
|
Savic N, Ringnalda F, Bargsten K, Li Y, Berk C, Hall J, Schwank G (2017). Covalent linkage of the DNA repair template to the CRISPR/Cas9 complex enhances homology-directed repair. |
|
Schenke D, Cai D (2020). Applications of CRISPR/Cas to Improve Crop Disease Resistance: Beyond Inactivation of Susceptibility Factors. Iscience 23(9):101478. |
|
Schmidt C, Pacher M, Puchta H (2019). DNA break repair in plants and its application for genome engineering. Methods in Molecular Biology 1864:237-266. |
|
Sharma S, Kaur R, Singh A (2017). Recent advances in CRISPR/Cas mediated genome editing for crop improvement. Plant Biotechnology Reports 11(4):193-207. |
|
Shen H, Strunks GD, Klemann BJPM, Hooykaas PJJ, de Pater S (2017). CRISPR/Cas9-induced double-strand break repair in Arabidopsis nonhomologous end-joining mutants. G3: Genes, Genomes, Genetics 7(1):193-202. |
|
Shimada T (1978). Plant regeneration from the callus induced from wheat embryo. The Japanese Journal of Genetics 53(5):371-374. |
|
Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Koonin EV (2015). Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Molecular Cell 60(3):385-397. |
|
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Koonin EV (2017a). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology 15(3):169-182. |
|
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Koonin EV (2017b). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology 15(3):169-182. |
|
Siritunga D, Sayre RT (2003). Generation of cyanogen-free transgenic cassava. Planta 217(3):367-373. |
|
Stinson BM, Moreno AT, Walter JC, Loparo JJ (2020). A Mechanism to Minimize Errors during Non-homologous End Joining. Molecular Cell 77(5):1080-1091. |
|
Symington LS, Gautier J (2011). Double-strand break end resection and repair pathway choice. Annual Review of Genetics 45:247-271. |
|
Tang XD, Gao F, Liu MJ, Fan QL, Chen DK, Ma WT (2019). Methods for enhancing clustered regularly interspaced short palindromic repeats/Cas9-mediated homology-directed repair efficiency. Frontiers in Genetics 10:551. |
|
Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM (2018). Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signaling and Behavior 13(10):1-7. |
|
Tomlinson KR, Bailey AM, Alicai T, Seal S, Foster GD (2018). Cassava brown streak disease: historical timeline, current knowledge and future prospects. Molecular Plant Pathology 19(5):1282-1294. |
|
Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Joung JK (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology 33(2):187-198. |
|
Tyagi S, Kumar R, Kumar V, Won SY, Shukla P (2021). Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crops and Food 12(1):125-144. |
|
Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe K (2017). Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports 7(1):1-8. |
|
Veley KM, Okwuonu I, Jensen G, Yoder M, Taylor NJ, Meyers BC, Bart RS (2021). Gene tagging via CRISPR-mediated homology-directed repair in cassava. G3 Genes|Genomes|Genetics 11(4)::jkab028. |
|
Walsh RM, Hochedlinger K (2013). A variant CRISPR-Cas9 system adds versatility to genome engineering. Proceedings of the National Academy of Sciences of the United States of America 110(39):15514-15515. |
|
Wang M, Wang S, Liang Z, Shi W, Gao C, Xia G (2018). From Genetic Stock to Genome Editing: Gene Exploitation in Wheat. Trends in Biotechnology 36(2):160-72. |
|
Wang W, Pan Q, He F, Akhunova A, Chao S, Trick H, Akhunov E (2018). Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat. The CRISPR Journal 1(1):65-74. |
|
Watters K (2018). The CRISPR Revolution: Potential Impacts on Global Health Security. |
|
Williams BO, Warman ML (2017). CRISPR/CAS9 Technologies. Journal of Bone and Mineral Research 32(5):883-888. |
|
Chhotaray C, Tan Y, Mugweru J, Islam MM, Hameed HA, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J (2018). Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. Journal of Genetics and Genomics 45(6):281-297. |
|
Ye L, Wang C, Hong L, Sun N, Chen D, Chen S, Han F (2018). Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Cell Discovery 4(1):1-12. |
|
Yin K, Han T, Liu G, Chen T, Wang Y, Yu AYL, Liu Y (2015). A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Scientific Reports 5:1-10. |
|
Young K, Gasior SL, Jones S, Wang L, Navarro P, Vickroy B, Barrangou R (2019). The repurposing of type I-E CRISPR-Cascade for gene activation in plants. Communications Biology 2(1):1-7. |
|
Zaidi SSeA, Mukhtar MS, Mansoor S (2018). Genome Editing: Targeting Susceptibility Genes for Plant Disease Resistance. Trends in Biotechnology 36(9):898-906. |
|
Zhang Q, Xing HL, Wang ZP, Zhang HY, Yang F, Wang XC, Chen QJ (2018). Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Molecular Biology 96(4-5):445-456. |
|
Zhang ZT, Jiménez-Bonilla P, Seo SO, Lu T, Jin YS, Blaschek HP, Wang Y (2018). Bacterial genome editing with CRISPR-Cas9: Taking clostridium beijerinckii as an example. Methods in Molecular Biology 1772:297-325. |
|
Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research 42(17):10903-10914. |
|
ZHOU W, MA Q, ZHANG P, WANG L, WANG H, XU J, YANG J (2013). Key Scientific Questions and Recent Advances in Cassava Molecular Breeding. Scientia Sinica Vitae 43(12):1082-1089. |
|
Zuo Z, Zolekar A, Babu K, Lin VJ, Hayatshahi HS, Rajan R, Liu J (2019). Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain. Elife 8:e46500. |
Copyright © 2023 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0